
Finding Free Schedules for Parameterized Loops with Affine
Dependences Represented with a Single Dependence Relation

WLODZIMIERZ BIELECKI, ROBERT DRAZKOWSKI

Faculty of Computer Science
Technical University of Szczecin

Zolnierska 49 st., 71-210 Szczecin
POLAND

Abstract: - An approach, permitting us to build free schedules for affine loops with affine dependences
represented with a single dependence relation, is described. The iterations of each time under the free schedule
can be executed as soon as their operands are available. This allows us to extract maximal fine-grained loop
parallelism. The approach requires an exact dependence analysis. To describe the approach and carry out
experiments, the dependence analysis by Pugh and Wonnacott has been chosen where dependences are
represented in the form of tuple relations. The approach can be applied to both non-parameterized and
parameterized loops. Problems to be resolved in the future to utilize the entire power of the presented technique
are discussed.

Key-Words: - Affine Loops, Loop Parallelization, Free Schedules

1 Introduction
Numerous transformations have been developed to
expose parallelism in loops, for example, [2,4-9,
11-14,16,17]. Most of those transformations permit
us to extract parallelism available in both uniform
and non-uniform loops. But the question is how
much loop parallelism these approaches extract.

The general problem of the loop parallelization is
the following. Dependences in loops can be
represented with approximations in general, or with
an exact representation when possible. For each
dependence representation based on approximations
(level of dependences, uniform dependences,
polyhedral representation of dependences), optimal
algorithms exist, but for exact affine dependences, it
is not known what are the loop transformations that
extract maximal parallelism [9]. So, some of the
main questions arising at the loop parallelization are
the following. Can we extract maximal parallelism
for loops with affine dependences? If so, how can
we generate code representing maximal parallelism?
The only attempt in this direction is index splitting
[13]. But it is a heuristic procedure, and it does not
answer how much index splitting is necessary, how
many different code structures must be generated to
reach optimality.

This paper is to contribute in answering the
above questions.

Following Vivien [20], we imply that an
algorithm extracting parallelism is optimal if it finds
all parallelism: 1) that can be extracted in its

framework; or 2) that is contained in the
representation of the dependences it handles; or 3)
that is contained in the program to be parallelized
(not taking into account the dependence
representation used nor the transformations
allowed).

Free schedules [9] permit us to extract all
parallelism available in loops, but well-known
techniques based on linear or affine schedules
sometimes fail to find free schedules for non-
uniform loops.

This paper presents an approach permitting us to
find free schedules for parameterized loops whose
dependences are represented with a single
dependence relation. This approach is optimal and
finds all parallelism available in the affine loop
provided that problems discussed in this paper will
be resolved in the future.

The main objective of this paper is to focus on
the free schedule as a very important approach for
understanding the parallelism contained in loops,
not necessarily for its run-time execution.

2 Background
In this paper, we deal with affine loop nests where
lower and upper bounds, array subscripts, and
conditionals are affine functions of surrounding loop
indices and possibly of structure parameters, and the
loop steps are known positive constants.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp369-376)

Following work [20], we refer to a particular
execution of a statement for a certain iteration of the
loops, which surround this statement, as an
operation. Two operations I and J are dependent if
both access the same memory location and if at least
one access is a write. We refer to I and J as the
source and destination of the dependence,
respectively, provided that operation I accesses the
same memory location earlier than operation J.

The approach, presented in this paper, requires an
exact representation of dependences, and hence an
exact dependence analysis that detects a dependence
if and only if it exists. In general, any known
technique, extracting exact dependences, can be
used for our approach, for example, [10,18].
However, describing the approach depends on the
format of the presentation of exact dependences and
carrying out experiments depends on the availability
of tools permitting us to find exact dependences.

