
Optimization on array bound check and Redundancy
elimination

 Dr V. Vijay Kumar Prof. K.V.N.Sunitha
 CSE Department CSE Department

JNTU , JNTU ,
 School of Information Technology, G.N.I.T.S,

 Kukatpally, Shaikpet,
 Hyderabad, Hyderabad,

India India -500008

Abstract

Compiler optimization technology has been steadily advancing as more
sophisticated processors hit the market. For high end embedded processors,
today’s most advanced compilers take advantage of both CPU specific and
application specific information to optimize code intelligently for optimal
result. This paper discusses one such sophisticated optimization technique
which combines array bound check optimization together with redundancy
elimination combined with folding. The array bound check optimization
described in this paper reduces the run time overhead by eliminating
unnecessary bound checks. The results and comparisons demonstrate number of
advantages of this method over the existing methods.

Keywords: computation, conditional statement, optimization, redundancy

elimination, array bound check,folding.

1. Introduction

1.1 Array Bound Check
Optimization
Program statements that access an
array outside of its declared array
bounds introduce errors that are
difficult to detect. To aid in the
debugging of programs under
development, many compilers
generate run-time checks to detect
dynamic errors due to array bound
violations. Since array bound
violations occur quite frequently
and can involve a memory load of
array length and two compare
operations, the overhead of these
checks is very high, resulting in
slow execution of programs.
Because this is expensive in

practice, most compilers allow the
programmer to control the
generation of run–time checks
through a switch to be specified at
compile time. Hence even if the
software appears to execute
normally, it may be providing
incorrect results due to the run time
errors.

To ensure high reliability,
the run time checks should not be
omitted from the software in
general. This is becoming a trend
for newer programming languages.
For example, in Java, Array bound
checks are mandatory. Since doing
run time checks is expensive,
compiler optimizations that reduce
the execution overhead of array
bounds is expensive, compiler
optimizations that reduce the
overhead of array bounds checks

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp266-271)

without compromising safety are
extremely useful. A bound check is
a conditional statement that checks
the lower and upper bounds of a
subscript expression. If this
conditional statement is true, then
there is no array bound violation. If
it evaluates false, then it terminates
and reports error.
 1.2 Redundant sub expression
elimination using Value
Numbering

Value numbering is a compiler-
based program analysis technique
with a long history in both
literature and practice. Although
the name was originally applied to
a method for improving single
basic blocks, it is now used to
describe a collection of
optimizations that vary in power
and scope. The primary objective
of value numbering is to assign an
identifying number (a value
number) to each expression in a
particular way. The number must
have the property that two
expressions have the same number
if the compiler can prove they are
equal for all possible program
inputs. The numbers can then be
used to find redundant

computations and remove them.
This paper uses the technique of
Hash based value numbering for
handling redundancies.
2. Background
 Suzuki and Ishihata discussed [4]
the implementation of a system that
performs array bound checks on a
program.. Such techniques are
significantly more expensive than
the techniques based on dataflow
analysis. Suzuki and Ishihata’s
approach cannot reduce the run-
time. The elimination and
propagation algorithms developed
by Markstein et al. [3] were
developed in conjunction with a
traditional code optimizer. Chow
has designed and built a machine-
independent global optimizer
[2].Cocke and Schwartz describe a
local technique [6] that uses
hashing to discover redundant
computations and fold constants.
But our algorithm is more efficient
because it is using a combined
approach.
3. Methodology

The optimization described in this
paper combines elimination of
array bound check with redundant
instruction elimination using hash
based value numbering and folding.

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp266-271)

This paper describes a
methodology which first identifies
arithmetic statements and
conditional statements that
correspond to bound checks. If it is
a conditional statement, first the
indexes are assigned to the
variables based on the values in
hash table HT[B] maintained for
every basic block. C_OUT[B] is
another array used to store all the
statements containing conditional
checks within the basic block. This
information is required to facilitate
the propagation of redundant bound
checks. At every entry of a new
block the array ‘C_IN[B]’ of
current block is updated with the
values of its previous block which
provides the required information
for propagating the bound checks.
‘Ref_array’ is an array which is
maintained for storing the
information of conditional
statements including its various
points of reference.

Each unique expression is
identified by its value number. Two
computations in a basic block have
the same value number if they are
provably equal. In the literature,
this technique and its derivatives
are called “value numbering.”. The
algorithm is relatively simple. In

practice, it is very fast. For each
instruction from top to bottom in
the block it hashes the operator and
the value numbers of the operands
to obtain the unique value number
that corresponds to the
computations value. If it has
already been computed in the
block, the expression will already
exist in the table. The
recomputation can be replaced with
a reference to an earlier
computation. Any operator with
known constant arguments is
evaluated and the resulting value
used to replace subsequent
references. This algorithm is
extended to account for
commutativity and simple algebraic
identities without affecting its
complexity. As the variables are
renamed with new values, the
compiler must carefully keep track
of the location of each expression
in the hash table.

