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Abstract: - An approach, permitting us to build free schedules for affine loops with affine dependences 
represented with a single dependence relation, is described. The iterations of each time under the free schedule 
can be executed as soon as their operands are available. This allows us to extract maximal fine-grained loop 
parallelism. The approach requires an exact dependence analysis. To describe the approach and carry out 
experiments, the dependence analysis by Pugh and Wonnacott has been chosen where dependences are 
represented in the form of tuple relations. The approach can be applied to both non-parameterized and 
parameterized loops. Problems to be resolved in the future to utilize the entire power of the presented technique 
are discussed. 
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1   Introduction 
Numerous transformations have been developed to 
expose parallelism in loops, for example, [2,4-9, 
11-14,16,17]. Most of those transformations permit 
us to extract parallelism available in both uniform 
and non-uniform loops. But the question is how 
much loop parallelism these approaches extract.  

The general problem of the loop parallelization is 
the following. Dependences in loops can be 
represented with approximations in general, or with 
an exact representation when possible. For each 
dependence representation based on approximations 
(level of dependences, uniform dependences, 
polyhedral representation of dependences), optimal 
algorithms exist, but for exact affine dependences, it 
is not known what are the loop transformations that 
extract maximal parallelism [9]. So, some of the 
main questions arising at the loop parallelization are 
the following. Can we extract maximal parallelism 
for loops with affine dependences? If so, how can 
we generate code representing maximal parallelism? 
The only attempt in this direction is index splitting 
[13]. But it is a heuristic procedure, and it does not 
answer how much index splitting is necessary, how 
many different code structures must be generated to 
reach optimality.  

This paper is to contribute in answering the 
above questions. 

Following Vivien [20], we imply that an 
algorithm extracting parallelism is optimal if it finds 
all parallelism: 1) that can be extracted in its 

framework; or 2) that is contained in the 
representation of the dependences it handles; or 3) 
that is contained in the program to be parallelized 
(not taking into account the dependence 
representation used nor the transformations 
allowed).  

Free schedules [9] permit us to extract all 
parallelism available in loops, but well-known 
techniques based on linear or affine schedules 
sometimes fail to find free schedules for non-
uniform loops. 

This paper presents an approach permitting us to 
find free schedules for parameterized loops whose 
dependences are represented with a single 
dependence relation. This approach is optimal and 
finds all parallelism available in the affine loop 
provided that problems discussed in this paper will 
be resolved in the future. 

The main objective of this paper is to focus on 
the free schedule as a very important approach for 
understanding the parallelism contained in loops, 
not necessarily for its run-time execution. 
 
 

2   Background 
In this paper, we deal with affine loop nests where 
lower and upper bounds, array subscripts, and 
conditionals are affine functions of surrounding loop 
indices and possibly of structure parameters, and the 
loop steps are known positive constants.  
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Following work [20], we refer to a particular 
execution of a statement for a certain iteration of the 
loops, which surround this statement, as an 
operation. Two operations I and J are dependent if 
both access the same memory location and if at least 
one access is a write. We refer to I and J as the 
source and destination of the dependence, 
respectively, provided that operation I accesses the 
same memory location earlier than operation J. 

The approach, presented in this paper, requires an 
exact representation of dependences, and hence an 
exact dependence analysis that detects a dependence 
if and only if it exists. In general, any known 
technique, extracting exact dependences, can be 
used for our approach, for example, [10,18]. 
However, describing the approach depends on the 
format of the presentation of exact dependences and 
carrying out experiments depends on the availability 
of tools permitting us to find exact dependences.  

To describe the approach and carry out 
experiments, we have chosen the dependence 
analysis proposed by Pugh and Wonnacott [18] 
where dependences are represented with 
dependence relations. This analysis is implemented 
in Petit, a research tool for doing dependence 
analysis and program transformations. 
A dependence relation is a mapping from one 
iteration space to another, and it is represented by 
a set of linear constraints on variables that stand for 
the values of the loop indices at the source and 
destination of the dependence and the values of the 
symbolic constants. Each dependence relation 
represents a dependence class (flow, anti, output). 

