
Algorithm for obtaining aggregated value sets from multidimensional
databases

MIRELA VOICU, GABRIELA MIRCEA

Faculty of Economic Sciences
West University of Timişoara

ROMANIA
 http://www.fse.uvt.ro

Abstract: - For n fields (used for grouping) from a database, we can obtain 2n aggregation types - the maximal
set possible (obtained, for example, with the Cube operator from Oracle). In this paper we want to present one
algorithm with which the user can obtain any subsets from this maximal set.

Key-Words: - SQL, aggregated value sets

1 Introduction
Data analysis applications typically aggregate data
across many dimensions (n>=0).
A SQL aggregate function (AF) produces one
answer:
Select AF (attribute_value) from table
which corresponds to one aggregation type.

A SQL aggregate function (AF) and the Group by
operator produce also one answer:
Select attribute_1,…,attribute_n, AF
(attribute_value) from table group by
attribute_1,…,attribute_n
which corresponds to one aggregation type.

The Rollup operator (from Oracle) – corresponds to
n+1 aggregation types.

The Cube operator – corresponds to 2n aggregation
types (the maximal set possible).

In the case in which n is not small 2n is a
considerable value. In the case in which the user
wants to obtain (in the same result table) other
subsets of aggregated values than the sets given by
the known tools, we propose one algorithm.

Firstly, we want to present how we want to refer the
sets of aggregation types. In order to specify the
aggregation types, we propose that the user make
specifications, which contain combinations of “m”
and/or “f” and/or “u”, where:
f – means one field used for grouping,
u – means one field not used for grouping,
m – means zero, one or more fields not used for
grouping.

Now, we consider the table presented in the Figure
1. Here, the fields field1, field2, field3, field4, field5
form the maximal set used for grouping and the field
fvalue is used for aggregation.

Figure 1. An initial table.

The specification m f m produces the results
presented in Figure 2 (which correspond to five
aggregation types).

Figure 2. The result for m f m.

The specification m f u f m produces the results
presented in Figure 3 (which correspond to three
aggregation types).

Figure 3. The result for m f u f m.

The specification f m f m produces the results

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp342-347)

presented in Figure 4 (which correspond to four
aggregation types).

Figure 4. The result for f m f m.

In such specifications we can also eliminate some
fields for a certain f.
A database, generally, contains one or more tables.
For aggregation, the user uses fields from one or
more of these tables. He must specify the n
(maximal number of fields used for grouping) fields.
Using specifications, which are composed by “f”
or/and “m” or/and “u”, he can obtain any wanted
subsets of aggregation types for the n fields
specified.

We propose our original algorithm. The
implementation is made in a programming
environment (we work here, for example, in Delphi)
and with a database (here we use databases from
Access).

The algorithm supposes that
- any table is constructed by the application (here,
proposed in Delphi) because, at the moment of
construction, the application also constructs an
additional table used for the aggregations which will
concern the new table constructed;
- in the moment in which we insert (modify, delete)
a new record in a table, the same changes affect the
corresponding additional table;
- we construct a table, which contains the
aggregation types. Using this new table and the
additional tables from the database, executing (by
our application) only one SQL statement, we can
obtain the wanted result table.
It is very important that all actions on the database
(create/delete tables, insert/delete/modify records,
etc.) be made only with the proposed application.

2 Create a table
In the moment in which we create a table (like in the
Figure 5), we save some data (referring to all the
fields of the new table) in a certain table (see the
Figure 6). The field tf from Figure 6 wants to be a
code for unique identification of each field from the
database. The field t from Figure 6 wants to be the
name of the additional table corresponding to the
new table (here, tab3).

Figure 5. Create a table

In this moment the corresponding table (in this case,
t3) is also created, and it has as fields: the field code
(given by tf from the Figures 6, for example t3f1 in
the Figure 7), the field from the initial table (in this
case t3f1v, see Figures 7, 8 and 9) for each field
from the initial table (in this case, tab3). In addition,
we have a field norecord for the number of record in
the initial table (in this case, tab3). The field
norecordn refers to the same record number, but in
text format. These two last fields exist also in the
table tab3.

Figure 6. Data for a table

Figure 7. The corresponding additional table

3 Insert a new record
We insert new records in a table like in the Figure 8.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp342-347)

Figure 8. Insert a new record

In this moment, in the corresponding table (in this
case, t3), two new records corresponding to the new
record (here, from Figure 8) are also inserted, like in
the Figure 9.

Figure 9. The corresponding records from the

additional table

In Figure 9, the first record is ("", null, "", null, "",
null, no_record, "no_record") and the second record
is (field_1_code, field_1_value, field_2_code,
field_2_value, field_3_code, field_3_value,
no_record, "no_record"). And this happen for each
record like the record from the Figure 8.

4 Algorithm presentation
We consider now the initial tables presented in
Figure 10 and the corresponding additional tables in
Figure 11. We prefer to present the study for tables,
which contain only one record, because in this way,
we can easily present the result images.

Figure 10. Initial tables

Figure 11. The corresponding tables for the

tables presented in the Figure 10

Now, we present the algorithm used for
aggregations. This is constructed in a number of
steps. We want to present each step.

4.1 Tables, fields, relationships, aggregation
functions
The user must specify the tables, fields, relationships,
aggregation functions like in Figure 12. In Figure 12
we must follow these steps:

 1 – select the used tables;

 2 – select the fields used for grouping (in order in
which they form the header for the result table – these
fields will be indexed);

 3 – this step is used to allow the user to introduce the
aggregation functions (one or more);

4 – here the user must specify the tables used and (if
necessary) the relationships. Here a table will be
created, which has as record the fields (and the
corresponding indexes) used for grouping (see the
Figure 13).

