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Abstract: - The ultrasonic inspection technique can be very useful to determine the state of non reachable structure. In this 
paper a method based on the neural network classification to evaluate the corrosion level of non accessible pipes is shown. A 
set of optimal features constitutes the database and feeds the neural network. These features are chosen by time and frequency 
features extracted from simulated ultrasonic waves. The results show that the method perform a good recognition rate and the 
different classes are useful for the human decision to evaluate the corrosion level of the pipe under test. 
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1   Introduction 

The non-destructive evaluation (NDE) are used 
extensively for detection of flaws on non accessible 
materials and installations. When they resemble a wave 
guide, for example a thin plate or tube, ultrasonic guided 
waves can be generated in the structures, so much research 
has been carried out in the use of guided waves for various 
NDE application. Ultrasonic based inspection techniques 
have to obtain the highest possible detection probability and 
the most exact size, location and type of the defect. The 
identification of the defect or the knowledge of its nature is 
very delicate in this technique because the range and variety 
of imperfections encountered is large, while the quality 
requirements of new standards is increasing. However, this 
inspection process may well rely significantly on the skill 
and experience of an expert. After suitable training the 
human expert is uniquely able to classify a wide range and 
variety of complex patterns, even if his performance are 
subject to significant variation as a result of factors such as 
fatigue and loss of concentration. For this reason in recent 
years an huge research effort has been devoted to automate 
part of the analysis and classification process, in order to 
improve the overall performance by removing some of 
burden from the testers [1-9]. Many of these techniques are 
based on the artificial neural networks and often they are 
used as classifiers [3-5]. In this paper a neural network 
approach to support the expert is proposed, offering 
advantages in terms of improvements in the diagnosis 
process. The ultrasonic inspection is carried out on non 
accessible pipes and its aim is to evaluate the corrosion state 
of the tubes. This problem is wide spread in many industries 
and involves many different structures and has long been of 
interest, but is often tedious, time consuming and produce a 
big burden work for the expert. The ultrasonic waves have 
good potentiality to overcome these problems, in fact they 

have low attenuation and therefore long propagating 
distances, in this way large area corrosion detection and 
classification could be possible [2]. Early studies showed 
the promise of accomplishing this through pattern 
recognition techniques to classify echoes automatically 
from their features. The features considered in a commercial 
package for data analysis based on pattern recognition was 
used in [8], [9] with the purpose to separate the echoes 
coming from cracks, counterbore and root waveforms in 
metal pipes, moreover in [9] a reduction set of those 
features for ultrasonic testing is reported. These sets allow 
to separate the waveforms returned at the displacement 
sensor in various classes related to the possible defect 
(crack) or geometries (counterbore and root) in the weld of 
the pipes and plates. This paper presents an automated 
method to evaluate four different types and configurations 
of corrosive flaws in metal pipes. The principal goal of this 
approach is to give class references for the echoes and as a 
consequence to support the human operator in the 
evaluation of the size of the corroded part. The method uses 
the features proposed in [8], [9] added of other two features. 
The database of this study is constituted with waveforms 
simulated by software CAPA based on the finite elements 
technique, whereas the details about the used simulation 
software parameters or material coefficients are displayed in 
the following sections of the paper. Time and frequency 
features have been used to distinguish between echoes from 
different flaws with known geometries, while the 
classification k-nearest neighbour algorithm has been 
employed to select a reduced optimal feature set. This 
allows the automatic identification of relevant from non-
relevant indications that characterize the defect, achieving 
the feature set that feeds the artificial neural network. The 
neural network performs the classification of waveforms 
and distinguish the defects of different dimension. The 
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results show that four types of flaws are classify correctly 
with good recognition rate. 

The paper is organized as follows: in Section 2 a brief 
theory about the ultrasonic waveforms in wave guides is 
reported. In Section 3 the simulation algorithm, parameters 
and resulting waveforms are displayed. Section 4 reports the 
proposed method and Section 5 the experimental results. 
Finally the conclusions enclose the paper. 
 
2   Theoretical basis 

In this section the theoretical basis on wave propagation 
in elastic solids is briefly presented. 

Let us consider an infinite medium. Two basic types of 
wave, dilatational and distortional, can propagate in an 
infinite medium, with each being characterized by a specific 
velocity. Furthermore, these wave types can exist 
independent from one another. A variety of terminology 
exists for the two wave types. Dilatational waves are also 
called irrotational and longitudinal waves. The distortional 
waves are also called equi-voluminal, rotational, torsional 
and shear waves.  

