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Abstract: − A machine interference problem is treated in this paper. For a group of weaving machines with 
filling break tolerance, served by one or more weavers, two indicators must be evaluated: the efficiency of the 
weaving machines and the percentage of working time for the weavers. Two different approaches are available: 
analytical approach, based on Markov chains, and simulation. A reduced Markov model able to evaluate with 
accuracy the indicators previously defined is proposed in this paper. A case study in which analytical and 
simulation results are compared demonstrates the effectiveness of this simplified analytical approach. 
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1 Introduction 
The weaving process is a discrete event one because 
the warp yarns and the filling yarn break off at 
random instants. In case a weaving machine (loom) 
is down, because a yarn has broken, a weaver (loom 
operator) must remedy the broken yarn and than start 
up the loom again. We can say that a loom is a 
system with repair. The problem of allocation of 
looms to the weavers is a very important one in a 
large weaving mill. Two conflicting aspects must be 
taken into account: the loom efficiency (losses 
caused by interference) and the percentage of 
working time (work loading) for the weavers. The 
prediction of the loom efficiency, and the weaver 
work loading, when a group of weaving machines 
are allocated to one ore more weavers is a machine 
interference problem. The problem of allocation of 
looms in weaving is widely dealt with in textile 
literature, both from a theoretical and a practical 
point of view (see for example [1]). In this work we 
focus on the machine interference problem for the 
looms with filling break tolerance. 
 The analytical approach of machine interference 
problem is based on the queueing theory. The 
standard model is a Markov chain. If a Markov chain 
has s states and only steady−state probabilities are 
required, s linear equations must be solved. The 
method to be applied is simple in essence, but we 
must have in view the complexity of Markov models 
[2]. For any sizable practical problem s becomes 
very large and the solution time becomes very long, 
so that, the classical approach is difficult to apply. 
 When  the  Markov  chain  is  very  large,  the two  

 
approaches available to deal with this problem are to 
either tolerate the largeness or avoid it. In this work, 
a largeness avoidance technique for an approximate 
evaluation of the two indicators previously defined is 
proposed.  
 The simulation is a complementary approach for 
machine interference problem [3]. A simulation 
program based on a stochastic coloured Petri net has 
been used in order to validate the analytical results. 
 The remainder of this paper is organized as 
follows. In Section 2 the interference problem  
concerning the weaving process is defined in details. 
Section 3 presents an example to show that a clasical 
Markov model is difficult to apply. In Section 4 a 
reduced Markov model able to evaluate with 
accuracy the efficiency of the weaving machines is 
proposed. Section 5 presents a case study in which 
analitical and simulation results are compared. 
 Finally, some conclusions are drawn regarding 
this work. 
 
 
2 Problem Formulation 
Consider m identical looms carrying out a weaving 
process completely known from a statistical point of 
view, and r weavers working together to serve them 
(usually, r=1). The looms work with two packages 
for each filling colour (an active package and a spare 
one) for a higher efficiency. Thus, in case the filling 
yarn between active package and prewinder breaks 
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off, an automatic switch selects the spare package 
and avoids a stop of the loom. We say that the spare 
packages ensure a filling break tolerance for the 
weaving process. 
 For a stochastical modelling of a weaving process,  
six primary random variables have been considered:  

• Time to break off a warp yarn −  let Wλ be the 
warp breakage rate; 

• Time to break off the filling yarn into the shed −  
let Fλ  be the breakage rate into the shed; 

• Time to break off the filling yarn between active 
package and prewinder −  let PPλ  be the breakage 
rate between active package and prewinder;  

• Time to remedy a warp breakage − let Wµ  be the 
remedying rate of warp breakages;  

• Time to remedy a breakage into the shed − let 
Fµ  be the remedying rate of weft breakages;  

• Time to remedy a breakage between package and 
prewinder − let PPµ  be the remedying rate of yarn 
breakages between package and prewinder. 

