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Abstract: Evolutionary optimization is a well-known paradigm for solving large-scale combinatorial optimiza-
tion problems. Evolutionary algorithms typically consider the fitness of solutions to decide which solution 
should be processed by an operator. In the presence of multiple operators to choose from, similar strategies are 
needed to choose an appropriate operator. In this paper, we present an adaptive target-oriented approach for 
evaluating and selecting operators on the fly. This technique has been integrated into the OptLets framework** 
[1], which monitors the success of operators and uses the results of this evaluation for operator selection in the 
future. Although this paper describes the technique and illustrates the results in the context of the OptLets 
framework, the evaluation strategy is applicable for other population-based optimization systems as well.  
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1   Introduction 
Many optimization problems can be classified as 
NP-hard. For solving such problems, several opti-
mization techniques such as Tabu Search (TS) [2], 
Simulated Annealing (SA) [3], Genetic Algorithms 
(GA) [4] as well as nature-inspired approaches like 
Ant Colony Optimization (ACO) [5] and Particle 
Swarm Optimization (PSO) [6] exist that try to find 
a feasible solution in a reasonable time. 
     All these techniques have in common that they 
explore the search space in order to improve existing 
solutions. Based on a given solution, each technique 
has to decide which move is best for achieving a 
good solution at the end of the optimization. How 
the neighborhood of a solution is explored, depends 
on the used optimization technique. 
     GA, ACO and PSO are promising techniques that 
work with a population in order to achieve a feasible 
solution. Here, finding an appropriate “operator” 
(which performs a transformation or move) is a non-

trivial task that seriously influences the quality of 
the final solution. 
     For practical use, we need an approach that is 
able to guide the search process independently from 
the underlying problem and the used optimization 
technique in order to find good solutions.  
     Several software frameworks have been devel-
oped that try to make smart guesses in order to 
choose an appropriate starting solution and to per-
form a move that improves that solution. 
     The Meta-heuristics Development Framework 
(MDF) [7] is an enhancement of the Tabu Search 
Framework (TSF) [8] and enables the use of 
different meta-heuristics such as EA, ACO etc. 
MDF provides interfaces for moves and constructing 
the neighborhood. These interfaces do not deal with 
the actual heuristic, but they provide a common 
infrastructure in which different techniques can 
share information and collaborate. A centralized 
control mechanism enables the user to guide the 
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search process based on problem-specific decision 
handlers. HotFrame [9] is an optimization frame-
work that supports TS, SA and Evolutionary 
Algorithms (EAs). It also provides a problem-
independent implementation of neighborhood opera-
tions (e.g. shifting or swapping moves), but it does 
not provide any control mechanism, i.e. the user is 
not able to adaptively guide the search process. 
HeuristicLab (HL) [10] is an optimization environ-
ment in which various optimization techniques (e.g. 
TS, SA, GA) can be applied to different optimiza-
tion problems (e.g. JSSP, TSP). HL provides a basic 
implementation for evaluating the fitness of a 
solution, but it still requires additional problem-
specific components. The DREAM (Distributed 
Resource Evolutionary Algorithm Machine) 
framework [11] is a peer-to-peer software infrastruc-
ture that allows the development of EAs. It provides 
a so-called evolution engine to handle any popula-
tion of objects that have a fitness attribute. The 
framework handles the selection and replacement of 
individuals within the population. ParadisEO 
(Parallel and Distributed Evolving Objects) [12] is 
an extension of the EO framework [13] and supports 
the design of Local Search based algorithms and 
EAs. It provides basic functionality for the selection 
and replacement of solutions, but requires additional 
components to define how the neighborhood should 
be explored. The A-Team framework ([14], [15]) 
uses a network of software agents that work together 
for solving a concrete problem. A so-called 
evaluator agent is used for evaluating the solutions. 
This agent type provides an arbitrary evaluation 
function for solutions. 
     The aforementioned approaches encapsulate 
some basic aspects of the evaluation and selection of 
solutions in the search space. They partly provide 
some generic implementation for the operator 
selection. Nevertheless, problem-specific compo-
nents are needed in order to make a decision for a 
concrete problem and optimization technique. 
 
