
Adaptive Guidance of the Search Process in Evolutionary
Optimization*

CHRISTOPH BREITSCHOPF

Department of Business Informatics – Software Engineering
Johannes Kepler University Linz
Altenberger Straße 69, 4040 Linz

AUSTRIA
 http://www.se.jku.at

GÜNTHER BLASCHEK, THOMAS SCHEIDL

Institute of Pervasive Computing
Johannes Kepler University Linz
Altenberger Straße 69, 4040 Linz

AUSTRIA
 http://www.soft.uni-linz.at

Abstract: Evolutionary optimization is a well-known paradigm for solving large-scale combinatorial optimiza-
tion problems. Evolutionary algorithms typically consider the fitness of solutions to decide which solution
should be processed by an operator. In the presence of multiple operators to choose from, similar strategies are
needed to choose an appropriate operator. In this paper, we present an adaptive target-oriented approach for
evaluating and selecting operators on the fly. This technique has been integrated into the OptLets framework**
[1], which monitors the success of operators and uses the results of this evaluation for operator selection in the
future. Although this paper describes the technique and illustrates the results in the context of the OptLets
framework, the evaluation strategy is applicable for other population-based optimization systems as well.

Key-Words: Framework, Combinatorial optimization, Incremental optimization, Evaluation, Selection,
Population, Knapsack Problem, Operator selection, Target-oriented optimization

* This work was funded by Siemens AG, Corporate Technology, Munich.
** Patent pending.

1 Introduction
Many optimization problems can be classified as
NP-hard. For solving such problems, several opti-
mization techniques such as Tabu Search (TS) [2],
Simulated Annealing (SA) [3], Genetic Algorithms
(GA) [4] as well as nature-inspired approaches like
Ant Colony Optimization (ACO) [5] and Particle
Swarm Optimization (PSO) [6] exist that try to find
a feasible solution in a reasonable time.
 All these techniques have in common that they
explore the search space in order to improve existing
solutions. Based on a given solution, each technique
has to decide which move is best for achieving a
good solution at the end of the optimization. How
the neighborhood of a solution is explored, depends
on the used optimization technique.
 GA, ACO and PSO are promising techniques that
work with a population in order to achieve a feasible
solution. Here, finding an appropriate “operator”
(which performs a transformation or move) is a non-

trivial task that seriously influences the quality of
the final solution.
 For practical use, we need an approach that is
able to guide the search process independently from
the underlying problem and the used optimization
technique in order to find good solutions.
 Several software frameworks have been devel-
oped that try to make smart guesses in order to
choose an appropriate starting solution and to per-
form a move that improves that solution.
 The Meta-heuristics Development Framework
(MDF) [7] is an enhancement of the Tabu Search
Framework (TSF) [8] and enables the use of
different meta-heuristics such as EA, ACO etc.
MDF provides interfaces for moves and constructing
the neighborhood. These interfaces do not deal with
the actual heuristic, but they provide a common
infrastructure in which different techniques can
share information and collaborate. A centralized
control mechanism enables the user to guide the

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp12-17)

search process based on problem-specific decision
handlers. HotFrame [9] is an optimization frame-
work that supports TS, SA and Evolutionary
Algorithms (EAs). It also provides a problem-
independent implementation of neighborhood opera-
tions (e.g. shifting or swapping moves), but it does
not provide any control mechanism, i.e. the user is
not able to adaptively guide the search process.
HeuristicLab (HL) [10] is an optimization environ-
ment in which various optimization techniques (e.g.
TS, SA, GA) can be applied to different optimiza-
tion problems (e.g. JSSP, TSP). HL provides a basic
implementation for evaluating the fitness of a
solution, but it still requires additional problem-
specific components. The DREAM (Distributed
Resource Evolutionary Algorithm Machine)
framework [11] is a peer-to-peer software infrastruc-
ture that allows the development of EAs. It provides
a so-called evolution engine to handle any popula-
tion of objects that have a fitness attribute. The
framework handles the selection and replacement of
individuals within the population. ParadisEO
(Parallel and Distributed Evolving Objects) [12] is
an extension of the EO framework [13] and supports
the design of Local Search based algorithms and
EAs. It provides basic functionality for the selection
and replacement of solutions, but requires additional
components to define how the neighborhood should
be explored. The A-Team framework ([14], [15])
uses a network of software agents that work together
for solving a concrete problem. A so-called
evaluator agent is used for evaluating the solutions.
This agent type provides an arbitrary evaluation
function for solutions.
 The aforementioned approaches encapsulate
some basic aspects of the evaluation and selection of
solutions in the search space. They partly provide
some generic implementation for the operator
selection. Nevertheless, problem-specific compo-
nents are needed in order to make a decision for a
concrete problem and optimization technique.