Given a dependence relation R, our approach 
requires calculating relation Rk, where 

Rk=R°Rk-1 
Rk-1=R°Rk-2 
............... 
R2=R°R 
R1=R 
 “  ° “  is the denotation of the composition 

operation. 
Dependence relations, found by Petit, usually 

contain more variables than there exist index 
variables in the loop. Forming and resolving 
a recurrence equations system to obtain relation Rk 
is more convenient when the number of variables is 
equal or less than the number of the loop index 
variables (the number of loop nests) in a given loop. 
We call a procedure of reducing the number of 
variables in the dependence relation constraints as 
normalization and it is performed as follows. 
1. Resolve all equations being contained in the 
constraints of a dependence relation, let x=a be the 
solution to these equations, substitute all the 

appearances of x in the dependence relation and its 
constraints for a. 
2. Resolve all inequalities in the dependence relation 
constraints. 
For example, the relation 
R:={ [i,j]->[i’ ,j’ ]: 2i-i’=1 && -j-1=0 &&  
-j’ -1=0 && 2<=i<=25}  
after the normalization is transformed to the relation 
R:={ [i,1]->[2i-1,1]: 2<=i<=25} . 

We refer to the source (destination) of 
a dependence as the ultimate dependence source 
(destination) if it is not a destination (source) of any 
other dependence. Ultimate dependence sources and 
destinations represented with relation R can be 
found by means of the following calculations: 
(domain R – range R) and (range R – domain R), 
respectively. 

Definition [5]. A schedule is a mapping, which 
assigns a time of execution to each operation of the 
loop in such a way that all dependences are 
preserved, that is, mapping s:I→Z such that for any 
arbitrary dependent operations op1 and op2 ∈ I, 
s(op1)<s(op2) if op1

�
op2. 

Assertion [5]. A free schedule assigns operations 
as soon as their operands are available, that is, it is 
mapping σ:I→Z such that 

�� �
∈+
∈

=
.)','),'(max(

'..'
)(

ppIpp1

pptsIpnoisthereif0
p �

�
σ

σ  

The free schedule is the "fastest" schedule 
possible. Its total execution time is 

)),(max( Ipp1T freefree ∈+= σ . 
The idea of finding the free schedule to execute 

operations of a loop with a single dependence 
relation is the following. Since all dependences are 
represented by a single dependence relation, the 
iterations to be executed at time k, k=1,2... can be 
calculated as range(Rk(UDS)), where UDS is a set 
being comprised of ultimate dependence sources to 
be executed at time 0 under the free schedule. 
Figures 1, 2 illustrate this fact. Hence, we need an 
approach to calculate relation Rk. The next section 
presents a technique to calculate Rk. 

To follow the material of this paper, the reader 
should be familiar with the iterations on tuple 
relations such as: union, difference, range, domain, 
composition, application as well as existentially 
quantified variables explained in [15]. 
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3   Calculating relation Rk 
In this paper, we deal with a loop of the form 
for i1=l1 to u1 do 
for i2=l2 to u2 do 
... 
for in=ln to un do 

V[p11i1+p12i2+...+q1 ,...,pn1i1+pn2i2+...+qn]= ... 
...=V[r11i1+r12i2+...+s1 ,...,rn1i1+rn2i2+...+sn] 

endfor 
...  
endfor 
endfor. 

Let set UDS represent ultimate dependence 
source and be of the form 
UDS:= { [t1, t2,. . . , tn]: constraints imposed on 
t1,t2,...,tn } .  

To find relation Rk, we construct and resolve 
a system of recurrence equations using the fact that 
dependent iterations create chains where in each of 
them a dependence destination is the dependence 
source for the consecutive dependence except from 
the ultimate dependence destination. This property 
can be described with a system of recurrence 
equations. For the loop whose dependence relation 
is written as follows 
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the appropriate system of recurrence equations may 
be represented in the form 
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Obtaining a solution to that system requires 
initial values of variables, which are provided with 
ultimate dependence sources being represented by 
the following constraint 
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where t1,t2,…,tn satisfy constraints of set UDS 
introduced above. 

Recurrence equations (1) with constraints (2) 
may be resolved by means of one of numerous 
commercial and academic solvers, for example 
Maple [21], Mathematica [22], Maxima [23], 
MuPAD [24], PURRS [25]. For our experiments, 
we have chosen Mathematica, which offers enough 
flexibility for describing and resolving systems of 
recurrence equations with initial values of variables.  