The governing equation for an homogeneus isotropic 
elastic solid is represented by Navier’s equation: 
 
 2( )λ µ µ ρ ρ+ ∇∇ ⋅ + ∇ + =u u f u  (1) 
 
where x y zu u u= + +x y zu e e e  is the displacement vector,λ  
and µ  are the elastic constants for the material, that is the 
Lamé constants, ρ  is the density, x y zf f f= + +x y zf e e e  is 
the vector of the body forces.  

This equation is very complex but it is possible to obtain 
a simpler set of equations. For this pourpose the scalar and 
vector potenzials Φ  and H  are introduced. They are such 
that: 
 
 , 0= ∇Φ +∇× ∇ ⋅ =u H H  (2) 
 
In analogous way the scalar and vector potenzials f  and B  
for the vector f  are introduced: 
 
 , 0f= ∇ +∇× ∇ ⋅ =f B B . (3) 
 
With these positions the Navier’s equation can be rewrite as 
follows: 
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The governing equations in the absence of body forces are: 
 
 2( )λ µ µ ρ+ ∇∇ ⋅ + ∇ =u u u  (5) 
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since 0= =f B . From the last equations it is possible to 
deduce 1c  and 2c , the velocities of longitudinal and 
torsional waves respectively: 
 

 1
2c λ µ
ρ
+

=  (7) 
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These two velocities are related to the  Poisson’s coefficient 
ν as follows: 
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from which it can be noted that it is always 1 2c c>  since 

10
2

ν≤ ≤ . 

Consider now a solid cylindrical shell, like that used in 
tests of this work (figure 1).   
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Fig.1 Cylindrical shell with both x, y, z and cylindrical 
coordinate systems. 

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp126-133)



For the analysis of wave propagation in cylindrical shell,  
the previous equations (1-9) still hold. However cylindrical 
coordinates are more appropriate here, and it is possible to 
write the displacement components as follows: 
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The stresses are given by Hooke’s law 

2ij ij ijeτ λ δ µ= ∆ + ,  where 
 

 

1, ,

1 1 1,
2 2
1 1 .
2

r z
rr zz

r z r
r rz

z
z

u u ue e e
r r z

u u u u ue e
r r r r z
u ue
z r

ϑ
ϑϑ

ϑ ϑ
ϑ

ϑ
ϑ

ϑ

ϑ

ϑ

∂ ∂ ∂
= = =
∂ ∂ ∂

∂ ∂ ∂ ∂   = + − = +   ∂ ∂ ∂ ∂   
∂ ∂ = + ∂ ∂ 

 (11) 

 
and ijδ∆  is the deformation, with , , ,i j r z ϑ= . 

In detail, for the problem presented in this work the 
boundary conditions on the stresses are: 
 
 0, , ,rr r rz a br R Rϑτ τ τ= = = =  (12) 
 
where aR  and bR  are internal and external radii 
respectively. 

Using equations 6, 10 and 12 it is possible determine the 
displacement components. It doesn't seem useful in this 
context to give the equations of the above mentioned 
displacements because of their complexity and length.  

The general frequency equation results from the 
displacement equations, stress equations and boundary 
conditions. This equation includes several special 
propagation modes, such as torsional, longitudinal and 
flexural ones. The longitudinal mode involves only the 
displacements ru  and zu  and propagate dispersively. On 
the other hand, the torsional mode involves only the 
displacement uϑ  and propagate non-dispersively [10]. The 
torsional mode has been excited in the simulations of the 
present work, it is described in the next section. 
 
3   Simulation of ultrasonic waveform 

The database used for this work is a collection of 
simulated waveforms. 

The scattering of torsional waves in a cylindrical pipe 
with an asymmetric defect with respect to the axis of 
cylinder has been simulated. The parameters of the 

simulation are resumed below. The pipe is made of steel 
715, whose characteristics are in table 1. The geometric 
scheme of the test is described in table 2 and shown in 
figure 2. The pipe has not external covering and internal 
fluid and it is put in air. It has been chosen a torsional stress 
instead of a longitudinal one since it propagates only in the 
shell even when a fluid is present. The response of the 
defect to a longitudinal stress depends on the contrary also 
by the fluid, because it propagates both in the shell and 
fluid.  