 We have to estimate the efficiency of the looms 
(EF) and the percentage of working time for the 
weavers (WL) in the case in which all these random 
variables are exponentially distributed and the 
parameters Wλ , Fλ , PPλ , Wµ , Fµ , PPµ  are known.  

Assumtions: 
• A weaving process is in a steady−state condition. 

• A weaving machine is either up or down, with no 
partial or intermediate states. 

• All break events are stochastically independent. 

 
 
3 Example of Clasical Approach 
Consider the simple case in which only one weaving 
machine is allocated to a weaver (m=1, r=1).  Taking 
into account the three kinds of breaks previously 
defined in Section 2, the reliability logic model 
illustrated in Fig. 1 is considered. For the weaving 
process the following states are possible:  

• S0 − The loom is running, no yarn breaks exist 
(the initial state); 

• S1 − While the loom is running, the weaver 
works to remedy a broken yarn between a spare 
package and prewinder; 

• S2 − The loom is down and the weaver works to 
remedy a warp breakage; 

warp

λw

µw

weft

P2

P1
λF

µF

µPP

λPP

packages

 
Fig. 1 − Reliability model for a weaving machine. 

 
• S3 − The loom is down and the weaver works to 

remedy a filling brakage into the shed; 
• S4 − The loom is down and the weaver works to 

remedy a warp broken yarn. A yarn between a 
spare package and  prewinder is also broken, but 
this remedying has been temporary suspended.  

• S5 − The loom is down and the weaver works to 
remedy the filling yarn into the shed. A yarn 
between a spare package and prewinder is also 
broken, but this remedying has been suspended.  

• S6 − The loom is down because both packages 
are unavailable. The weaver works to remedy a 
breakage between package and prewinder.  

 The Markov chain describing the weaving 
process is presented in Fig. 2. The matrix M given in 
Fig. 3 presents the transition rates between states. 
Location (i, j) in matrix M, i≠j, comprisis the 
transition rate from state j to state i. The value of 
location (i, i) is equal to the sum taken with minus of 
the transition rates in column i. 
 Let pi be the steady−state probability of state Si, 
i∈{0, 1, 2, 3, 4, 5, 6}. To determine the steady−state 
probabilities 610 ..., ,, ppp , the set of linear equations 
(1) must be solved, in which P=[ 610 ..., ,, ppp ]T, and  
Z=[0, 0, ..., 0]T. 

 
⎩
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Fig. 2 − Markov chain for a weaving machine. 
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− (λPP+λW+λF) µPP µW µF 0 0 0 
λPP − ( µPP +λPP+λW+λF) 0 0 µW µPP µF 

λW 0 − µW 0 0 0 0 
λF 0 0 − µF 0 0 0 
0 λW 0 0 − µW 0 0 
0 λPP 0 0 0 − µPP 0 
0 λF 0 0 0 0 − µF 

Fig. 3 −Transition matrix M of Markov chain presented in Fig. 2.

Thus, the set of equations 
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leads to the steady −state probabilities 
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 With these steady−state probabilities,  

 % 100)( 10 ⋅+= ppEF , and  % 100)1( 0 ⋅−= pWL . 

Finally,  

 % 100
)1)((1

1
⋅

++++
+

=
PPPPFW

PPEF
ρρρρ

ρ .          (4) 

 For the case in which one weaver serves two 
weaving machines, the Markov chain comprises 46 
states being quite complicated [2]. But, one weaver 
serves usually up to ten weaving machines, when the 
Markov chain has hundreds of states. We conclude 
that a classical approach for exact evaluation of 
machine efficiency is difficult to apply taking into 
account the complexity of Markov chains.  
 
 

3 Simplified Analytical Approach 
In order to simplify the analytical approach of the 
machine interference problem, a reduced stochastical 
model of a weaving machine is proposed. Thus, the 
following two random variables are introduced to 
describe the weaving machine as a system with 
repair: 

• Time to stop the weaving process, regardless of 
the reason − a warp or a filling breakage, and  

• Time to remedy a weaving machine. 
 