 
2   The OptLets Framework 
The OptLets framework [1] is a generic software 
framework that is able to handle different types of 
combinatorial optimization problems. It is imple-
mented in C++ and enables the use of different 
optimization paradigms.  
     The basic assumption is that many optimization 
problems share common properties for which 
general algorithms can be encapsulated in an 
invariant part. The framework takes care about all 
administrative issues such as monitoring the opti-

mization process, invoking appropriate optimization 
“techniques” (operators) and keeping track of the 
population, so that the user can concentrate on the 
actual problem-solving task. 
     For solving a concrete problem, the user has to 
provide a problem description that contains informa-
tion about the problem to be solved, the representa-
tion of the solutions as well as the optimization 
entities called OptLets. The rest is entirely done by 
the OptLets framework. 
     Solving a concrete problem, the framework starts 
with a small set of initial solutions. It then invokes 
OptLets to produce new solutions based on existing 
ones. Solutions can be valid or invalid. Invalid 
solutions violate at least one constraint. The quality 
of invalid solutions is determined by a constraint 
violation degree. The solution with the lowest 
violation degree is the minimum invalid solution. 
During an optimization, many (valid and invalid) 
solutions are produced. 
     According to the principle of Evolutionary 
Computation [3], the framework administrates the 
solutions in a solution pool. Solutions in the pool 
cannot be modified. If a new solution should be 
generated based on an existing one, the framework 
makes a copy and assigns this copy to an OptLet.  
     The solution pool has a limited capacity so that 
the framework must clean it up occasionally. 
Whenever the pool becomes full, the framework 
evaluates all solutions and keeps only those that 
might be useful during the next iteration (where the 
term iteration is defined as the time between two 
clean-ups). The framework also keeps invalid 
solutions as well as solutions not yet considered as 
they might become useful in the next iteration. All 
other solutions are discarded and the optimization 
process continues by selecting solutions from the 
pool and assigning them to OptLets. 
     An OptLet is defined as a problem-solving or 
optimization entity that produces new solutions 
based on existing ones. An OptLet can represent any 
kind of algorithm that modifies a solution in some 
way. OptLets must always be implemented 
specifically for a concrete problem. 
     The OptLets framework has successfully been 
used for solving academic problems (e.g. KP, TSP) 
and real-world problems (e.g. steel mill production 
process optimization, object placement by a robot). 
 
 
3   OptLet Selection 
The success of the optimization depends on the 
combination of OptLets used for the underlying 
problem. The key question is which OptLet should 
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be assigned to a given solution. In general, the 
framework selects the OptLets randomly. The basic 
assumption is that OptLets that have been successful 
in the past will also be successful in the future. This 
leads to the idea of a probabilistic approach where 
each OptLet has a different selection probability, 
based on its success in the past. 
     The framework evaluates the success of the 
OptLets after each iteration. This is done by assign-
ing each OptLet a “score” that reflects its success 
during the optimization – the higher the success, the 
higher the score. The selection probability Pi of an 
OptLet i depends on its score Si and is calculated by 
dividing its score by the sum of all n OptLet scores 
S1 to Sn: 
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At the beginning of the optimization, the framework 
assigns each OptLet the same score. As the success 
of an OptLet can vary over time, its score and 
therefore its selection probability might also change. 
Some OptLets might perform well in the beginning 
but could fail to produce good solutions in a later 
optimization phase, which results in different scores 
and different probability distributions over time, as 
shown in Fig.1: 
 

 
Fig.1: OptLet scores and selection probabilities 

 
 
4   OptLet Evaluation 
During the clean-up of the solution pool, the frame-
work re-evaluates the success of all OptLets. It first 
calculates a “bonus” according to each OptLet’s 
success during the last iteration, and then updates 
the score by combining it with the bonus. 
 
 
4.1 Calculating the Bonus 
It is desirable to assign a bonus to an OptLet for 
improving solutions. For each improvement, the 
bonus is incremented by a certain value. 
     As new solutions are always generated based on 
existing ones, several chains of solutions result dur-
ing an iteration. These chains also contain informa-
tion about the involved OptLets, as shown in Fig.2: 