The excitation signal is shown in figure 3 and its 
parameters are resumed in table 3. It is a sinusoidal signal 
with frequency 0 55kHzf = , amplitude-modulate by an 
Hanning window with 6hN = . When the excitation signal 
is applied, the first torsional mode propagates in the shell 
with a velocity 3250m/sTc =  and a wavelength 

Table 1. Characteristics of steel 715 
 

Young’s modulus E 2.158e+11 
N/m2 

Poisson’s coefficient ν 0.3 

Density ρ 7.84709e+3 
kg/m3 

First Lamè constant ( )2 1L Eµ ν= +  8.3e+10 
N/m2 

Second Lamè 
constant ( )( )1 1 2L

Eνλ
ν ν

=
+ −

 1.245e+11 
N/m2 

Velocity of 
longitudinal wave 

in an infinite media 

2L L
Lc

λ µ
ρ
+

=  6.084e+3 
m/s 

Velocity of 
shear wave 

in an infinite media 
L

Tc
µ
ρ

=  3.252e+3 
m/s 

Thin plate velocity ( )21P
Ec
ν ρ

=
−

 5.497e+3 
m/s 

Bar velocity B
Ec
ρ

=  5.244e+3 
m/s 

 

Table 2. Geometric parameters of the test 
 

Length  L L 4 m 
Internal radius aR  4.5238e−2 m 
External radius bR  5.0000e−2 m 

Thickness h 4.7620e−3 m 
Medium radius R 4.7619e−2 m 

Ratio /h R  0.1  
Plane of  boundary condition bcz  0 m 
Plane of defect axial location 0dz  1 m 

Observation plane obsz  0.6 m 
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0 0.059mTc fλ = = . The excited mode does not depend on 
the coordinate ϑ  and propagates non-dispersively. The 
higher order modes have a cut-off frequency higher than 

0 55kHzf = , so they can’t propagate even if they are 
excited.  

The boundary condition is a “bcDisplacement” 
condition, that is a circumferential displacement over all the 
points of the external circumference that lays on the plane 

0z = . If the displacement u  in cylindrical coordinates  is 
referred as: 
 
 r zu u uϑ ϑ= + +r zu e e e  (13) 
 
it can be written for 0z =  and br R= : 
 
 ( ) ( ), , ; , ,0; ( )b hr z t R t g t ϑϑ ϑ= =u u e  (14) 
 
where ( )hg t  is the excitation signal. There are 72 
observation points which lay on the plane obsz z= , 
uniformly distributed over the external circumference of the 
cylinder, they can be defined: ( ), ,n b n obsP R zϑ≡ , where 

0,5,10,...,355nϑ = = ( )1 5degn − ⋅   with 1,2,3,...72n = . 
The defect is an external cavity. The geometric 

parameters of the defect are resumed in table 4. The defect 
simulates a corrosion of the external surface (see figure 4) 
of the pipes centered in the point ( )0 0 0 0, ,d d d dP R zϑ≡  with 
radial, angular and axial extensions. The radial extension of 
the corrosion is measured by the following parameter: 
 

 % 100b d
d

b a

R Rt
R R

−
= ⋅

−
 (15) 

 
with a d bR R R≤ ≤ , while dϑ∆  and dz∆  denote angular and 
axial extension of the defect. As it can be seen from table 4, 
we have considered one value of radial extension and four 
values for angular and axial ones.  

Because of the defect, a reflected wave and a 
transmitted one are generate in 0dz z= . If the defect is 
symmetric with respect to the axis, then these two waves 
are both torsional. On the other hand if the defect is 
asymmetric there are also longitudinal and flexural 
components of displacement. These components are due to 
the interaction between the incident torsional wave defect. 
In these tests an asymmetric defect with respect to the axis 
of the cylinder have been considered. 
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Fig. 2 Geometric scheme of the test 

 
 

Fig. 3 The excitation signal ( )hg t  

Table 3. Parameters of the excitation signal 
 

Sinusoidal signal amplitude-modulate by an Hanning window 
Frequence 0f  55 kHz 
Amplitude A  1  

Fundamental period 0T  1.818e−5 s 
Oscillations in the Hanning 

window hN  6  

Length of the excitation signal 0d hT N T=  1.091e−4 s 
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In figure 5 an example of direct wave, the wave 
reflected by the defect and that one transmitted through the 
defect, reflected by the end of pipe and transmitted again 
through the defect can be seen. The waves shown in figure 
are the normalized torsional components of the 
displacement observed in 1P , the point that lays on the x 
positive semi-axis in obsz z= . 

