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Abstract 
 
Compiler optimization technology has been steadily advancing as more 
sophisticated processors hit the market. For high end embedded processors, 
today’s most advanced compilers take advantage of both CPU specific and 
application specific information to optimize code intelligently for optimal 
result. This paper discusses one such sophisticated optimization technique 
which combines array bound check optimization together with redundancy 
elimination combined with folding. The array bound check optimization 
described in this paper reduces the run time overhead by eliminating 
unnecessary bound checks. The results and comparisons demonstrate number of 
advantages of this method over the existing methods. 
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1. Introduction 

1.1 Array Bound Check 
Optimization 
Program statements that access an 
array outside of its declared array 
bounds introduce errors that are 
difficult to detect. To aid in the 
debugging of programs under 
development, many compilers 
generate run-time checks to detect 
dynamic errors due to array bound 
violations. Since array bound 
violations occur quite frequently 
and can involve a memory load of 
array length and two compare 
operations, the overhead of these 
checks is very high, resulting in 
slow execution of programs. 
Because this is expensive in 

practice, most compilers allow the 
programmer to control the 
generation of run–time checks 
through a switch to be specified at 
compile time. Hence even if the 
software appears to execute 
normally, it may be providing 
incorrect results due to the run time 
errors.  

To ensure high reliability, 
the run time checks should not be 
omitted from the software in 
general. This is becoming a trend 
for newer programming languages. 
For example, in Java, Array bound 
checks are mandatory. Since doing 
run time checks is expensive, 
compiler optimizations that reduce 
the execution overhead of array 
bounds is expensive, compiler 
optimizations that reduce the 
overhead of array bounds checks 
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without compromising safety are 
extremely useful. A bound check is 
a conditional statement that checks 
the lower and upper bounds of a 
subscript expression. If this 
conditional statement is true, then 
there is no array bound violation. If 
it evaluates false, then it terminates 
and reports error.  
 1.2 Redundant sub expression 
elimination using Value 
Numbering 
 
Value numbering is a compiler-
based program analysis technique 
with a long history in both 
literature and practice. Although 
the name was originally applied to 
a method for improving single 
basic blocks, it is now used to 
describe a collection of 
optimizations that vary in power 
and scope. The primary objective 
of value numbering is to assign an 
identifying number (a value 
number) to each expression in a 
particular way. The number must 
have the property that two 
expressions have the same number 
if the compiler can prove they are 
equal for all possible program 
inputs. The numbers can then be 
used to find redundant 

computations and remove them. 
This paper uses the technique of 
Hash based value numbering for 
handling redundancies.  
2. Background 
 Suzuki and Ishihata  discussed [4] 
the implementation of a system that 
performs array bound checks on a 
program.. Such techniques are 
significantly more expensive than 
the techniques based on dataflow 
analysis. Suzuki and Ishihata’s 
approach cannot reduce the run-
time. The elimination and   
propagation algorithms developed 
by Markstein et al. [3] were 
developed in conjunction with a 
traditional code optimizer. Chow 
has designed and built a machine-
independent global optimizer 
[2].Cocke and Schwartz describe a 
local technique [6] that uses 
hashing to discover redundant 
computations and fold constants. 
But our algorithm is more efficient 
because it is using a combined 
approach. 
3. Methodology 

The optimization described in this 
paper combines elimination of 
array bound check with redundant 
instruction elimination using hash 
based value numbering and folding.  
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This paper describes a 
methodology which first identifies 
arithmetic statements and 
conditional statements that 
correspond to bound checks. If it is 
a conditional statement, first the 
indexes are assigned to the 
variables based on the values in 
hash table HT[B] maintained for 
every basic block. C_OUT[B] is  
another array used to store all the 
statements containing conditional 
checks within the basic block. This 
information is required to facilitate 
the propagation of redundant bound 
checks. At every entry of a new 
block the array ‘C_IN[B]’ of 
current block is updated with the 
values of its previous block which 
provides the required information 
for propagating the bound checks. 
‘Ref_array’ is an array which is 
maintained for storing the 
information of conditional 
statements including its various 
points of reference. 

Each unique expression is 
identified by its value number. Two 
computations in a basic block have 
the same value number if they are 
provably equal. In the literature, 
this technique and its derivatives 
are called “value numbering.”. The 
algorithm is relatively simple. In 

practice, it is very fast. For each 
instruction from top to bottom in 
the block it hashes the operator and 
the value numbers of the operands 
to obtain the unique value number 
that corresponds to the 
computations value.  If it has 
already been computed in the 
block, the expression will already 
exist in the table. The 
recomputation can be replaced with 
a reference to an earlier 
computation. Any operator with 
known constant arguments is 
evaluated and the resulting value 
used to replace subsequent 
references. This algorithm is 
extended to account for 
commutativity and simple algebraic 
identities without affecting its 
complexity. As the variables are 
renamed with new values, the 
compiler must carefully keep track 
of the location of each expression 
in the hash table. 

