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Abstract: - This paper presents a new evolutionary computing method for the design of robust PID controller with two degrees
of freedom (2DOF PID controller). Since the objective plants have a time-delay element and parametric uncertainties, the design
problem is formulated as a multi-objective minimax optimization problem. Therefore the high-performed optimization method is
required. The proposed evolutionary computing method is to generate a set of pareto-optimal solution that is properly distributed
in the trade-off surface generated by multi-objective functions. Numerical examples show the effectiveness of the proposed
approach.
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1 Introduction

Many engineering practical problems require the simultaneous
optimization of multiple, often competing, objectives. Unlike
single objective optimization, the solution to this type prob-
lem is not a single point, but a family of points known as the
Pareto-optimal set, also called non-dominated set. Each point
in the tradeoff surface is optimal in the sense that no improve-
ment can be achieved in one cost vector component that does
not lead to degradation in at least one of the remaining com-
ponents.

The parallel optimization techniques by using evolution-
ary computation such as Genetic algorithms (GAs) [1, 2] have
been recognized to be well suited to the multiobjective opti-
mization problem. Multiple individuals can search for mul-
tiple solutions in parallel, eventually taking advantage of any
similarities available in the family of possible solutions to the
problem. Extensions of GAs to multiobjective optimization
were proposed in several manners [3, 4, 5]. Schaffer [3] pro-
posed an extension of the simple GA to accommodate vector-
valued fitness measures, which he called the Vector Evaluated
Genetic Algorithm (VEGA).

While a Pareto-based approach was first proposed by
Goldberg[1], as a means of assigning equal probability of re-
production to all non-dominated individuals in the population.
Fonseca and Fleming[4] proposed a multiobjective ranking
method with the Pareto-based fitness assignment.

On the other hand, the proportional-integral-derivative
(PID) controller design problem is one of this kind of opti-
mization problems if PID controller has two degrees of free-
dom (2DOF). Recently, in the practical control field, the 1DOF
PID controllers have a renewed interest due to the recent devel-
opment of digital controllers. In fact, over 90% of industrial
control problems are solved by PID controllers (or by their
variants) in spite of the simple structures [6]. Many tuning
methods of 1DOF PID controller have been developed con-
sequently [6, 7, 8, 9, 10]. Most of these methods, however,
are unable to apply the multiple specification design problem,

such as the case required the optimization of reference re-
sponse and disturbance response at the same time, since these
methods are based on 1DOF PID controller.

To overcome these weakpoints, we have proposed a new
design method of robust PID controller with two degrees of
freedom (2DOF PID controller) based on the H2 performance
measure and exact robust stability check method about time-
delay systems [10]. In this method, we need to solve the non-
convex and multiobjective optimization problems. Hence, we
need the effective optimization tool. This paper, therefore,
presents a design method based on a new evolutionary com-
puting method with dividing strategy for this type problem.

The purpose of the proposed evolutionary computing
method with dividing strategy is to generate a Pareto-optimal
set that is properly distributed in the tradeoff surface of the
2DOF robust PID controller design as multiobjective optimiza-
tion problem. The search using the proposed method uni-
formly control the convergence of solutions. Some numerical
results to demonstrate the effectiveness of proposed method
are also included.

2 New evolutionary computing method

2.1 Dividing strategy

To prevent a partial convergence of non-dominated solutions
in the trade-off surface, the dividing method which uniformly
controls the distribution of solutions is proposed. The pro-
posed method assigns all non-dominated individuals to pre-
specified regions. An example of the dividing strategy in two
objective minimizing problem is shown in fig. 1. The pro-
posed method consists of following procedure. First, the ob-
jective space is divided pre-specified regions. The edge points
of the whole region correspond the best solutions for each
objective function. In the fig. 1, the individuals p1 and p7

match them. Then, the fitness fi of the individual pi is de-
fined as fi = 1/ni. The value of ni denotes the number
of non-dominated solutions in the identical region with the
individual pi. In the example, the fitness of the individu-
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als illustrated in the figure correspond to the following val-
ues (f1, f2, f3, f4, f5, f6, f7)=(1/3, 1/3, 1/3, 1, 1, 1/2, 1/2).
In the proposed evolutionary computing method, let’s define
a neighborhood to every individual as follow: Two objective
functions of m-objective problem are selected by using pre-
specified selective probabilities. Individuals are arranged on
the two-dimensional coordinates, and the neighborhood of an
individual is calculated by using the relative distance between
all individuals.