Having a solution to system (1) with constraints 
(2), we can form relation Rk as follows 
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where k
n

kk iii ,...,, 21  are solutions to an appropriate 

system of recurrence equations, t1,t2,…,tn (presented 

in the solution k
n

kk iii ,...,, 21 ) satisfy constraints of 

ultimate dependence sources, k satisfies the 
condition 1 �  k �  kmax, where kmax is the number of 
times under the free schedule. 

The number of times under the free schedule, 
kmax, can be obtained taking into account the 
constraints of dependence relation Rk and the upper 
bounds of the loop indices. A solution standing for 
Rk must also preserve the lexicographical order of 
operations. 

For an n-nested loop, the system of inequalities 
permitting us to find the number of times under the 
free schedule, kmax, is of the form 
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where u1,u2,...,un are the upper bounds of the loop 

index variables, and k
n

kk iii ,...,, 21  are the solutions to 

a system of recurrence equations (1) with 
constraints (2). 

The lexicographical order of iterations being 
executed at times k-1 and k is preserved when 
a solution satisfies the following constraint 
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Resolving inequalities (3) and (4), we find k that 
is usually in the domain of real numbers. As the 
number of times under the free schedule we take & '

n21 t,...,t,t

kmax .  

A solution to systems (1) and (2) can be in the 
domain of integers and/or real numbers. There exist 
numerous techniques permitting generating code 
scanning elements of a set being represented with 
affine constraints, but to our knowledge, there is no 
technique permitting generating code scanning 
elements of a set being represented with non-linear 
constraints.  

To verify that solutions to a system of recurrence 
equations are integers, we can transform the system 
of recurrence equations 
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into the form 
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If all of the coefficients of the inverted matrix on 
the left-hand side of (5) are integers, then the 

solutions represented with k
n

kk iii ,...,, 21  are also 

integers; otherwise they could be both integer and/or 
real numbers. 

 
 

4   Finding Free Schedules  
The idea of the algorithm presented in this section is 
as follows. Given relation R, we find ultimate 
dependence sources to be executed at time 0 and 
next form and resolve a correspondent recurrence 
equation(s) to build Rk. On the basis of relation Rk, 
we form and resolve appropriate inequalities to find 
the upper bound of k, kmax, which represents the 
maximal number of times under the free schedule. 
Using relation Rk, we form set S(k) comprising 
iterations to be executed at time k, k=1,2,...,kmax, 
under the free schedule. When all the elements of 
S(k) are integers and described by affine forms, then 
any well-known technique to generate code 
scanning elements of S(k) can be applied. Finally, 
we expose independent iterations, that is, those that 
do not belong to any dependence and generate code 
enumerating these iterations. According to the free 
schedule, they are to be executed at time 0.  

Algorithm. Finding the free schedule for the 
loop with a single dependence relation 

Input: dependence relation R represented in the 
normalized form. 

Output: Rk; the number of times under the free 
schedule, kmax; set of operations to be executed at 
time k, S(k), k=1,2,..., kmax; code representing the 
free schedule provided that all the elements of set 
S(k) are integers and represented by affine 
constraints. 
1) Find ultimate dependence sources (operations to 
be executed at time 0), UDS, as  
UDS = domain R – range R. 
2) Taking into account set UDS, form appropriate 
recurrence equations in such a manner as described 
in Section 3. 
3) Resolve all the equations formed at step 2 and 
build Rk(UDS) as described in Section 3. 
4) Find the upper bound of k, kmax, on the basis of 
constraints imposed on input and output variables of 
Rk and the upper bounds of the loop indices by 
means of constructing and resolving appropriate 
inequalities and constraints honoring the fact that 
the operations to be executed at time k must be 

lexicographically greater than those executed at time 
k-1 (see Section 3).  
5) Form set S(k) as 
S(k)= { range Rk (UDS): constraint(elements of 
S(k) �  Integers)}. 
6) When the elements of set S(k) are integers and 
represented by only affine constraints (do not 
include non-linear expressions), generate code 
scanning operations of set S(k) applying any well-
known technique, for example [1,3,4,19]. 
7) Find a set, IND, representing independent 
operations, that is, ones that are no source or 
destination of any dependence as follows  
IND= LD – (domain R   range R) 
where LD is a set representing the loop domain. 
8) Generate code scanning iterations of set IND 
applying any well-known technique, for example 
[1,3,4,19]. 