Software CAPA 4.1 (WisSoft, Buckenhof, Germany) 
has been used to simulate the propagation of elastic waves 
in a cylindrical shell. This software employs a 3D finite 
elements method to simulate the propagation. The 
scattering of torsional wave for the following values of 
( );d dzϑ∆ ∆  have been simulated, being fixed the radial 
extension of the defect: ( )10;3 , ( )20;12 , ( )30;18 , ( )40;24 . 
Each simulation gives the components x, y, z of the 
displacement in each observation points. If it is necessary 
the radial and circumferential components can be deduced 
as follows: 

 

 
( ) ( ) ( )
( ) ( ) ( )

cos sin

sin cos
r n x n n y n n

n x n n y n n

u P u P u P

u P u P u Pϑ

ϑ ϑ

ϑ ϑ

= +

= − +
 (16) 

 
 

4   Overall approach 
In this section the general approach to classify the 

defects on pipes is discussed and the experimental results by 
applying this method are shown. 

A scheme of the proposed approach for classifying 
defects on pipes is shown in figure 6. The inputs of this 
system are the components x, y, z, of the wave reflected by a 
defect, the output is the classification of the defect. The 
steps of this approach are detailed in the following.  
 
4.1   Feature extraction 

The first step is the feature extraction. Timothy and 
Waag employed in [8] 69 parameters characterising 
waveforms. In this paper other two parameters are added to 
these (maximum absolute amplitude of waveform, 
maximum peak-to-peak amplitude of waveform) so a total 
of 35 time and 36 frequency domain features from each 
waveform have been calculated. All the parameters are 
listed in the Appendix.  

 
4.2   Feature selection 

In order to classify the ultrasonic waveform reflected by 
the defect it is useful to employ only the parameters which 
include the information about the characteristics of the 
various classes of defects. Therefore it is necessary to 
identify an efficient method to select the parameters that 
give a good class discrimination. With this aim the k-
nearest neighbour algorithm is used, to select a subset of 
waveform features which better represent the information 
on the defect. This subset contains the features which make 
the lower errors in k-nn classification. In other words each 
single feature is used to classify the defects by means of k-
nn and an optimal subset features consists of those with the 
best recognition rate. The figure 7 shows as an example the 
errors made in classifying the waveforms of the component 
y  in the four classes of defects mentioned in the previous 
section. It can be seen that for some parameters the error is 
lower than 50%, while it is larger than 75% for others, 

Table 4. Geometric parameters of the defects 
 

radial       0dR    4.245 cm 

angular 0dθ  180 deg Position 

axial 0dz  1 m 

radial       dt       10 % 

angular dθ∆  10, 20, 30, 40 deg Extension 

axial dz∆  3, 12, 18, 24 mm 
 

 
 

 
 

Fig. 4 Asymmetric defect with respect to axis 

defect 

excitation 

observation 

direct wave 

 
 

Fig. 5 Direct wave, wave reflected by the defect,  

Direct wave

Reflected 
wave 

Transmitted/ 
Reflected/ 
Transmitted wave
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particularly high errors for the frequency domain 
parameters can be noted. This behaviour is similar to every 
components of the displacement, and it could be due to the 
very small bandwith of the simulated waveforms. 
Moreover, the waveform of the component y are better 
classified than the others, since there is a larger number of 
parameters which make low errors. This means that the 
component y contains more information on the defect than 
others.  

Another problem is the correct number of the 
parameters which have to form the optimal subset; it will be 
the input vector for the neural classifier that performs the 
final diagnosis. This is a problem of optimal threshold 
identification. The choice of a value for this threshold 
allows to divide the set of parameters in two subsets. The 
parameters which make an error lower or equal than the 
threshold constitute the optimal subset. Furthermore the 
threshold value represents the maximum acceptable percent 
error made by a single parameter in classifying a defect. A 
low value of the threshold means few parameters which 
make low errors in classifying defects, but too few 
parameters could not form a set with a sufficient 

information for the final classifier. On the other hand an 
high value of threshold means to consider also parameters 
which make high errors. In this case there is the risk of 
having a poor quality information for the final 
classification. In this work it has been found that a good 
compromise is a value of the threshold which leads to form 
a subset of parameters about 15. 