F1

F2

p2 
p3

p4

p5

p6
p7

p1

Fig. 1 Dividing strategy in two objective problem

The crossover operator is made locally in each neighborhood
in parallel. Even if the fitness of an individual is relatively very
high in a population, it can spread over the succeeding pop-
ulations only through an overlap of the neighborhood. This
prohibits a rapid increase of an relatively high performance in-
dividual, and then, the population diversity is favorably main-
tained. The evolutionary operators are defined as follows:

(a) The selection is done by considering the number of indi-
viduals in the 2-dimensional objective space. That is, the
fitness Γi of the individual pi is defined as Γi = 1/ni.
The value of ni denotes the number of individuals in the
identical region with the individual pi. The proportional
fitness method is employed in the selection process.

(b) BLX-α [11] method is employed for crossover. In the ex-
periments, control parameter α is fixed 0.5. The mate of
crossover is chosen randomly in the neighborhood.

(c) The real-code string representation is employed for can-
didate solution.

(d) Mutation is designed to perform random exchange; that
is, it selects some bits randomly in an individual and
exchanges their values. Boundary mutation and non-
uniform mutation are used to avoid the premature con-
vergence of the solutions.

The proposed procedure consists of the following steps:

Step 1. Set a generation number t = 0. Randomly generate
an initial population P (t) of M individuals.

Step 2. Calculate the fitness of each individuals in the current
population according to the distribution of the objective
space.

Step 3. Select M individuals according to above fitness, then
the mate of the individuals are chosen randomly in the
neighborhood.

Step 4. Generate a new population P ′(t) from P (t) by using
a crossover operator.

Step 5. Apply a mutation operator to the newly generated
population P ′(t).

Step 6. Calculate the fitness both of P (t) and P ′(t).

Step 7. Select M individuals from all population member on
the basis of the fitness.

Step 8. If a terminal condition is satisfied, stop and return the
best individuals. Otherwise set t = t+1 and go to [Step
2].

In this procedure, update of the current population size is al-
ways constant M . Here, to avoid the rapid loss of genetic di-
versity, multiple equivalent individuals are eliminated from the
current population.

2.2 Performance check

In this section, the performance ability of the proposed evo-
lutionary computing method with dividing strategy is checked
by following a two objective problem.� �

min
x1,x2

F1(x1, x2)

min
x1,x2

F2(x1, x2)

subject to −4 ≤ x1, x2 ≤ 4

� �
where

F1(x1, x2) :=
[
1 − exp

(−(x1 − 1)2 − (x2 + 1)2
)]α

F2(x1, x2) :=
[
1 − exp

(−(x1 + 1)2 − (x2 − 1)2
)]α

and where α is a free parameter. The shape of trade-off sur-
face is changed convex or non-convex depend on the value of
α. The following GA parameter specifications are used in this
test problem.

Population size : 50
Mutation rate : 0.10
Maximum generation : 100
The number of dividing region : 502 = 2500

For comparison with the proposed evorutionary comput-
ing method with dividing strategy, the standard genetic al-
gorithm (GA) with multiobjective ranking[4] is used. In the
standard GA, the newly generated population member is ran-
domly selected from current population when the number of
non-dominated solutions is over M . The genetic operators
are same as the proposed method. The simulation results are
shown in figs. 2, 3 and 4 for the cases when the value of α
is 1.0, 5.0 and 10.0, respectively. In all figures, small marks
indicate the solutions in the final population.