The entire algorithm is
described in two passes stepwise in
the following section.In pass 1,
lexicographic ordering is done and
constant folding is applied. Then
Value Numbering is carried out for
all variables and propagation of
array bound limits is Performed. In
pass 2, by using value numbers

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp266-271)

redundant computations are
identified and eliminated.
3.1 Algorithm for
Optimization on Array bound
check and Redundancy
elimination
Pass 1:
1).If it is first block, C_IN[B] and
HT[B] are set to 0 else if B has
more than one predecessor , there
will be a point where the different
paths may merge to one. So that at
this point the flag bit indicates the
initialization values of C_IN[B]
and HT[B] taken from one of its
predecessor. else
if B has single predecessor then
C_IN[B] = C_OUT[B-1]
 HT[B] = HT[B-1].
2).if the statement is an arithmetic
statement ,rearrange expression
using associativity.
3.)apply folding to evaluate the
constant expression .
4)If the statement contains
conditional checks
 a)Assign a new index number to
the variables as the current index
number in hash table HT[B].
b)Store the expression in
C_OUT[B]. Else
a)First assign index number to
variables on the right side of ‘=’

based on values in the hash table
HT[B].
b)Assign a new index number to
variable on the left hand side of ‘=’
as current index number in hash
table +1. (HT[B]+1).
Update the hash index number with
new values assigned.
5)Repeat step 4 for all arithmetic
and conditional statements.
6) The C_OUT[B] is checked , if
the variable used in conditional
statement is with same index then
propagate the lower and upper
limits as per the following
Conditions.
a)If the lower limits and upper
limits are different for the various
options following conditional
statement then the lower value of
lower limits and upper value of
upper limits are propagated to other
expressions, and also the
corresponding reference is updated
in Ref_array.
b)If lower and upper limits are in
sequence without modifying the
variable in consideration, then
upper value of lower limits and
lower value of upper limits are
propagated and the corresponding
reference is updated in Ref_array.
Pass 2:

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp266-271)

1)If the statement is conditional
statement then do step 2 otherwise
step 3..2)Check in C_IN[B], if
there is any conditional check
applied more than once on a
variable with same lower limit or
upper limit indicated by Ref_array.
Eliminate the second and
subsequent checks retaining the
first check.
3)If the statement is assignment
statement then do step 4 to 7.
4)Take the right hand side of string
of assignment operator &Store it in
an array which holds both left
variable and right expression.
5)Take next statement, Compare
the right hand side of ‘=’ with the
existing string in the array.

6)If it matches with any, then
replace its L.H.S variable in the
new location indicating that this
computation is not required.
7)If it is not matched then store the
expression along with L.H.S
variable in the array.
8)Repeat 1 to 8 till it reaches end of
statement.
9)Replace all the variables which
are indexed during pass1 by their
true variable names.
4. Experimental results :The
above algorithm is applied on the
following code and resultant code
after every pass is listed in the
following figure 1.

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp266-271)

 After Pass1 After Pass2
 #include<stdio.h> #include<stdio.h> #include<stdio.h>

 main() main() main()
 { { {
 int a,b,c,d,e,x,y,z; int a,b,c,d,e,x,y,z; int a,b,c,d,e,x,y,z;
 a=b=c=y=1; a1=b1=c1=y1=1; a=b=c=y=1;
 x=0; x1=0; x=0;
 z=25; z1=25; z=25;
 a=b+c+1+3; a2=4+b1+c1; a=4+b+c;
 u=c+6+b+4; u1=10+b1+c1; u=10+b+c;
 y=((5<=z)&&(z<=200))? y:x; y2=((10<=z1)&&(z1<=100))? y1:x1; y=((10<=z)&&(z<=100))? y:x;
 if(y) if(y2) if(y)
 { { {
 y=((10<=z) && (z<=75))? y:x; y3=((10<=z1) && (z1<=75))? y2:x1; y=(z<=75)? y:x;
 if(y) if(y3) if(y)
 { { {
 d=b+c+1+3; d1=4+b1+c1; d=a;
 e=b+c+4+6; e1=10+b1+c1; e=u;
 } } }
 }else }else }else
 { { {
 y=((20<=z)&&(z<=100))? y : x; y3=((20<=z1)&&(z1<=100))? y2 : x1; y=(20<=z)? y : x;
 if(y) if(y3) if(y)
 { { {
 d=b+c+1+3; d1=4+b1+c1; d=a;
 e=b+c+4+6; } } } e1=10+b1+c1; } } } e=u; } } }

Figure 1: The original c code and outputs after pass1 and pass2

5. Conclusion

Bound checks reduce the runtime overhead.
Eliminating redundant instructions will
speed up the program by reducing number
of instructions. By applying these two

together with constant folding we have
obtained reduction of 10% of source code
which is a significant improvement at high
level languages.

References:

[1] CHOW,F. 1983. A portable machine-independent global optimizer—Design and
 measurements.Tech. Rep. 83-254, Ph.D. thesis, Computer Systems Labs, Stanford
 Univ., Calif.
[2] AHO, A. V., SETHI, R., AND ULLMAN, J. D. 1986. Compilers: Principles,
 Techniques, and Tools. Addison-Wesley, Reading, Mass.
[3] MARKSTEIN, V., COCKE, J., AND MARKSTEIN, P. 1982. Optimization of range
 checking. In Proceedings of SIGPLAN 82 Symposium on Compiler Construction.
 (Boston, Mass., June 23–25). ACM, New York, 114–119.
[4] SUZUKI, N., AND ISHIHATA, K. 1977. Implementation of array bound checker. In
 Proceedings 4th ACM Symposium on Principles of Programming Languages. ACM,
 New York, 132-143.
 [5] John Cocke and Jacob T. Schwartz. Programming languages and their compilers:
 Preliminary notes. Technical report, Courant Institute of Mathematical Sciences,
 New York University, 1970.
 [6] Steven S. Muchnick. Advanced Compiler Design and Implementation.

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp266-271)