Figure 12. Tables, fields, relationships, aggregation

functions

Figure 13. Indexes for the fields used for grouping

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp342-347)

4.2 Specification of aggregation types

Figure 14. Specification of aggregation types

Now, the user must specify the sets of aggregation
types in the following way:

1 – “prepare” the form for a new specification of
aggregation types (clear some components on the
form);

2 – selection of m, f, u in the desired way;

3 – the user must select each f (from CheckListBox),
step by step. For a selected f, with a click on the field
name, he can eliminate the field (all possible fields
are displayed in a ListBox, like in Figure 14), which
will not be used. At this moment a table will be
created, which contains the field index, the table
name and the field name for all selected fields for the
corresponding f. This last table is transformed in a
table, which for each record contains, the field index
and the field code. We present such tables in
Figure15 (for the specification m f m f m).

Figure 15. The corresponding tables for each f
from the specification m f m f m

In the moment in which we have the table for each f
from a specification (see Figure 14), we can pass to
the following step:

4 – with a click on the command button “create
aggregation type table” we will obtain a table, which
contains as records the aggregation types (see Figure
16). Here we have a cartesian product between the
records from the tables corresponding to each f
(presented in the Figure 15). Using the indexes, we
can formulate conditions for where clauses (according
to the presence of m or u at left or right of each f).

Figure 16. A table, which contains as records
the aggregation types

Now, we repeat the step 1-4 until the moment
when we will have specified all aggregation
types. We will obtain the results in the following
step (see Figure 14):

5 – with a click on the command button “result
tables”, for the tables like the table presented in
the Figure 16 (these tables correspond at each
specification of aggregation types), we will
construct a unique table, which contains all the
aggregation types, like in the Figure 17.

Figure 17. The table, which contains as

records all the aggregation types

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp342-347)

In Figure 17, for example, t1f1 means the code for
the field tab1.f11 and t1f1t1f6 means the code for the
field tab1.f11 concatenated with the code for the
field tab1.f16.

We will obtain the result table presented in Figure 18.
In this case, using only one SQL statement we can
obtain the result table.

Figure 18. The result table of aggregations

The SQL statement is formulated (by application),
for the presented case, in the following way:

the fields used for grouping (from the additional
tables, here t1 and t2)
select tt1f1.t1f1v as tab1_f11, tt1f6.t1f6v as tab1_f16,
tt1f4.t1f4v as tab1_f14,
tt2f3.t2f3v as tab2_f23, tt2f6.t2f6v as tab2_f26,

the aggregated data(from the additional table)
sum(tt1f7.t1f7v) as sum_tab1_f17

the result table
into r1

the additional tables are used for aggregations
from t1 tt1f1, t1 tt1f6, t1 tt1f4, t2 tt2f3, t2 tt2f6, t1 tt1f7

where

the aggregation types (the table interm is presented
in Figure 17)
(tt1f1.t1f1+ tt1f6.t1f6+ tt1f4.t1f4+ tt2f3.t2f3+ tt2f6.t2f6+
tt1f7.t1f7 in (select f+"t1f7" from interm))

and (tt1f1.norecord=tt1f6.norecord) and
(tt1f1.norecord=tt1f4.norecord) and
(tt1f1.norecord=tt1f7.norecord) and
(tt2f3.norecord=tt2f6.norecord)

corresponding to the relationship from Figure 14,
the application creates a table norec (presented in

the Figure 19) for the records (which respect these
relationships) from the additional tables
and(“n”+tt1f1.norecordn+”n”+tt2f3.norecordn in
(select nor from norec))

the fields used for grouping
group by tt1f1.t1f1v, tt1f1.t1f6v, tt1f1.t1f4v,
tt2f3.t2f3v, tt2f6.t2f6v

Figure 19. The records which will be used for

aggregations, from the additional tables

 From the result table, presented in the Figure 18,
eliminating fields or specifications for aggregation
types (like in the Figure 20), we can obtain subsets
for the maximal set specified.

5 Final tables
We confirm the desired specifications of
aggregation types like in the Figure 20. With a click
on the field name, we eliminate the field from the
result table.

Figure 20. Final confirmations for result tables

For the case presented in the Figure 20, we will
obtain the result table presented in the Figure 21.

Figure 21. Final result table

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp342-347)

6 Conclusions
The algorithm can be used for any type of
databases. We have presented the implementation
in Delphi, but the implementation can be made
also in other programming environments.
For n fields (used for grouping) from a database,
we can obtain 2n aggregation types. With our
algorithm, we can easily obtain any subsets of
aggregation types and in a very short time.

References:
[1] Borland Delphi 6 for Windows,
Developer’Guide, 2001.
[2] Chatziantoniou D., Ross K. – Querying
Multiple Features in Relational Databases – VLDB
1996
[3] Chaudhuri S., Smith K. – Including Group By
in Query Optimization – Proc. Of VLDB 1994.
[4] Gray J. et all – Data Cube: A relational
aggregation operator generalizing Group-By,
Cross-Tab, and Sub-Totals – Technical Report
MSR-TR-95-22, Microsoft Corporation, October
1995.
[5] Murlaikrishna M., - Improved Unnesting
Algorithms for Join Aggregate SQL Queries -
Proc. VLDB Conf. 1994.
[6] http://www.olapcouncil.org.
[7] http://sgbd.developpez.com/ (general
documentation on SQL statements).

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp342-347)