2 The OptLets Framework
The OptLets framework [1] is a generic software
framework that is able to handle different types of
combinatorial optimization problems. It is imple-
mented in C++ and enables the use of different
optimization paradigms.
 The basic assumption is that many optimization
problems share common properties for which
general algorithms can be encapsulated in an
invariant part. The framework takes care about all
administrative issues such as monitoring the opti-

mization process, invoking appropriate optimization
“techniques” (operators) and keeping track of the
population, so that the user can concentrate on the
actual problem-solving task.
 For solving a concrete problem, the user has to
provide a problem description that contains informa-
tion about the problem to be solved, the representa-
tion of the solutions as well as the optimization
entities called OptLets. The rest is entirely done by
the OptLets framework.
 Solving a concrete problem, the framework starts
with a small set of initial solutions. It then invokes
OptLets to produce new solutions based on existing
ones. Solutions can be valid or invalid. Invalid
solutions violate at least one constraint. The quality
of invalid solutions is determined by a constraint
violation degree. The solution with the lowest
violation degree is the minimum invalid solution.
During an optimization, many (valid and invalid)
solutions are produced.
 According to the principle of Evolutionary
Computation [3], the framework administrates the
solutions in a solution pool. Solutions in the pool
cannot be modified. If a new solution should be
generated based on an existing one, the framework
makes a copy and assigns this copy to an OptLet.
 The solution pool has a limited capacity so that
the framework must clean it up occasionally.
Whenever the pool becomes full, the framework
evaluates all solutions and keeps only those that
might be useful during the next iteration (where the
term iteration is defined as the time between two
clean-ups). The framework also keeps invalid
solutions as well as solutions not yet considered as
they might become useful in the next iteration. All
other solutions are discarded and the optimization
process continues by selecting solutions from the
pool and assigning them to OptLets.
 An OptLet is defined as a problem-solving or
optimization entity that produces new solutions
based on existing ones. An OptLet can represent any
kind of algorithm that modifies a solution in some
way. OptLets must always be implemented
specifically for a concrete problem.
 The OptLets framework has successfully been
used for solving academic problems (e.g. KP, TSP)
and real-world problems (e.g. steel mill production
process optimization, object placement by a robot).

3 OptLet Selection
The success of the optimization depends on the
combination of OptLets used for the underlying
problem. The key question is which OptLet should

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp12-17)

be assigned to a given solution. In general, the
framework selects the OptLets randomly. The basic
assumption is that OptLets that have been successful
in the past will also be successful in the future. This
leads to the idea of a probabilistic approach where
each OptLet has a different selection probability,
based on its success in the past.
 The framework evaluates the success of the
OptLets after each iteration. This is done by assign-
ing each OptLet a “score” that reflects its success
during the optimization – the higher the success, the
higher the score. The selection probability Pi of an
OptLet i depends on its score Si and is calculated by
dividing its score by the sum of all n OptLet scores
S1 to Sn:

∑

=
=

n

j
j

i

S

S
iP

1

 (1)

At the beginning of the optimization, the framework
assigns each OptLet the same score. As the success
of an OptLet can vary over time, its score and
therefore its selection probability might also change.
Some OptLets might perform well in the beginning
but could fail to produce good solutions in a later
optimization phase, which results in different scores
and different probability distributions over time, as
shown in Fig.1:

Fig.1: OptLet scores and selection probabilities

4 OptLet Evaluation
During the clean-up of the solution pool, the frame-
work re-evaluates the success of all OptLets. It first
calculates a “bonus” according to each OptLet’s
success during the last iteration, and then updates
the score by combining it with the bonus.