From these simulation results, the following facts are ob-
tained:

• By using the proposed method, the solutions are widely
distributed in the trade-off surface, and the search per-
formance does not deteriorate significantly.

• The standard GA approaches cause the partial conver-
gence of the solutions because of stochastic errors in the
iterative process.
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• It is clear that the proposed method can seek for the
widely distributed solutions in comparison with the stan-
dard GA.
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(a) the proposed method (b) the standard GA
Fig. 2 Simulation results (α = 1.0)
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(a) the proposed method (b) the standard GA
Fig. 3 Simulation results (α = 5.0)
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(a) the proposed method (b) the standard GA
Fig. 4 Simulation results (α = 10.0)

Although the proposed method take more computation time
than the standard one naturally, the differences are only a few
seconds. Hence, the proposed evolutionary computing method
with dividing strategy can be recognized the effective method
for multi-objective otimization problems.

3 Design problem

3.1 Problem formulation

Consider the SISO control system shown in Fig. 5, where r
is the step input, u the manipulated variable, y the measured
variable and d the step disturbance. We assume that the plant
model is described by G(s) := P (s)e−Ls, where where P (s)
is strictly proper rational function with parametric uncertain-
ties and L is a delay.

Let θ be the parameter vector of P (s) and belong to a
bounded set Θ = {θ | θl ≤ θ ≤ θu}. The 2DOF PID controller
is consist of feedback part, C1(s), and feedforward part C2(s)
as:

C1(s) =
KI + KP s + KDs2

s
,

C2(s) = −αKP − βKDs

where KP , KI , KD , α, β ∈ R are parameters of the 2DOF
PID controller. Now, if α = β = 0 then this 2DOF PID con-
troller is the standard 1DOF PID controller. On the other hand,

in the case of α = β = 1, it is the so-called 1DOF I-PD con-
troller.

r yu

d

C1-

C2

+

+

+

+

+

(s)

(s) (s)G

Fig. 5 Control system with 2DOF controller

Let q1 := (KP , KI, KD)T and q2 := (α, β)T be
the 2DOF PID controller parameter vectors belonging to
bounded sets Q1 =

{
q1 | ql

1 ≤ q1 ≤ qu
1

} ⊂ R3 and Q2 ={
q2 | ql

2 ≤ q2 ≤ qu
2

} ⊂ R2, which are the ranges of adjustable
2DOF PID parameters. It is assumed that Θ and Q1 are given
a priori.

From fig. 5, Gyr which is the transfer function from r to y
and Gyd, the transfer function from d to y, are given by

Gyr(s) =
[C1(s) + C2(s)]P (s)e−Ls

1 + C1(s)P (s)e−Ls
(1)

Gyd(s) =
P (s)e−Ls

1 + C1(s)P (s)e−Ls
. (2)

Then the tracking errors of reference response and disturbance
response are expressed as

Er(s) =
Br(s) + Dr(s)e−Ls

A(s) + C(s)e−Ls
· r(s) (3)

Ed(s) =
Bd(s) + Dd(s)e−Ls

A(s) + C(s)e−Ls
· d(s). (4)

Where P (s) = N(s)/D(s), and define A(s), Br(s), Bd(s),
C(s), Dr(s) and Dd(s) as

A(s) = sD(s),
Br(s) = sD(s),
Bd(s) = 0,

C(s) = [KI + KP s + KDs2]N(s),
Dr(s) = [αKP + βKDs]N(s),
Dd(s) = −sN(s). (5)

We choose the square of H2 norm of Er and Ed as the perfor-
mance measures Jr(q1, q2, θ) and Jd(q1, q2, θ) :

J(q1, q2, θ) :=
1

2πj

∫ +j∞

−j∞
E(s)E(−s)ds (6)

. where J(q1, q2, θ) is Jr(q1, q2, θ) or Jd(q1, q2, θ), and where
E(s) is Er(s) or Ed(s). In the case of u(s) = 1/s, Jr indi-
cates the standard ISE (Integral Squared Error) of step refer-
ence input.