 
4.3   Neural classifier 

The last step of the presented approach is the 
classification. In this step the vectors of the optimal features 
associated with the waveforms feed an MLP neural 
network. Each waveform is classified according to the 
value of neural network outputs. The defect class is given 
by the neuron with the maximum output. In the next section 
this result is described in detail [11]. 
 
5   Experimental results 

A database of 72 4 288× =  waveforms for each 
component of the displacement has been analyzed, where 
72 is the number of the observation points, and 4 are the 
values of ( );d dzϑ∆ ∆  as quoted in Section 2; in fact the 
radial extension of the defect is fixed. 

The 71 time and frequency domain parameters for each 
waveform of the database have been evaluated. Then the k-
nearest neighbour algorithm selects the subset of waveform 
features which make the lower errors in classifying defects. 
The better results have been obtained with an optimal 
number of neighbours k = 4 and the y component 
waveforms of the displacement. For the other components 
of the displacement the same number of parameters is 
obtained but for higher values of the threshold. For this 
reason, it is possible to assert that the y component of 
displacement characterizes the defect better than the others. 
This means that it is possible to find a sufficient number of 
parameters which make errors lower or equal than a 
suitable threshold characterizing the defects. In this case the 
14 parameters whose errors are lower or equal than the 
threshold 0,55 (figure 7) have been found. They are here 
listed: 
• Maximum absolute amplitude of the waveform; 
• Maximum peak-to-peak amplitude of the waveform; 
• Global pulse duration between 25% levels; 
• Local fall time from peak to 25% level; 
• Local rise variance between 25% level and peak; 
• Local fall variance between peak and 25% level; 
• Local fall variance between peak and 50% level; 
• Global rise variance between 25% level and peak; 
• Global rise variance between 50% level and peak; 
• Global fall variance between peak and 25% level; 
• Global fall variance between peak and 50% level; 
• Local rise variance between 25% level and peak of 
spectrum; 

Software CAPA 4.1

         MLP
Neural Network

71 time and frequency
domain parameters

Classification

Feature 
Extraction

Ultrasonic 
Waveform

Feature 
 Selection k-NN algorithm

 
 
Fig. 6 Scheme of the proposed approach

 

 
Fig. 7 Error of each parameter in classifying the 

waveform of the component y 
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• Local rise variance between 50% level and peak of 
spectrum; 
• Global rise variance between 50% level and peak of the 
spectrum. 

 
 The above mentioned parameters form the input vector 

for the final classifier. It is a supervisioned Multi Layer 
Perceptron (MLP) neural network with a sigmoid activation 
function and a back-propagation learning. The neurons of 
the hidden layer are 21, while there are 4 output neurons 
since 4 classes of defects have been analyzed.  

An input vector is classified in the j-th class (j =  
1,2,3,4) when the j-th output value is maximum. The class 
to which an input vector I belongs is therefore defined as 
follows: 

 
 ( ) {    if   max( )   1,...5}j kk

c I j u u k= = =  (17)  

 
where ju  is the j-th output value. 
Since only the y component waveforms of the displacement 
have been processed, the input set is a 14 288× matrix, 
whose columns are the 14 parameters vectors associate to 
each waveform reflected by the defect. This input set has 
been divided into two subsets: a training set constituted by 
230 vectors and a validation set constituted by the 
remaining 58 vectors. In table 5 the vectors of the 
validation set split in the four classes are reported.  

The performance of the proposed classifiers has been 
evaluated in term of recognition rate. It is defined as the 
ratio between the number of vectors correctly classified and 
the total amount of the processed vectors. In the tests of this 
work the recognition rate of the neural classifier is 96,7%. 
 
5 Conclusions 

The main target of non-destructive techniques is the 
automatic identification of defects on industrial products or 
engineering materials as accurately as possible. However, 
the non-destructive testing processes are often difficult and 
depend significantly on the experience of the tester. In this 
paper an automatic method to help the decision step of 
human operators about the corrosion level of tubes has been 
presented, so our approach can be very useful to forecast 
out of orders and avoid them. The method was based on the 
ultrasonic inspection of non-reachable pipes and exploits 
the neural network ability to classify flaws of various size 
on the pipes. A suitable number of time and frequency 
features extracted by the ultrasonic signal feeds the neural 
network. These features constitute an optimal feature set to 
characterize the ultrasonic waveform. The results show that 
defects with different dimensions can be correctly identified 
and may be used as class reference to evaluate the state of 
the pipes, even if the recognition rate quickly decreases 
when the demanded accuracy increases. Future works will 
be devoted to overcome this drawback, in order to improve 

the classification and recognize the dimensions of more 
large variety of defects. 