4.1 Calculating the Bonus
It is desirable to assign a bonus to an OptLet for
improving solutions. For each improvement, the
bonus is incremented by a certain value.
 As new solutions are always generated based on
existing ones, several chains of solutions result dur-
ing an iteration. These chains also contain informa-
tion about the involved OptLets, as shown in Fig.2:

S1 S2
O1

S3 S4
O2 O3

val=20 val=18 val=22 val=21

Fig.2: Solution chain

Starting from solution S1 with a value of 20, the
OptLet O1 produced a solution S2 with a value of
18. From this solution S2, the OptLet O2 managed
to produce a solution S3 with a value of 22. Finally,
OptLet O3 produced a solution S4 with a value of 21
from S3. Evaluating each OptLet based on its imme-
diate improvements would mean that only O2 would
receive a bonus. However, O2 might not have been
able to produce the solution S3 without the previous
deterioration made by O1. This is a typical scenario
in which a combination of OptLets can help to es-
cape from a local optimum.
 The idea is to calculate the bonus not only based
on the improvements of a single OptLet, but to look
at solution chains and award the bonus to a sequence
of OptLets that managed to find a solution better
than the first solution in the chain.
 At the beginning of an iteration, the pool contains
several solutions which survived the last clean-up.
Each of these solutions is taken as a starting point
for a new solution chain. At the end of the iteration,
the framework looks at all solution chains and
identifies the best solution in each chain. The bonus
is then divided among all OptLets that were
involved in finding the best solution in the chain. In
the example shown in Fig.2, these are the OptLets
O1 and O2. Both would get half of the bonus
awarded for the chain. Note that when the first
solution in the chain is already the best one, no
OptLet gets a bonus, which makes sense as there
was no improvement to the original solution.
 Depending on the best solution in the chain,
different bonus values are assigned to the chain:

Bval for finding an improved valid solution
Bbest for finding a new best valid solution
Binv for finding an improved invalid solution
Bminv for finding a new minimum invalid solution

Bval is not only awarded for improving a valid
solution, but also for turning an invalid solution into
a valid one. Bbest and Bminv are awarded when the
solution was the current best or minimum invalid at
the time it was found. All these values are parame-
ters that can be configured by the user. Typically,
Bbest and Bminv will be higher than Bval and Binv in
order to honor OptLets that manage to find a new
current best or minimum invalid solution.
 The algorithm for calculating the OptLets’ bo-
nuses can be described informally as follows:

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp12-17)

bonus[1:n] = 0 // set all bonuses to 0
for (all solution chains) {
 s = best solution in the chain
 if (s is valid) {
 if (s was best) { b = Bbest }
 else { b = Bval }
 }
 else { // s is invalid
 if (s was min. invalid) { b = Bminv }
 else { b = Binv }
 }
 nr = number of OptLets involved for finding s
 for (all involved OptLets o) {
 bonus[o] = bonus[o] + b/nr
 }
}

4.2 Updating the Score
After the bonuses for all OptLets have been
calculated, their scores need to be updated. In order
to honor the success during recent iterations more
than that of older ones, the old score is multiplied by
a degression factor d before adding the bonus of the
last iteration. This ensures that the score of an
OptLet that was good at the beginning of the
optimization decreases continuously if it is no longer
successful later. The degression factor is a
configurable parameter.
 In order to prevent the score from becoming 0,
there is a guaranteed minimum score Smin for each
OptLet. This ensures that every OptLet gets a
chance to be called by the framework even if it has
not been successful recently.
 Furthermore, the framework considers the
runtime of OptLets. If an OptLet manages to reach
the same improvements as another OptLet in only
half of the time, this should be honored
appropriately. Therefore, the bonus Bi of each
OptLet i is divided by its average runtime Ri before
it is added to the overall score Si. This leads to the
following formula for calculating an OptLet’s score,
based on the old score at time t:

i

i
R
B

titi dSSSS +⋅−+=+)(min,min1, (2)

The average runtime Ri is a relative value,
depending on the OptLet’s actual runtime Ti and the
average runtime Ravg of all OptLets:

),01.0max(
avg

i
R
T

iR = (3)

For an OptLet that has an average runtime near the
total average runtime of all OptLets, Ri is about 1,
for faster OptLets less (bonus becomes greater) and
for slower OptLets greater (bonus becomes less). In
order to prevent the score from exploding for very
fast OptLets, Ri is restricted to a minimum value of
0.01.

5 Case Studies and Results
We successfully tested this evaluation approach with
the Knapsack Problem (KP) and Traveling Salesman
Problem (TSP) as well as with two real-world
problems. Our primary goal was to show that an
effective OptLet evaluation can help finding good
solutions faster.
 We will demonstrate our results with the well-
known Knapsack Problem. The problem instances
used for our experiments have been randomly gener-
ated using the generator described in [16]. For all
instances, the optimum is known and has been
computed with NEOS [17].
 We performed our experiments on a Pentium 4
2.4 GHz computer with 1 GB RAM running
Windows XP.