Hence, the design problem of robust 2DOF PID controller
based on H2 optimization is formulated as a following mini-
max optimization problem:� �

Design problem :

min
q1∈Q1,q2∈Q2

max
θ∈Θ

Jd(q1, q2, θ) (7)

min
q1∈Q1,q2∈Q2

max
θ∈Θ

Jr(q1, q2, θ) (8)

s.t. closed-loop system is stable for ∀ θ ∈ Θ� �
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We note that this design problem is a multiobjective op-
timization problem with a significant constraint, that is the
closed-loop system should be robustly stable for all plant pa-
rameters in the set Θ. About this point, the characteristic equa-
tion of the closed-loop system is given by

f(s) := A(s) + C(s) e−Ls = 0. (9)

Since the plant is strictly proper, the degree of A(s) is always
greater than that of C(s), so that this system is a retarded sys-
tem. Then we can check the exact robust stability of eq.(9)
without any approximation for time-delay elements by using
the method proposed in [12, 10] which is presented in the nest
section.

3.2 Exact robust stability check method

Let’s assume that N(s) and D(s) in eq. (3) are the (real) inter-
val polynomials. Let N denote the number of vertices of the
hyperrectangle Θ in the parameter space and

f i(s) = Ai(s) + Ci(s)e−Ls, i = 1, · · · , N, (10)

be the quasi-polynomials corresponding to each vertex. Then
the characteristic quasi-polynomial is generated by the convex
combination of these quasi-polynomials:

f(s, k) :=
r∑

i=1

ki f i(s), (11)

s.t.

N∑
i=1

ki = 1, 0 ≤ ki ≤ 1, i = 1, · · · , N.

Let k := (k1, · · · , kN)T and define the convex polyhedron K,
the quasi-polynomial family S, and the value set Sω as

K :=

{
k

∣∣∣∣∣
N∑

i=1

ki = 1, 0 ≤ ki ≤ 1

}
,

S := {f(s, k) | k ∈ K},
Sω := {f(jω, k) | k ∈ K}.

(12)

The shape of Sω is a polygonal region and each quasi-
polynomial segment corresponding to the boundary of Sω is
called edge. From the edge theorem [13] and the zero exclu-
sion principle [14], we see that the quasi-polynomial family S
is stable if and only if the boundary of Sω does not contain
or pass through the origin for all ω ≥ 0. Since the boundary
of Sω is the value set of the segment quasi-polynomial corre-
sponding to two generating points of S, we consider an edge
connecting f1(s) and f2(s). Define the quasi-polynomial seg-
ment

f(s, λ) := (1 − λ)f1(s) + λf2(s), (13)

with λ ∈ [0, 1]. From (10) we can express (13) as

f(s, λ) = A(s, λ) + C(s, λ) e−Ls, (14)

where A(s, λ) and C(s, λ) are defined as

A(s, λ) := (1 − λ)A1(s) + λA2(s),

B(s, λ) := (1 − λ)C1(s) + λC2(s).

A stability criterion of the quasi-polynomial segment (13) is
given as follows:

� �
Theorem 1

Given λ ∈ [0, 1], let ωλ be

ωλ = sup{ω | A(jω, λ)A(−jω, λ)−
C(jω, λ)C(−jω, λ) = 0}.

Also let ω̄ be

ω̄ = sup{ωλ | λ ∈ [0, 1]}.
Then, the quasi-polynomial segment (13) contains or
passes through the origin for ω ≥ 0 if and only if there
exist ω ∈ [0, ω̄] satisfying the following condition

Re[f1(jω)] Im[f2(jω)]−
Re[f2(jω)] Im[f1(jω)] = 0,

Re[f1(jω)] Re[f2(jω)] ≤ 0,
Im[f1(jω)] Im[f2(jω)] ≤ 0.