The entire algorithm is 
described in two passes stepwise in 
the following section.In pass 1, 
lexicographic ordering is done and 
constant folding is applied. Then 
Value Numbering is carried out for 
all variables and propagation of 
array bound limits is  Performed. In 
pass 2, by using value numbers 
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redundant computations are 
identified and eliminated.  
3.1 Algorithm for 
Optimization on Array bound 
check and Redundancy 
elimination 
Pass 1: 
1).If it is first block, C_IN[B] and 
HT[B] are set to 0 else if B has 
more than one predecessor , there 
will be a point where the different 
paths may merge to one. So that at 
this point the flag bit indicates the 
initialization values of C_IN[B] 
and HT[B] taken from one of its 
predecessor.       else 
if B has single predecessor then 
C_IN[B] = C_OUT[B-1] 
 HT[B] = HT[B-1]. 
2).if the statement is an arithmetic 
statement ,rearrange expression 
using associativity. 
3.)apply folding to evaluate the 
constant expression . 
4)If the statement contains 
conditional checks  
 a)Assign a new index number to 
the variables as the current index 
number in hash table HT[B]. 
b)Store the expression  in 
C_OUT[B].        Else 
a)First assign index number to 
variables on the right side of ‘=’ 

based on values in the hash table 
HT[B]. 
b)Assign a new index number to 
variable on the left hand side of ‘=’      
as current index number in hash 
table +1. (HT[B]+1). 
Update the hash index number with 
new values assigned. 
5)Repeat step 4 for all arithmetic 
and conditional statements. 
6)  The C_OUT[B] is checked , if 
the variable used in conditional 
statement is with same index then 
propagate the lower and upper 
limits  as per the following     
Conditions. 
a)If the lower limits and upper 
limits are different for the various 
options following conditional 
statement then the lower value of 
lower limits and upper value of 
upper limits are propagated to other 
expressions, and also the 
corresponding reference is updated 
in Ref_array. 
b)If lower and upper limits are in 
sequence without modifying the 
variable in  consideration, then 
upper value of lower limits and 
lower value of upper limits are 
propagated and the corresponding 
reference is updated in Ref_array. 
Pass 2: 
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1)If the statement is conditional 
statement then do step  2 otherwise 
step 3..2)Check in C_IN[B], if 
there is any conditional check 
applied more than once on a 
variable with same lower limit or 
upper limit indicated by  Ref_array. 
Eliminate the second and 
subsequent checks retaining the 
first check. 
3)If the statement is assignment 
statement then do step 4 to 7. 
4)Take the right hand side of string 
of assignment operator &Store it in 
an array which holds both left 
variable and right expression. 
5)Take next statement, Compare 
the right hand side of ‘=’ with the 
existing string in the array.  

6)If it matches with any, then 
replace its L.H.S variable in the 
new location indicating that this 
computation is not required. 
7)If it is not matched then store the 
expression along with L.H.S 
variable in the array. 
8)Repeat 1 to 8 till it reaches end of 
statement. 
9)Replace all the variables which 
are indexed during pass1 by their 
true variable names. 
4. Experimental results :The 
above algorithm is applied on the 
following code and resultant code 
after every pass is listed in the 
following figure 1. 
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      After Pass1                   After Pass2 
           #include<stdio.h>     #include<stdio.h>                     #include<stdio.h> 

            main()      main()          main() 
            {     {         { 
               int a,b,c,d,e,x,y,z;    int a,b,c,d,e,x,y,z;         int a,b,c,d,e,x,y,z; 
              a=b=c=y=1;    a1=b1=c1=y1=1;                      a=b=c=y=1; 
              x=0;      x1=0;           x=0; 
              z=25;      z1=25;           z=25; 
              a=b+c+1+3;     a2=4+b1+c1;          a=4+b+c; 
              u=c+6+b+4;     u1=10+b1+c1;          u=10+b+c; 
            y=((5<=z)&&(z<=200))? y:x;   y2=((10<=z1)&&(z1<=100))? y1:x1;      y=((10<=z)&&(z<=100))? y:x; 
            if(y)      if(y2)            if(y) 
            {      {            { 
          y=((10<=z) && (z<=75))? y:x;    y3=((10<=z1) && (z1<=75))?   y2:x1;      y=(z<=75)? y:x; 
           if(y)        if(y3)     if(y) 
           {          {     { 
           d=b+c+1+3;           d1=4+b1+c1;     d=a; 
            e=b+c+4+6;                e1=10+b1+c1;                        e=u; 
            }          }      } 
           }else       }else             }else 
        {         {            { 
       y=((20<=z)&&(z<=100))? y : x;   y3=((20<=z1)&&(z1<=100))? y2 : x1;       y=(20<=z)? y : x; 
      if(y)           if(y3)                          if(y) 
      {             {               { 
      d=b+c+1+3;              d1=4+b1+c1;      d=a; 
      e=b+c+4+6; } } }          e1=10+b1+c1;  } } }     e=u; } }  } 

Figure 1: The original c code and outputs after pass1 and pass2 
           
5. Conclusion     
 
Bound checks reduce the runtime overhead. 
Eliminating redundant instructions will 
speed up the program by reducing number 
of instructions. By applying these two 

together with constant folding we have 
obtained reduction of 10% of source code 
which is a significant improvement at high 
level languages. 
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