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Abstract: This paper presents a novel block adaptive Independent Component Analysis (ICA) 
algorithm based on the conjugate gradient method. The algorithm is suitable for application in 
dynamic environments. Simulation results employing the proposed method for interference 
rejection in wireless receivers are given. It is shown that the new algorithm outperforms the Fast-
ICA algorithm under dynamic conditions. Consequently, the proposed algorithm lends itself to 
practical applications in mobile cellular systems for higher user mobility, handoff, and rapid 
changing channel conditions. 
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1 Introduction 
Independent Component Analysis (ICA) is a 
statistical technique that extracts statistically 
independent signals from their linear 
combinations. Since the technique utilizes 
only higher-order statistics, it is very 
attractive in areas where little prior 
information is available about the mixing 
process. Under stationary or slow time-
varying conditions, the fixed-point Fast-ICA 
is a highly efficient block algorithm. 
However, due to its inherent fixed-point 
assumption, the algorithm lacks the ability 
to operate in dynamic environments [1].  
    Previously, conjugate-gradient techniques 
for adaptive filters have been proposed to 
use search directions other than the negative 
gradient direction [2-3]. It has been shown 
that these techniques possess better 
convergence properties. Also, the technique 
is also used for ICA applications [4-5]. In 
this contribution, a Block Conjugate-

gradient ICA (BC-ICA) algorithm is 
proposed. Computer simulations confirm the 
effectiveness of the new algorithm in 
dynamic environments. 
 
2 Formulation 
The basic ICA model is given by:  

X=AS    (1) 

    Here, X is the observation matrix, A is the 
unknown mixing matrix, and S is the source 
signal matrix consisting of independent 
components. The objective of ICA is to find 
a separation matrix W, such that S can be 
recovered when the observation matrix X is 
multiplied by W. Ideally, W is the inverse of 
A. This is achieved by making each 
component in WX as independent as 
possible. 
    The Fast-ICA algorithm is a block 
algorithm based on the fixed-point 
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assumption. The “expectation” operator in 
the definition of statistical independence is 
estimated by the average over L data points, 
where L is the block size [6]. The 
performance is better when L is larger. 
However, it is very important that the 
mixing matrix stays approximately constant 
within one processing block, i.e., quasi-
stationary. Thus, the problem arises when 
the mixing matrix is time varying, in which 
case a large L violates the assumption of 
quasi-stationarity.  
    Here we formulate a new adaptive block 
ICA algorithm based on the conjugate 
gradient method that outperforms Fast-ICA. 
Similar to the Fast-ICA, the weight update 
equation derived here updates each row, one 
at a time, of the separation matrix. The 
absolute value of kurtosis is used as the 
measure of nongaussianity, which is to be 
maximized. Other ICA related operations 
such as preprocessing and orthogonalization 
are identical to Fast-ICA. 
    To proceed, the following parameters are 
defined: 
 
 j: iteration index. 
 
N: number of observations. 
 
L: length of the processing block. 
 

)( jw = [w1(j) w2(j) …… wN(j)]T: the current 
row of the separation matrix for the jth 
iteration.     
                             
xl,i(j): the ith signal in the lth observation 
data vector for the jth iteration. (l = 1, 2, …, 
L; i = 1, 2, …, N) 
 

)( jX l = [xl,1(j) xl,2(j) …… xl,N(j)]T: lth signal 

observation for the jth iteration.  
 

[ ]TLj jXjXjXG )(.....)()(][ 21=
: 

Observation matrix for the jth iteration. 
 

The lth kurtosis value for the jth iteration 
is 

kurtl(j) = 3}])()({[ 4 −jXjwE l
T  (2) 

 
where it is assumed that the signals and 

)( jw  have both been normalized to unit 
variance. 
    Then, the kurtosis vector for the jth 
iteration is 
 

)( jkurt = [kurt1(j) kurt2(j)…… kurtL(j)]T                                                              

     (3) 
 
    First, the lth kurtosis value in the (j+1)th 
iteration is given by the Taylor series 
expansion.  
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where  

)()1()( jwjwjw iii −+=∆  
 i = 1, 2, …, N                 (5) 

     
    In (4), if )( jwi∆  is constrained to be 
small enough, higher order derivative terms 
can be omitted.  
    We proceed by dropping the expectation 
operator in (2). Thus, 
 

    3
, ])()()[(4

)(
)( jXjwjx

jw
jkurt

l
T

il
i

l ≅
∂
∂

        

        (6) 
 
    Then, (4) becomes 
    

])()([])()([4)()1( 3 jwjXjXjwjkurtjkurt T
ll

T
ll ∆+=+

        (7)
         

Writing (7) for every l, the Taylor series 
expansion becomes 

 
)(][][4)()1( 3 jwGCjkurtjkurt jj ∆+=+

              (8)  
where 
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is a diagonal matrix. 
     