S1 S2
O1

S3 S4
O2 O3

val=20 val=18 val=22 val=21

 
Fig.2: Solution chain 

 
Starting from solution S1 with a value of 20, the 
OptLet O1 produced a solution S2 with a value of 
18. From this solution S2, the OptLet O2 managed 
to produce a solution S3 with a value of 22. Finally, 
OptLet O3 produced a solution S4 with a value of 21 
from S3. Evaluating each OptLet based on its imme-
diate improvements would mean that only O2 would 
receive a bonus. However, O2 might not have been 
able to produce the solution S3 without the previous 
deterioration made by O1. This is a typical scenario 
in which a combination of OptLets can help to es-
cape from a local optimum. 
     The idea is to calculate the bonus not only based 
on the improvements of a single OptLet, but to look 
at solution chains and award the bonus to a sequence 
of OptLets that managed to find a solution better 
than the first solution in the chain. 
     At the beginning of an iteration, the pool contains 
several solutions which survived the last clean-up. 
Each of these solutions is taken as a starting point 
for a new solution chain. At the end of the iteration, 
the framework looks at all solution chains and 
identifies the best solution in each chain. The bonus 
is then divided among all OptLets that were 
involved in finding the best solution in the chain. In 
the example shown in Fig.2, these are the OptLets 
O1 and O2. Both would get half of the bonus 
awarded for the chain. Note that when the first 
solution in the chain is already the best one, no 
OptLet gets a bonus, which makes sense as there 
was no improvement to the original solution. 
     Depending on the best solution in the chain, 
different bonus values are assigned to the chain:  
 

Bval for finding an improved valid solution 
Bbest for finding a new best valid solution 
Binv for finding an improved invalid solution 
Bminv for finding a new minimum invalid solution 

 
Bval is not only awarded for improving a valid 
solution, but also for turning an invalid solution into 
a valid one. Bbest and Bminv are awarded when the 
solution was the current best or minimum invalid at 
the time it was found. All these values are parame-
ters that can be configured by the user. Typically, 
Bbest and Bminv will be higher than Bval and Binv in 
order to honor OptLets that manage to find a new 
current best or minimum invalid solution. 
     The algorithm for calculating the OptLets’ bo-
nuses can be described informally as follows: 
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bonus[1:n] = 0 // set all bonuses to 0 
for (all solution chains) { 
   s = best solution in the chain 
   if (s is valid) { 
      if (s was  best) { b = Bbest } 
      else { b = Bval } 
   } 
   else {   // s is invalid 
      if (s was  min. invalid) { b = Bminv } 
      else { b = Binv } 
   } 
   nr = number of OptLets involved for finding s 
   for (all involved OptLets o) { 
      bonus[o] = bonus[o] + b/nr 
   } 
} 

 
 
4.2 Updating the Score 
After the bonuses for all OptLets have been 
calculated, their scores need to be updated. In order 
to honor the success during recent iterations more 
than that of older ones, the old score is multiplied by 
a degression factor d before adding the bonus of the 
last iteration. This ensures that the score of an 
OptLet that was good at the beginning of the 
optimization decreases continuously if it is no longer 
successful later. The degression factor is a 
configurable parameter. 
     In order to prevent the score from becoming 0, 
there is a guaranteed minimum score Smin for each 
OptLet. This ensures that every OptLet gets a 
chance to be called by the framework even if it has 
not been successful recently. 
     Furthermore, the framework considers the 
runtime of OptLets. If an OptLet manages to reach 
the same improvements as another OptLet in only 
half of the time, this should be honored 
appropriately. Therefore, the bonus Bi of each 
OptLet i is divided by its average runtime Ri before 
it is added to the overall score Si. This leads to the 
following formula for calculating an OptLet’s score, 
based on the old score at time t: 
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The average runtime Ri is a relative value, 
depending on the OptLet’s actual runtime Ti and the 
average runtime Ravg of all OptLets: 
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For an OptLet that has an average runtime near the 
total average runtime of all OptLets, Ri is about 1, 
for faster OptLets less (bonus becomes greater) and 
for slower OptLets greater (bonus becomes less). In 
order to prevent the score from exploding for very 
fast OptLets, Ri is restricted to a minimum value of 
0.01. 
 
 
5   Case Studies and Results 
We successfully tested this evaluation approach with 
the Knapsack Problem (KP) and Traveling Salesman 
Problem (TSP) as well as with two real-world 
problems. Our primary goal was to show that an 
effective OptLet evaluation can help finding good 
solutions faster. 
     We will demonstrate our results with the well-
known Knapsack Problem. The problem instances 
used for our experiments have been randomly gener-
ated using the generator described in [16]. For all 
instances, the optimum is known and has been 
computed with NEOS [17].  
     We performed our experiments on a Pentium 4 
2.4 GHz computer with 1 GB RAM running 
Windows XP. 
 