(15)

� �
We can summarize the procedure examining stability of

the quasi-polynomial family S as follows:

Step 1: Examine the stability of one quasi-polynomial in S.
If the quasi-polynomial is stable, go to Step 2. If not, S
is not stable.

Step 2: Check whether 0 /∈ Sω0 for one ω0 ≥ 0. If 0 �∈ Sω0 ,
go to Step 3. If not, S is not stable.

Step 3: For each edge, check the existence of ω ≥ 0 such
that (15) holds. If there exist such an ω on at least one
edge, S is not stable. If not, S is stable.

A exact computation method of the H2 performance mea-
sures for the dime-delay systems is presented in the next sec-
tion.

3.3 Exact computing method

By using the technique of [15], we develop a method of com-
puting the standard H2 performance measure of eq. (6). It is
assumed that the system is stable, so that all the poles of (9)
lie in the left half-plane. For the notational convenience, we
suppress the Laplace variable s of each polynomial and denote
its paraconjugate by (̄·), for example, we write A := A(s) and
Ā := A(−s). Then the integrand of (6) is expressed as

E(s)E(−s) =
B + De−Ls

A + Ce−Ls
· B̄ + D̄eLs

Ā + C̄eLs
(16)

where B indicates Br(s) or Bd(s), and where D is Dr(s) or
Dd(s). It can be shown that (16) is additively decomposed as

E(s)E(−s) =
Λ + Πe−Ls

A + Ce−Ls
+

Λ̄ + Π̄eLs

Ā + C̄eLs

=: H(s) + H(−s), (17)

where

Λ :=
A(BB̄ + DD̄) − 2BCD̄

2(AĀ − CC̄)
,

Π :=
2ADB̄ − C(BB̄ + DD̄)

2(AĀ − CC̄)
. (18)
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Since the system is stable, A + Ce−Ls = 0 has no root.
Then the singularities of the integrand are limited to the roots
of AĀ − CC̄ = 0, which are denoted by si . It is crucial that
{si} is a finite set. It follows from the residue theorem that

I := −
∑

i

Res
[

Λ + Πe−Ls

A + Ce−Ls
, si

]
, (19)

where Res [f(s), si ] denotes the residues of f(s) at si. If si

is a singularity of H(s), −si is also a singularity of H(−s).
With respect to residues, we have

Res [H(s), si] = −Res [H(−s),−si] . (20)

It follows from (20) that the integral of H(−s) is equal to I.
Since E(s) has no singularity on the imaginary axis, we can
obtain J = 2I.

4 Design algorithm

For computational purpose, let Q1d := {q1
1, · · · , qN

1 } and
Q2d := {q1

2 , · · · , qN
2 } be discrete approximations of the sets

Q1 and Q2. Then the design algorithm of robust 2DOF PID
parameters is summarized as follows.

Step 1: Check robust stability of qi
1 for all θ ∈ Θ, where qi

1

and qj
2 are generated by an optimization tool.

Step 2: If the closed-loop system with qi
1 is robustly stable,

compute

Jdij
max := max

θ∈Θ
Jd(qi

1, q
j
2, θ), (21)

Jrij
max := max

θ∈Θ
Jr(qi

1, q
j
2, θ). (22)

If the system is not robustly stable, set Jdij
min = ∞ and

Jrij
min = ∞.

Step 3: If an algorithm of optimaization tool stops, go to
Step 4. Otherwise, go to Step 1.

Step 4: Let the minimum of Jdij
max and J ij

max be Joi
d and Joi

r

respectively. Then the corresponding qio
1 and qio

2 yields
the minimax robust 2DOF PID controller.

It should be noted that the H2 performance measure,
J(q1, q2, θ), does not have saddle point in this case. Since
there are many local optimal solutions for the controller pa-
rameters, we use the hybrid strategy with local search and the
genetic computing method with dividing strategy which is ex-
plained in the next chapter. This means grid search is used for
maximization, and the proposed method for minimization.