    Suppose )( jw  is updated along direction 

)( jr , i.e., 
 
   )()( jrjw α=∆             (10) 
 
we need to calculate the optimum value for 
α given )( jr .  
    From (10), the Taylor series expansion (8) 
becomes 
 
    )(][][4)()1( 3 jrGCjkurtj jjα+=+kurt
              (11) 
 
    Our purpose is to maximize the total 
squared kurtosis in the (j+1)th iteration. 
Define  
    

T
Nj
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  1 ≤ m, n ≤ N           (13)  
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    The total squared kurtosis can be 
expressed as: 
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    Taking the derivative of the total squared 
kurtosis (14) with respect to α, and setting 
the resulting expression to zero, one obtains 
the optimum value of α given by 
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    The remaining task is to identify the 
suitable weight update direction according 
to the conjugate-gradient method. This 
technique can be considered as intermediate 
lying between the steepest descent and 
Newton’s methods, in terms of complexity 
and convergence properties [2-3].  
    In the first iteration, the conjugate-
gradient method uses the gradient direction 
given by 
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    In the derivation of (16), the expectation 
operator is dropped. Now, the BC-ICA 
algorithm can be described as follows: 
 
(1). Initialize )0(w , j=0. 
 
(2). According to (16), find the direction 

    )(][][8)()( 3 jkurtCG
L

jjg j
T
jB =∇=  

 a. If )( jw  has converged, then terminated 

the algorithm and return )( jw ; 

 b. If )( jw  has not converged and j = 0, 

then )( jr = )( jg , and proceed to step (3); 

c. If )( jw  has not converged and j > 0, then 

compute )( jr  from  
       

)1(
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              (17) 
 
(3). Update the weight vector according to 
     )()()1( jrjwjw α+=+ , where α is 
given by (15). 
 
(4). j = j+1, go to step (2). 
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3 Simulation Results 
Computer simulations are performed for a 
wireless communication application to 
evaluate the new technique. Assume a dual-
antenna BPSK receiver is receiving two 
signals simultaneously, namely, the desired 
signal s(t) and an interferer i(t) [7]. The 
signal received by each antenna is a linear 
combination of s(t) and i(t). It is desired to 
separate the desired signal from the 
interference. In this scenario, the mixing 
matrix is determined primarily by the 
wireless channel’s fading coefficients. 
    The performance measures are the Signal 
to Interference Ratio (SIR) and the number 
of iterations to convergence. SIR represents 
the average ratio of the desired signal power 
to the power of the estimation error, defined 
as: 
 

    SIR = 10 log10 ( ∑
= −

L

k kyks
ks

L 1
2

2

)]()([
)(1 )  (18) 

 
where s(k) is the kth sample of the desired 
signal, and y(k) is the estimate of s(k) 
obtained at the output of the ICA processing 
unit.  
    In our simulations two types of time 
variations are studied. In the first case, the 
change of the channel is modeled as a 
continuous linear time variation in the 
mixing matrix’s coefficients, and the ICA 
algorithm seeks a compromise separation 
matrix. The second type of time variation 
arises when the user is experiencing 
handover between two service towers. In 
this scenario, the mixing matrix’s 
coefficients are modeled by an abrupt 
change. 
    For continuous linear time variation, the 
mixing matrix is modeled as:  
 

                  (19) 
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Where l = 1, 2, … , L, and ∆ is the 
parameter reflecting the speed of channel 
variation. Here, it is assumed that the 
channel’s transfer function is frequency-flat 

over the signal band. Also, the sampling 
interval of the receiver’s A/D converter is 
negligible compared with 1/∆. 
    In our simulations, the block size L is 
varied from 50 to 1000 symbols with a step 
size of 50. For each L, the SIR and the 
convergence speed are computed and 
averaged over 100 simulation runs.  
    First, BC-ICA and Fast-ICA are simulated 
for linearly time-varying channels, and the 
parameter ∆ is set to 0.01 and 0.03. The 
achieved SIR and convergence speed in 
terms of the number of iterations are plotted 
in Figs. 1 and 2. It is found that BC-ICA 
achieves better SIR than Fast-ICA, and BC-
ICA converges much faster. 
    Next, Fast-ICA and BC-ICA are 
compared under abruptly changing channel 
conditions. An abrupt change of the mixing 
matrix is introduced in the middle of the 
processing block. As expected, the 
performance of both algorithms degrades. 
However, BC-ICA converges faster than the 
Fast-ICA, as shown in Fig. 3. 
 
4 Conclusion 
In this paper, a novel block ICA algorithm, 
BC-ICA, is developed based on the 
conjugate gradient method. In dynamic 
environments, it achieves faster convergence 
and better performance than the Fast-ICA 
algorithm without increasing the 
computational complexity. Computer 
simulations confirm the effectiveness of BC-
ICA. Also, it is shown that BC-ICA 
outperforms the Fast-ICA in both gradual 
and abrupt time-varying situations.  
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Fig. 1 Output SIR employing BC-ICA and 
Fast-ICA for linearly time-varying channels 

 

 
Fig. 2 Convergence of the BC-ICA and 
Fast-ICA algorithms under linearly time-
varying channel conditions 

 
 
Fig. 3 Convergence of the BC-ICA and 
Fast-ICA algorithms under abruptly 
changing channel conditions 
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