5.1 Parameter Settings
The OptLets framework contains several parameters
for controlling the optimization process. During the
development of the OptLets framework, we could
identify a manually tuned configuration that enables
the framework to deliver good results for most
problem classes.
 For our experiments, we used the following
default parameter settings:

Parameter Value
Bval 1
Bbest 20
Binv 0.5
Bminv 10
d 0.6

Table 1: Parameter settings

To show how the optimizer performs without
evaluation, the parameters above have been set to 0.

5.2 Evolution of the Solution Value
The following diagram compares the evolution of
the best solution value over time with and without
evaluation for a problem with 50000 items.

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp12-17)

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 10 20 30 40 50 60 70
Time (sec.)

Va
lu

e

global optimum: 453080 with evaluation - best solution found: 453036

without evaluation - best solution found: 452993

Fig.3: Impact of the OptLet evaluation

The curve without OptLet evaluation has a steep
ascent in the first second only. From then on, the
solution quality slowly improves until the curve
stagnates after about 60 seconds.
 With OptLet evaluation, the ascent is much
steeper and the solution quality gets close to the
known optimum within 8 seconds. The optimizer
improves the solution further on until it reaches a
value of 453036 after 70 seconds.

5.3 Evolution of the OptLet Scores
Fig.4 shows the score ratio of the five best OptLets
and the cumulated average score ratio of all other
OptLets (as percentage) over runtime in relation to
the quality of the solution.

0
50000

100000
150000
200000
250000
300000
350000
400000
450000

Va
lu

e

0%

20%

40%

60%

80%

100%

0 10 20 40 5030

Time (sec.)

Sc
or

e

Unpacker 2

Other Packers/Unpackers

70

Unpacker 3

Unpacker 1

Packer 2

60

Packer 1

Fig.4: Distribution of OptLet scores

Two packing OptLets (Packer 1 and 2 – with differ-
ent packing strategies) and three unpacking OptLets
(Unpacker 1, 2 and 3) have been most successful
within the selected time span. As the knapsack is
empty at the beginning of the optimization, the
packing OptLets can improve the quality quickly.
After about 8 seconds, most knapsacks (solutions) in
the pool are almost filled and the packing OptLets
often generate invalid solutions. These OptLets now
become less successful and the framework gradually
reduces their score.
 At this time, the optimizer has reached a solution
quality already very close to the optimum and the
curve is stagnating. The framework still improves
the solution quality in “micro steps”. As the OptLets
cannot achieve big improvements now, their scores
no longer changes as drastically as in the beginning.
 As already discussed, the score ratio of each
OptLet also represents its selection probability, i.e.
the higher the score, the higher the probability for
being selected. For example, Packer 1 has a selec-
tion probability of about 60% after the first 3
seconds.
 For the other problems (TSP, steel mill, robot),
the results show a similar picture. Similar experi-
ments with other types of problems showed that
OptLet evaluation significantly speeds up the find-
ing of good solutions in all cases.

6 Conclusion
In this paper, we presented a new approach for
evaluating operators working in population-based
optimization environments. This evaluation strategy
is part of the OptLets framework that is able to solve
different types of optimization problems.
 Our approach assumes that the success of
operators (OptLets) is an essential aspect of evo-
lutionary optimization. The work of the OptLets is
evaluated and they receive a bonus depending on
their previous success. This bonus influences the
score of an OptLet which reflects its selection
probability during the next iteration.
 We could show that using an efficient evaluation
strategy, good results can be achieved much faster
than using a uniformly distributed OptLet selection.
The framework is able to take advantage of success-
ful OptLets and lets them work more often than not
successful ones.
 Another important aspect is that some OptLets
are good in the beginning whereas others are able to
improve the quality of near-optimal solutions at the
end of the optimization process. Continuous re-

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp12-17)

evaluation of OptLets automatically adapts the
scores to such special abilities over time.
 OptLets are typically developed independently
by members of a team, who have different ideas
which operators could help to produce better solu-
tions. Without further intervention of the developers,
the framework automatically prefers OptLets that
are doing well in a particular optimization phase. If
an OptLets turns out to be ineffective, it receives the
minimum score and therefore does not consume
much optimization time. As an additional benefit,
analysis of the scores can give the developers
valuable hints: OptLets which never receive high
scores might be candidates for removal, whereas
successful OptLets can lead to ideas for similar –
probably even better – OptLets.
 Currently, the evaluation strategy is implemented
as part of the OptLets framework. However, it can
be used for any evolutionary optimization technique
that uses multiple operators working on a population
of solutions.
 Hence, our approach seems to be a promising
strategy to adaptively guide a search process in
evolutionary optimization.