 
5.1   Parameter Settings 
The OptLets framework contains several parameters 
for controlling the optimization process. During the 
development of the OptLets framework, we could 
identify a manually tuned configuration that enables 
the framework to deliver good results for most 
problem classes.  
     For our experiments, we used the following 
default parameter settings: 
 

Parameter Value 
Bval 1 
Bbest 20 
Binv 0.5 
Bminv 10 
d 0.6 

Table 1: Parameter settings 
 
To show how the optimizer performs without 
evaluation, the parameters above have been set to 0. 
 
 
5.2   Evolution of the Solution Value 
The following diagram compares the evolution of 
the best solution value over time with and without 
evaluation for a problem with 50000 items. 
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Fig.3: Impact of the OptLet evaluation  

 
The curve without OptLet evaluation has a steep 
ascent in the first second only. From then on, the 
solution quality slowly improves until the curve 
stagnates after about 60 seconds.  
     With OptLet evaluation, the ascent is much 
steeper and the solution quality gets close to the 
known optimum within 8 seconds. The optimizer 
improves the solution further on until it reaches a 
value of 453036 after 70 seconds. 
 
 
5.3   Evolution of the OptLet Scores 
Fig.4 shows the score ratio of the five best OptLets 
and the cumulated average score ratio of all other 
OptLets (as percentage) over runtime in relation to 
the quality of the solution. 
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Fig.4: Distribution of OptLet scores 

 

Two packing OptLets (Packer 1 and 2 – with differ-
ent packing strategies) and three unpacking OptLets 
(Unpacker 1, 2 and 3) have been most successful 
within the selected time span. As the knapsack is 
empty at the beginning of the optimization, the 
packing OptLets can improve the quality quickly. 
After about 8 seconds, most knapsacks (solutions) in 
the pool are almost filled and the packing OptLets 
often generate invalid solutions. These OptLets now 
become less successful and the framework gradually 
reduces their score. 
     At this time, the optimizer has reached a solution 
quality already very close to the optimum and the 
curve is stagnating. The framework still improves 
the solution quality in “micro steps”. As the OptLets 
cannot achieve big improvements now, their scores 
no longer changes as drastically as in the beginning. 
     As already discussed, the score ratio of each 
OptLet also represents its selection probability, i.e. 
the higher the score, the higher the probability for 
being selected. For example, Packer 1 has a selec-
tion probability of about 60% after the first 3 
seconds. 
     For the other problems (TSP, steel mill, robot), 
the results show a similar picture. Similar experi-
ments with other types of problems showed that 
OptLet evaluation significantly speeds up the find-
ing of good solutions in all cases. 
 
 
6   Conclusion 
In this paper, we presented a new approach for 
evaluating operators working in population-based 
optimization environments. This evaluation strategy 
is part of the OptLets framework that is able to solve 
different types of optimization problems.  
     Our approach assumes that the success of 
operators (OptLets) is an essential aspect of evo-
lutionary optimization. The work of the OptLets is 
evaluated and they receive a bonus depending on 
their previous success. This bonus influences the 
score of an OptLet which reflects its selection 
probability during the next iteration. 
     We could show that using an efficient evaluation 
strategy, good results can be achieved much faster 
than using a uniformly distributed OptLet selection. 
The framework is able to take advantage of success-
ful OptLets and lets them work more often than not 
successful ones. 
     Another important aspect is that some OptLets 
are good in the beginning whereas others are able to 
improve the quality of near-optimal solutions at the 
end of the optimization process. Continuous re-
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evaluation of OptLets automatically adapts the 
scores to such special abilities over time. 
     OptLets are typically developed independently 
by members of a team, who have different ideas 
which operators could help to produce better solu-
tions. Without further intervention of the developers, 
the framework automatically prefers OptLets that 
are doing well in a particular optimization phase. If 
an OptLets turns out to be ineffective, it receives the 
minimum score and therefore does not consume 
much optimization time. As an additional benefit, 
analysis of the scores can give the developers 
valuable hints: OptLets which never receive high 
scores might be candidates for removal, whereas 
successful OptLets can lead to ideas for similar – 
probably even better – OptLets. 
     Currently, the evaluation strategy is implemented 
as part of the OptLets framework. However, it can 
be used for any evolutionary optimization technique 
that uses multiple operators working on a population 
of solutions. 
     Hence, our approach seems to be a promising 
strategy to adaptively guide a search process in 
evolutionary optimization. 
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