To describe the approach and carry out
experiments, we have chosen the dependence
analysis proposed by Pugh and Wonnacott [18]
where dependences are represented with
dependence relations. This analysis is implemented
in Petit, a research tool for doing dependence
analysis and program transformations.
A dependence relation is a mapping from one
iteration space to another, and it is represented by
a set of linear constraints on variables that stand for
the values of the loop indices at the source and
destination of the dependence and the values of the
symbolic constants. Each dependence relation
represents a dependence class (flow, anti, output).

Given a dependence relation R, our approach
requires calculating relation Rk, where

Rk=R°Rk-1
Rk-1=R°Rk-2
...............
R2=R°R
R1=R
 “ ° “ is the denotation of the composition

operation.
Dependence relations, found by Petit, usually

contain more variables than there exist index
variables in the loop. Forming and resolving
a recurrence equations system to obtain relation Rk
is more convenient when the number of variables is
equal or less than the number of the loop index
variables (the number of loop nests) in a given loop.
We call a procedure of reducing the number of
variables in the dependence relation constraints as
normalization and it is performed as follows.
1. Resolve all equations being contained in the
constraints of a dependence relation, let x=a be the
solution to these equations, substitute all the

appearances of x in the dependence relation and its
constraints for a.
2. Resolve all inequalities in the dependence relation
constraints.
For example, the relation
R:={ [i,j]->[i’ ,j’]: 2i-i’=1 && -j-1=0 &&
-j’ -1=0 && 2<=i<=25}
after the normalization is transformed to the relation
R:={ [i,1]->[2i-1,1]: 2<=i<=25} .

We refer to the source (destination) of
a dependence as the ultimate dependence source
(destination) if it is not a destination (source) of any
other dependence. Ultimate dependence sources and
destinations represented with relation R can be
found by means of the following calculations:
(domain R – range R) and (range R – domain R),
respectively.

Definition [5]. A schedule is a mapping, which
assigns a time of execution to each operation of the
loop in such a way that all dependences are
preserved, that is, mapping s:I→Z such that for any
arbitrary dependent operations op1 and op2 ∈ I,
s(op1)<s(op2) if op1

�
op2.

Assertion [5]. A free schedule assigns operations
as soon as their operands are available, that is, it is
mapping σ:I→Z such that

�� �
∈+
∈

=
.)','),'(max(

'..'
)(

ppIpp1

pptsIpnoisthereif0
p �

�
σ

σ

The free schedule is the "fastest" schedule
possible. Its total execution time is

)),(max(Ipp1T freefree ∈+= σ .
The idea of finding the free schedule to execute

operations of a loop with a single dependence
relation is the following. Since all dependences are
represented by a single dependence relation, the
iterations to be executed at time k, k=1,2... can be
calculated as range(Rk(UDS)), where UDS is a set
being comprised of ultimate dependence sources to
be executed at time 0 under the free schedule.
Figures 1, 2 illustrate this fact. Hence, we need an
approach to calculate relation Rk. The next section
presents a technique to calculate Rk.

To follow the material of this paper, the reader
should be familiar with the iterations on tuple
relations such as: union, difference, range, domain,
composition, application as well as existentially
quantified variables explained in [15].

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp369-376)

3 Calculating relation Rk
In this paper, we deal with a loop of the form
for i1=l1 to u1 do
for i2=l2 to u2 do
...
for in=ln to un do

V[p11i1+p12i2+...+q1 ,...,pn1i1+pn2i2+...+qn]= ...
...=V[r11i1+r12i2+...+s1 ,...,rn1i1+rn2i2+...+sn]

endfor
...
endfor
endfor.

Let set UDS represent ultimate dependence
source and be of the form
UDS:= { [t1, t2,. . . , tn]: constraints imposed on
t1,t2,...,tn } .