It is worth to note that in the general case, set 
S(k) yielded by the algorithm above, can comprise 
elements that are not integers and/or are represented 
not only by affine constraints but also by non-linear 
expressions. For example, consider the following 
loop 
Example 1  
for i=1 to 1000 do 
for j=1 to 1000 do 

a(2*j+3,i+1)=a(2*i+j+1,i+j+3) 
endfor 
endfor. 

Petit finds the following dependence relation for 
this loop 
R={[-x1+2x2+4,2x1-2x2-6]->[x1,x2]:  
1<=-x1+2x2+4<=1000 && 1<=2x1-2x2-6<=1000 
&& 1<=x1<=1000 && 1<=x2<=1000}. 

Ultimate dependence sources are contained in the 
following set 
UDS = {[t1,t2]: Exists(alpha: 2alpha=t2 && 
2t2+4<=t1<=-t2+997 && 2<=t2) OR Exists(alpha: 
2alpha=t2 && 1<=t1<=-t2+997 && t1<=t2+3 && 
2<=t2)}. 

The solution to an appropriate system of 
recurrence equations yielded with Mathematica is as 
follows 
x1 � k � � 1

4 � 17
�� � 4 �� � 1

4 � 3 � � 17 � � k � � 14 � 3 � � 17 � � k �� t1 �
21� 2k � � 3 � � 17 � 1 � k � � 3 � � 17 � 1 � k ��� 2 � t1 � t2  �� ,

x2 � k �!� 1

17
4 � 1� k �"� 1723� 2k � 34 � 3 � � 17 � k �

14 � 17 � 3 � � 17 � k � 34 � 3 � � 17 � k � 14 � 17 � 3 � � 17 � k �� � 34 � 6 � 17 � � 3 � � 17 � k � 2 � 3 � � 17 � k � 17 � 3 � 17 �#�
t1 �� � 17 � 7 � 17 � � 3 � � 17 � k � � 3 � � 17 � k � 17 � 7 � 17 � � t2 �  

For times 0,1,2, we yield the following sets.  
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The elements to be executed at time 0 are 
comprised in the set S(0) = [ ]{ }21,tt . 

The elements to be executed at time 1 are 
represented with the set 

S(1)= � ��
�� � ���	
� −+++ 1

2

1
,2 2121 tttt . 

The elements to be executed at time 2 are 
contained in the set  

S(2)= � �
�� � ������ ++++

2

1

4

5

2

3
,3

2

3
2 2121 tttt . 

Elements of set S(0) are integers (they are 
represented with ultimate dependence sources). 
Since dependence ultimate sources are all even 
numbers, elements of S(1) are also integer numbers. 
But there are both integer and non-integer numbers 
in S(2), for example when t1=1 and t2=2 (an element 
of the ultimate dependence sources set), the 
correspondent element is [8, 4.5], which does not 
belong to the loop domain. For t1=1 and t2=4, the 
correspondent element is [11, 7], which describes 
the operation in the loop domain. Hence, there is the 
need for developing techniques permitting us to 
generate code when set S(k) can comprise elements 
that are not integers and/or are represented not only 
with affine constraints but also with non-linear 
expressions. 

 
 

5   Examples 
In this section, we attach two examples illustrating 
applying the approach presented in the previous 
section. For the loop below 
Example 2 
for i=1 to n do 
for j=1 to n do 

a(i,j)=a(i,2*j) 
endfor 
endfor 
Petit finds the dependence relation 
R:= {[i,j] -> [i,2j]: 1<=i<=n && 1<=2j<=n} 
which does not require the normalization. The loop 
domain is defined as follows 
LD:={[i,j]:1<=i,j<=n}. 

Independent operations are represented with the 
following set  
IND:= LD – (domain(R) union range(R)) = {[i,j]: 
Exists(alpha: 2alpha=1+j && i,j<=n<=2j-1 && 
1<=i)}. 

Ultimate dependence sources are the result of the 
following calculation 
UDS:= domain(R) – range(R) = {[t1,t2]: 
Exists(alpha: 2alpha=1+t2 && 1<=t1<=n && 1<=t2 
&& 2t2<=n)}. 

The system of recurrence equations to find 
relation Rk (written using the Mathematica syntax) is 
of the form 
RSolve[{x1[k+1]==x1[k],x2[k+1]==2x2[k], 
x1[0]==t1,x2[0]==t2}, {x1[k],x2[k]},k] . 

The solutions to this system are 
x1[k] � t1, 
x2[k] � t2*2k. 