 Let λ be the stop rate, and µ be the remedying rate 
of the weaving machine. A reduced reliability  model 
for a weaving machine is shown in Fig. 4.   

λ

µ  
Fig. 4 − A reduced reliability model. 

 
 But, how can be determined the stop and the 
remedying rate, λ and µ, for this reduced model? On 
the initial reliability model presented in Fig. 1, serial 
and parallel transformations can be applied, as 
illustrated in Fig. 5. In order to determine equivalent 
parameters for serial and parallel transformations, 
the Markov chain presented in Fig. 6 and Fig. 7, 
respectively, must be considered. 
 

a) serial transformation 

b) parallel transformation 

Fig. 5 − Equivalent models. 
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Fig. 6 − Markov chain for serial model. 
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Fig. 7 − Markov chain for paralle model. 
  
a) Serial transformation 
 Based on Markov chain presented in Fig. 6, the 
efficiency is equal to 1000 ⋅= pEF %. On the other 

hand,  % 100
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. It follows that Sλ  and 

Sµ  are given by  

 21 λλλ +=S ,  and  

2

2

1

1

21

µ
λ

µ
λ

λλµS

+

+
=  .                   (5) 

b) Parallel transformation 
 Based on Markov chain presented in Fig. 7, the 
efficiency is equal to 100)( 10 ⋅+= ppEF  %. On the 

other hand, % 100
1

1
⋅

+
=

P

P

EF
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. It follows that Pλ  

and Pµ  are given by  
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 Parameters λ and µ, can be obtained by applying 
Eqs. (5) and (6) to the reliability model presented in 
Fig. 1, so that 
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 For the case in which one weaver serves one loom 
(m=1, r=1), the machine efficiency can be calculated 
by equation 
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that is identical with Eq.(3) previously defined in 
Section 2. In other words, for the simple case in 
which the weaver serves only one weaving machine  
the reduced Markov chain is absolutely valid. 

 For the general case in which m weaving 
machines are allocated to r weavers, the reduced 
Markov chain is presented in Fig. 8. Variable u 
denotes the number of weaving machines up. The 
transition matrix of this Markov chain is presented in 
Fig. 9. As shown in [4], where this Markov model is 
analyzed, the steady−state probabilities are given by 

the following equations, where 
µ
λρ =  and 

r
ρρ =* . 
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 The efficiency of the weaving machines is 
given by  

  %100
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 Note that Eq. (13) gives approximate results for 
the following reason. Even that all primary random 
variables previously defined in Section 2 have 
exponential distribution laws, the time to remedy a 
weaving machine has a hiper−exponential 
distribution, as shown in Fig. 10. Comparing with an 
exponential law with parameter µ, the variance is 
greater in this case. From the queueing theory, we 
know that the machine interference time depends 
both on the mean and the variance of time to remedy. 
For this reason, a factor of correction based on the 
coefficient of variation must be applied for an 
accurate evaluation of the machine interference time 
[5, pp. 415]. The following notations are introduced: 
• Trm  − The mean remedying time;  
• Tim  − The mean interference time; 
• Tdm − The mean down time of the weaving   
              machine because of a breakage; 
• mdm –The mean number of machines down in a  
                   certain time.  
The following equations can be written: 

 ∑
=

⋅=
m

i
im pimd

1

)(  (see Fig. 8)                           (14) 

  mmm TrTiTd += ,  where 
µ
1

=mTr .                 (15) 
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Fig. 8 − Reduced Markov chain for m weaving machines served by r weavers. 