References:
[1] Breitschopf, C.; Blaschek, G.; Scheidl, T.:

OptLets: A Generic Framework for Solving
Arbitrary Optimization Problems, WSEAS
Transactions on Information Science and
Applications (Special Issue: Selected papers
from the 6th WSEAS Int. Conference on
Evolutionary Computing, Lisbon, Portugal, June
16-18, 2005), 2005.

[2] Glover, F.: Tabu Search - Part I, ORSA Journal
of Computing, 1/1989, pp. 190-206.

[3] Laarhoven, P. J. M. v.; Aarts, E. H. L.:
Simulated Annealing: Theory and Applications,
Kluwer Academic Press, 1988.

[4] Goldberg, D.: The Design of Innovation, Kluwer
Academic Publishers, 2002.

[5] Dorigo, M.; Stützle, T.: Ant Colony
Optimization, MIT Press, 2004.

[6] Kennedy, J.; Eberhart, R. C.; Yuhui, S.: Swarm
Intelligence, Morgan Kaufmann Publishers,
2001.

[7] Lau, H. C.; Wan, W. C.; Lim, M. K.; Halim, S.:
A Development Framework for Rapid Meta-
heuristics Development, Proceedings of the 28th
Annual International Computer Software and
Applications Conference (COMPSAC'04),
September 28 - 30, 2004, Hong Kong, 2004.

[8] Lau, H. C.; Wan, W. C.; Jia, X.: A Generic
Object-Oriented Tabu Search Framework,

Proceedings of the 5th Metaheuristics
International Conference, (MIC'03), Kyoto,
Japan, pp. 362-367, 2003.

[9] Fink, A.; Voß, S.: HotFrame: A Heuristic
Optimization Framework, In Voß, S.; Woodruff,
D. (Eds.): Optimization Software Class
Libraries, pp. 81-154, Kluwer, Boston, 2002.

[10] Wagner, S.; Affenzeller, M.: HeuristicLab: A
Generic and Extensible Optimization
Environment, Proceedings of the International
Conference on Adaptive and Natural Computing
Algorithms (ICANNGA), 2005.

[11] Arenas, M. G.; Collet, P.; Eiben, A. E.;
Jelasity, M.; Merelo, J. J.; Paechter, B.; Preuß,
M.; Schoener, M.: A Framework for Distributed
Evolutionary Algorithms, Proceedings of PPSN
VII, Granada, 2002.

[12] Cahon, S.; Melab, N.; Talbi, E.: PardisEO: A
Framework for the Resusable Design of Parallel
and Distributed Metaheuristics, Journal of
Heuristics, 10/2004, pp. 357-380.

[13] Keijzer, M.; Merelo, J. J.; Romero, G.;
Schoenauer, M.: Evolving Objects: A General
Purpose Evolutionary Computation Library,
Proceedings of th 5th Intl. conference on
Artificial Evolution (EA'01), Le Creusot, France,
2001.

[14] Chang, P.; Dolan, J.; Terk, M.: Asynchronous
Team Toolkit User’s Guide, Carnegie Mellon
University, 1996.

[15] Rachlin, J.; Goodwin, R.; Murthy, S.; Akkijaru,
R.; Wu, F.; Kumaran, S.; Das, R.: A-Teams: An
Agent Architecture for Optimization and
Decision Support, Proceedings of the 5th
International Workshop on Intelligent Agents V,
Agent Theories, Architectures, and Languages,
pp. 261-276, Springer, London, UK, 1998.

[16] Pisinger, D.: Advanced Generator for 0-1
Knapsack Problems, 2005, Online:
http://www.diku.dk/~pisinger/codes.html, [last
visited: 23.2.2005].

[17] NEOS: NEOS, 2005, Online: http://www-
neos.mcs.anl.gov/, [last visited: 29.7.2005].

4th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS and CYBERNETICS Miami, Florida, USA, November 17-19, 2005 (pp12-17)