They both are represented with positive integers, 
and the upper bound of k can be obtained from the 
inequality 
t2*2k � n, 
that yields 

( )2
2

Log

t

n
Log

k

���
�����

≤ , 

and kmax is 

( )
( )
( )

 !
 "#"=  

  
 

!

 

""
""
"
#

" $$
%
&''()

=
22

max 2
max

2 Log

nLog

Log

t

n
Log

k
t

. 

Relation Rk may be written as follows 
Rk:= { [t1,t2]->[t1,t2*2k]: Exists(alpha: 2alpha=1+t2 
&& 1<=t1<=n && 1<=t2 && 2t2<=n) && 
t2*2^(k)<=n} , 
and set S(k) is of the form 
S(k) := range Rk = { [t1,t2*2k]: Exists(alpha: 
2alpha=1+t2 && 1<=t1<=n && 1<=t2 && 2t2<=n) 
&& t2*2^(k)<=n} . 

The elements of set S(k) can be scanned by the 
code  
for ( k=1; k<=trunc(log(n)/log(2))+1; k++) {  
parfor( t1=1; t1<= n; t1++) {  
parfor( t2=2*intDiv(intDiv(n+1+1,2),2)-1; t2<=n; 
t2 += 2) {  
if( t2*2^(k)<=n) {  

a(t1,t2*2^(k))=a(t1,2t2*2^(k)); 
}  
}  
}  
} . 

This loop was built manually because of 
limitations of existing tools. 

Independent operations and ultimate dependence 
sources can be enumerated with the loop 
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parfor( t1 = 1; t1<=n; t1++) {  
parfor( t2=1; t2<=intDiv(n,2); t2+=2) {  

a(t1,t2)=a(t1,2t2); 
}  
parfor( t2=2*intDiv(intDiv(n+1+1,2),2)-1; t2<=n; 
t2+=2) {  

a(t1,t2)=a(t1,2t2); 
}  
} . 

This loop was generated with the codegen 
function of the Omega library.  

Figure 1 presents the loop domain and 
dependences for the loop of Example 2 when n=10.  
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Fig. 1. Loop domain with dependences for the loop 
of Example 2 for n=10. 
For the loop below 
Example 3 
for i=1 to m do 
for j=1 to m do 

a(i,j)=a(i,2*n-j) 
endfor 
endfor 
Petit finds the dependence relation 
R := { [i,j] -> [i,2n-j]: 1<=i<=m && 1<=j<n && 
2n<=m+j}  
which does not require the normalization. 

The loop domain is defined as follows 
LD := { [i,j]: 1<=i,j<=m} . 

Independent operations are calculated as follows 
IND := LD – (domain(R) union range(R)) = { [i,j]: 
2n,1<=j<=m && 1<=i<=m}  union { [i,j]: 1<=i<=m 
&& 1<=j<=m && m+j<2n}  union { [i,n]: 1<=n<=m 
&& 1<=i<=m} . 

Ultimate dependence sources are contained in the 
following set 
UDS := domain(R) – range(R) = { [t1,t2]: 1<=t1<=m 
&& 1<=t2<n && 2n<=m+t2} . 

The system of recurrence equations to find 
relation Rk (written using the Mathematica syntax) is 
of the form 
RSolve[{ x1[k+1]==x1[k],x2[k+1]==2n-x2[k], 
x1[0]==t1,x2[0]==t2} , { x1[k],x2[k]} ,k]. 

The solutions to this system are 
x1[k] � t1, 
x2[k] � (-1)k (n(-1)k-n+t2). 

x2[k] can be simplified to the form 
x2[k] � t2, when k is an even number 
x2[k] � 2n-t2, when k is an odd number. 

Because x2[k] is periodic, kmax=1. This means 
that there are only two times under the free 
schedule: time 0 to execute independent iterations 
and ultimate dependence sources and time 1 to 
execute dependence destinations. 

Relation Rk can be written as follows 
Rk:={ [t1,t2]->[t1,t2]: k=0 && 1<=t1<=m && 
1<=t2<n && 2n<=m+t2}  union { [t1,t2]->[t1,2n-t2]: 
k=1 && 1<=t1<=m && 1<=t2<n && 2n<=m+t2} . 
and set S(k) is of the form 
S(k):= range Rk = { [t1,t2]: k=0 && 1<=t1<=m && 
1<=t2<n && 2n<=m+t2}  union { [t1,t2]: k=1 && 
n<t2<=2n-1,m && 1<=t1<=m} . 