 
−mλ µ 0 · 0 0 0 · 0 0 

mλ −(m−1)λ −µ 2µ · 0 0 0 · 0 0 

0 (m−1)λ −(m−2)λ −2µ · 0 0 0 · 0 0 

0 0 (m−2)λ · 0 0 0 · 0 0 

· · · · · · · · · · 
0 0 0 · (r−1)µ 0 0 · 0 0 

0 0 0 · −(m−r+1)λ−(r−1)µ rµ 0 · 0 0 

0 0 0 · (m−r+1)λ − (m−r)λ −rµ rµ · 0 0 

0 0 0 · 0 (m−r)λ − (m−r−1)λ −rµ · 0 0 

0 0 0 · 0 0 (m−r−1)λ · 0 0 

· · · · · · · · · · 
0 0 0 · 0 0 0 · rµ 0 
0 0 0 · 0 0 0 · −λ−rµ rµ 
0 0 0 · 0 0 0 · λ −rµ 

 
Fig. 9 − Transition matrix of Markov chain presented in Fig. 8. 
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denotes the mean stop rate in a group of m weaving 
machines. It follows that 
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Fig. 10 − Empirical distribution for time to remedy. 

 Let cv be the coefficient of variation for time to 
remedy a weaving machine, obtained by simulation. 
As shown in [1, pp.170], the estimation of Tim can be 
improved by applying a correction factor, so that 

 .
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1 2
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It follows that 
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and, finally, 
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 Symbol * is used to denote the estimations when 
the correction factor is considered. 
 The weaver work loading can be obtained by the 
following equation. 
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5 Case Study 
To demonstrate the effectiveness of the reduced 
model presented in the previous section, analytical 
and simulation results are compared in this case 
study. The simulation model we have used is based 
on a coloured Petri net as presented in [7].  
 Consider a weaving process on a loom described 
by the following parameters: 
• Wλ = 4.77 warp breakages/h;  
• Fλ = 2.05 filling breakages into the shed/h; 
• PPλ = 1.37 yarn breakages between package and 

prewinder/h; 
• Wµ = 58.88 warp remedies/h; 
• Wµ = 220.05 filling remedies/h;  
• PPµ = 43.20 yarn remedies between package and  

prewinder/h. 
 
 Table 2 presents analytical results − given by Eqs. 
(21) and (22) − and simulation results, regarding the  
machine efficiency and the percentage of working 
time for the weavers. Note the good accordance 
between analytical and simulation results. 
 Many cases in which m weaving machines are 
served by r weavers have been considered. Note that, 
for example, when three weavers serve together  

 
Table 1 − Anaytical and simulation results 

(expressed as %). 
 

 Machine  
efficiency (EF) 

Percentage of 
working time (WL) 

 

 
analytical 

results 
simulation 

results 
analytical 

results 
simulation 

results 

m=1 91.63 91.62 8.37 8.38 

m=2 90.16 90.18 16.63 16.64 

m=3 89.02 89.06 24.74 24.71 

m=4 87.89 87.82 32.69 32.66 

m=5 86.69 86.65 40.43 40.44 

 
 
 
 
r=1 

m=6 85.35 85.39 47.93 47.89 

m=6 90.03 90.07 25.04 25.08 

m=8 89.59 89.57 33.28 33.31 

m=10 89.02 89.07 41.40 41.43 

 
 
 

r=2 

m=12 88.30 83.36 49.35 49.39 

m=9 90.16 90.19 25.10 25.11 

m=12 89.96 89.98 33.41 33.39 

m=15 89.67 89.70 41.66 41.69 

 
 
 

r=3 

m=18 89.21 89.25 49.80 49.84 

eighteen weaving machines, the machine efficiency 
is significantly greater than when one weaver serves 
six weaving machines.  
 
 
6 Conclusions 
This paper deals with a machine interference 
problem and presents a simplified analytic method 
based on a reduced Markov chain. For a group of m 
weaving machines served by r weavers, relationships 
for evaluating with accuracy the machine efficiency 
and the percentage of working time for the weavers 
are given.  
 A realistic case study, where analytical and 
simulation results are compared, demonstrates the 
effectiveness of this simplified analytical approach.  
 We assume that all random variables describing 
the weaving process are exponentially distributed. 
But, as shown in [1, pp.169], in many cases it is 
necessary to consider a normal or gamma 
distribution for remedying times. This is the first 
limitation of our work. A normal or gamma 
distribution for remedying times will be the subject 
of upcoming papers. 
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