 
Appendix 

1. Maximum absolute amplitude of waveform. 
2. Mean value of the normalized waveform amplitude values. 
3. Variance of the normalized waveform amplitude values. 
4. Maximum peak-to-peak amplitude of the waveform. 
5. Difference between 50% level and 25% level (waveform CD). 
6. Difference between 75% level and 25% level (waveform CD). 
7. Difference between 90% level and 25% level (waveform CD). 
8. Local pulse duration between 25% levels. 
9. Global pulse duration between 25% levels. 
10. Mean value of the normalized envelope function. 
11. Variance of the normalized envelope function. 
12. Local rise time from 25% level to peak. 
13. Local rise time from 50% level to peak. 
14. Local fall time from peak to 25% level. 
15. Local fall time from peak to 50% level. 
16. Local rise slope between 25% level and peak. 
17. Local rise variance between 25% level and peak. 
18. Local rise slope between 50% level and peak. 
19. Local rise variance between 25% level and peak. 
20. Local fall slope between peak  and 25% level. 
21. Local fall variance between peak  and 25% level. 
22. Local fall slope between peak  and 50% level. 
23. Local fall variance between peak  and 50% level. 
24. Global rise time from 25% level to peak. 
25. Global rise time from 50% level to peak. 
26. Global fall time from peak to 25% level. 
27. Global fall time from peak to 50% level. 
28. Global rise slope between 25% level and peak. 
29. Global rise variance between 25% level and peak. 
30. Global rise slope between 50% level and peak. 
31. Global rise variance between 50% level and peak. 
32. Global fall slope between peak and 25% level. 
33. Global fall variance between peak and 25% level. 
34. Global fall slope between peak and 50% level. 
35. Global fall variance between peak and 50% level. 
36. Difference between 50% level and 25% level (spectrum CD). 
37. Difference between 75% level and 25% level (spectrum CD). 
38. Difference between 90% level and 25% level (spectrum CD). 
39. Frequency of the maximum value of the power spectrum. 
40. Center frequency of the power spectrum. 
41. Measured bandwidth. 
42. Mean value of the normalized power spectrum. 
43. Variance of the normalized power spectrum. 
44. Fraction of total power between lower 25% level and peak. 
45. Fraction of total power between lower 50% level and peak. 
46. Fraction of total power between peak and upper 25% level. 
47. Fraction of total power between peak and upper 50% level. 
48. Local rise frequency from 25% level to peak. 
49. Local rise frequency from 50% level to peak. 
50. Local fall frequency from peak to 25% level. 
51. Local fall frequency from peak to 50% level. 
52. Local rise slope between 25% level and peak of spectrum. 
53. Local rise variance between 25% level and peak of spectrum. 
54. Local rise slope between 50% level and peak of spectrum. 
55. Local rise variance between 50% level and peak of spectrum. 
56. Local fall slope between peak of spectrum and 25% level. 
57. Local fall variance between peak of spectrum and 25% level. 
58. Local fall slope between peak of spectrum and 50% level. 
59. Local fall variance between peak of spectrum and 50% level. 
60. Global rise frequency between 25% level and peak of 

spectrum. 
61. Global rise frequency between 50% level and peak of 

spectrum. 

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp126-133)



62. Global fall frequency between peak of spectrum and 25% 
level. 

63. Global fall frequency between peak of spectrum and 50% 
level. 

64. Global rise slope between 25% level and peak of spectrum. 
65. Global rise variance between 25% level and peak of spectrum. 
66. Global rise slope between 50% level and peak of spectrum. 
67. Global rise variance between 50% level and peak of spectrum. 
68. Global fall slope between peak of spectrum and 25% level. 
69. Global fall variance between peak of spectrum and 25% level. 
70. Global fall slope between peak of spectrum and 50% level. 
71. Global fall variance between peak of spectrum and 25% level. 

CD = cumulative distribution. 
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