5 Numerical Examples

We consider these plants with transfer functions

G1(s) =
Kp

1 + Tps
e−Ls (23)

G2(s) =
Kp

(1 + Tp1s)(1 + Tp2s)
e−Ls (24)

and assume that the set Q1 and Q2 for controller are given by

Q1 = {q1 |
[ 0.10

0.01
0.01

]
︸ ︷︷ ︸

ql
1

≤
[

KP

KI

KD

]
︸ ︷︷ ︸

q1

≤
[ 15.00

120.00
120.00

]
︸ ︷︷ ︸

qu
1

} (25)

Q2 = {q2 |
[

0.00
0.00

]
︸ ︷︷ ︸

ql
2

≤
[

α
β

]
︸︷︷︸
q2

≤
[

1.00
1.00

]
︸ ︷︷ ︸

qu
2

} (26)

5.1 Evolutionary computing formulation

The following parameter specifications are employed for all
experiments.

Population size : 200
Mutation rate : 0.20
Maximum generation : 15000

The control parameters are held constant during all exper-
iments. The algorithm stops when the best function value is
smaller than 1.0× 10−7. In bit-based encodings, each param-
eter has 20 bit of precision, giving a total search space of 2400

points.

5.2 Numerical result of G1(s)

Let the uncertainty set of the plant parameters be given by

Θ = {θ |
[

0.8
5.6

]
︸ ︷︷ ︸

θl

≤
[

Kp

Tp

]
︸ ︷︷ ︸

θ

≤
[

1.2
8.4

]
︸ ︷︷ ︸

θu

} (27)

The delay-time of e−Ls is L = 2.5. The design result is given
in table 1 and values of Jd and Jr are 0.7955 and 0.2557 re-
spectively.

Table 1 Design result (G1(s))
KP KI KD α β

6.653 1.974 1.189 0.209 0.0186

Figs. 6 and 7 show the step responses of closed-loop system
by using the values in table 1. Solid line shows the worst case
response and dashed lines shows the best response in the Θ.
In the worst case, step and disturbance responses are not oscil-
lated and the deteriorating of response is suppressed to mini-
mum compred with best case. We therefore see the good robust
performance.

5.3 Numerical result of G2(s)

Let

Θ = {θ |
[ 0.8

4.57
1.16

]
︸ ︷︷ ︸

θl

≤
[

Kp

Tp1

Tp2

]
︸ ︷︷ ︸

θ

≤
[ 1.2

6.85
1.74

]
︸ ︷︷ ︸

θu

} (28)

The delay-time is L = 2.5. The numerical result is shown in
table 2 and values of Jd and Jr are 12.782 and 1.236 respec-
tively. Closed-loop responses are depicited in figs. 7 and 8.

Table 2 Design result (G2(s))
KP KI KD α β

8.331 1.642 8.987 0.187 0.0124
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Figs. 8 and 9 show the step responses of closed-loop system
with the values in table 2. We also see the good robust prefor-
mance.

By comparison between the proposed evolutionary com-
puting method and the standard GA in the same ploblems men-
tioned above, the following facts are obtained. By using the
proposed method, the solutions are widely distributed in the
trade-off surface. The performance with the design result by
the proposed method is bit better than the standard GA method.
Although the proposed method take more computation time
than the standard one naturally, the differences are only a few
seconds in the all cases.

6 Conclusion

In this paper, new evolutionary computing method with ddi-
viding strategy for the design of robust 2DOF PID controller
design problem of time-delay systems has been proposed. And
the effectiveness of proposed method has been recognized
from simulation results. The automatic tuning method of di-
viding numbers, the appropriate selection method of best solu-
tion among the pareto-optimal set, and so on, are remained as
future works.
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Fig. 6 Step reference responses of closed-loop system
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Fig. 7 Step disturbance responses of closed-loop system
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Fig. 8 Step reference responses of closed-loop system
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Fig. 9 Step disturbance responses of closed-loop system
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