The elements of set S(k) can be scanned by the 
code  
if( k ==0 && n>=2 && n<=m-1) {  
parfor( t1=1; t1<=m; t1++) {  
parfor( t2=max(2*n-m,1); t2 <= n-1; t2++) {  

a(t1,t2)=a(t1,2*n-t2); 
}  
}  
}  
if(k == 1 && n >= 2 && n <= m-1) {  
parfor(t1 = 1; t1 <= m; t1++) {  
parfor(t2 = n+1; t2 <= min(m,2*n-1); t2++) {  

a(t1,t2)=a(t1,2*n-t2); 
}  
}  
} . 

Independent operations and ultimate dependence 
sources can be enumerated with the loop 
parfor( t1=1; t1<=m; t1++) {  
parfor( t2=1; t2<=min(-m+2*n-1,m); t2++) {  

a(t1,t2)=a(t1,2*n-t2); 
}  
parfor (t2=max(-m+2*n,1); t2<=n-1; t2++) {  

a(t1,t2)=a(t1,2*n-t2) 
}  
if (m>=n && n>=1) {  

a(t1,t2)=a(t1,n); 
}  
parfor (t2 = max(2*n,1); t2 <= m; t2++) {  

a(t1,t2)=a(t1,2*n-t2); 
}  
} . 

The both above codes were genererated with the 
codegen function of the Omega library.  
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Figure 2 presents the loop domain and 
dependences for the loop of Example 3 when m=10 
and n=5. 
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Fig. 2. Loop domain for the loop of Example 3 
when 2n=m=10. 
 
 

6   Related work 
Concerning the loop parallelization, the following 
facts are known.  

If the level of dependences is the only available 
representation, then Allen and Kennedy's algorithm 
(loop distribution) is known to be optimal [6] with 
respect to its input, that is, it finds maximal 
parallelism that is contained in the representation of 
the dependences it handles. 

For the case of a single statement with uniform 
dependences, linear scheduling (optimized 
Lamport's hyperplane method) is asymptotically 
optimal [8].  

For the case of several statements with uniform 
dependences, the Lamport's hyperplane method has 
been extended in work [14] where it is shown that 
a linear schedule plus shifts leads to finding 
maximum parallelism.  

For the case of polyhedral approximations of 
dependences (including direction vectors), Darte 
and Vivien's algorithm is optimal [7].  

For affine dependences, the most powerful 
algorithm is Feautrier’s one based on multi-
dimensional affine schedules [12]. But as mentioned 
by Feautrier, it is not optimal for all codes with 
affine dependences. However, among all possible 
affine schedules, it is optimal [20].  

Since the approach presented in [16,17] (affine 
time partition mappings) is based on affine 
schedules, it does not allow us to detect maximal 
loop parallelism for affine dependences in the 
general case.  

The technique presented in this paper is to 
contribute to understanding the problem of free 
schedules for loops with affine dependences and it is 
optimal for both non-parameterized and 

parameterized loops whose dependences can be 
represented with a single dependence relation. 
 
 
7   Conclusion 
In this paper, we have presented the algorithm that 
permit us to build free schedules for both non-
parameterized and parameterized loops whose 
dependences are represented with a single 
dependence relation. If a free schedule is 
represented by affine forms, code can be generated 
easily by means of well-known techniques and 
public available tools, for example, the Omega 
project software, available on the Internet site 
ftp://ftp.cs.umd.edu/pub/omega or the Polylib code 
generator, available on the Internet site 
http://www.irisa.fr/cosi/ALPHA/welcome.html. 
When a free schedule is represented by non-linear 
forms, techniques should be developed to generate 
code enumerating iterations to be executed at 
correspondent times under the free schedule. 

We have focused on the free schedule as a very 
important approach for understanding the 
parallelism contained in a loop, not necessarily for 
its run-time execution.  

The task for further research is to develop 
techniques permitting us to build free schedules for 
loops whose dependences are represented by 
multiply dependence relations. The challenge here is 
to be able to compute a schedule in a symbolic way 
and to generate the corresponding code with 
a complexity that depends on the loop structure but 
not on the volume of the computation it describes. 
This challenge deserves more attention from the 
research community. 
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