To find relation Rk, we construct and resolve
a system of recurrence equations using the fact that
dependent iterations create chains where in each of
them a dependence destination is the dependence
source for the consecutive dependence except from
the ultimate dependence destination. This property
can be described with a system of recurrence
equations. For the loop whose dependence relation
is written as follows

��
��

�

�
��
��
�

�
+��

��
�

�
��
��
�

�
⋅��

��
�

�
��
��
�

�
→��

��
�

�
��
��
�

�
+��

��
�

�
��
��
�

�
⋅��

��
�

�
��
��
�

�
=

n

2

1

n

2

1

nn2n1n

n22221

n11211

n

2

1

n

2

1

nn2n1n

n22221

n11211

d

...

d

d

i

...

i

i

c...cc

...

c...cc

c...cc

b

...

b

b

i

...

i

i

a...aa

...

a...aa

a...aa

R

the appropriate system of recurrence equations may
be represented in the form

��
��

�

�
		
		

�
+��

��
�

�

�

		
		
	

�
⋅��

��
�

�
		
		

�
=��

��
�

�
		
		

�
+��

��
�

�

�

		
		
	

�
⋅��

��
�

�
		
		

�

+

+

+

n

2

1

k
n

k
2

k
1

nn2n1n

n22221

n11211

n

2

1

1k
n

1k
2

1k
1

nn2n1n

n22221

n11211

d

...

d

d

i

...

i

i

c...cc

...

c...cc

c...cc

b

...

b

b

i

...

i

i

a...aa

...

a...aa

a...aa .(1)

Obtaining a solution to that system requires
initial values of variables, which are provided with
ultimate dependence sources being represented by
the following constraint

��
��

�
��
��
�

�
=��

��

�
��
��
�

�
+��

��
�

�

��
��
�

�

�
⋅��

��

�
��
��
�

�

n

2

1

n

2

1

0
n

0
2

0
1

nn2n1n

n22221

n11211

t

...

t

t

b

...

b

b

i

...

i

i

a...aa

...

a...aa

a...aa
,(2)

where t1,t2,…,tn satisfy constraints of set UDS
introduced above.

Recurrence equations (1) with constraints (2)
may be resolved by means of one of numerous
commercial and academic solvers, for example
Maple [21], Mathematica [22], Maxima [23],
MuPAD [24], PURRS [25]. For our experiments,
we have chosen Mathematica, which offers enough
flexibility for describing and resolving systems of
recurrence equations with initial values of variables.

Having a solution to system (1) with constraints
(2), we can form relation Rk as follows

��
��

�

�
��
��
�

�
+��

��
�

�

�

��
��
�
�

�
⋅��

��
�

�
��
��
�

�
→��

��
�

�
��
��
�

�
+��

��
�

�

�

��
��
�
�

�
⋅��

��
�

�
��
��
�

�
=

n

2

1

k
n

k
2

k
1

nn2n1n

n22221

n11211

n

2

1

0
n

0
2

0
1

nn2n1n

n22221

n11211

k

d

...

d

d

i

...

i

i

c...cc

...

c...cc

c...cc

b

...

b

b

i

...

i

i

a...aa

...

a...aa

a...aa

R

,

where k
n

kk iii ,...,, 21 are solutions to an appropriate

system of recurrence equations, t1,t2,…,tn (presented

in the solution k
n

kk iii ,...,, 21) satisfy constraints of

ultimate dependence sources, k satisfies the
condition 1 � k � kmax, where kmax is the number of
times under the free schedule.

The number of times under the free schedule,
kmax, can be obtained taking into account the
constraints of dependence relation Rk and the upper
bounds of the loop indices. A solution standing for
Rk must also preserve the lexicographical order of
operations.

For an n-nested loop, the system of inequalities
permitting us to find the number of times under the
free schedule, kmax, is of the form

��
��

�

�

��
��
�

�
≤��

��
�

�

��
��
�

�
+��

��
�

�

�

��
��
�

�

�
⋅��

��
�

�

��
��
�

�

n

2

1

n

2

1

k
n

k
2

k
1

nn2n1n

n22221

n11211

u

...

u

u

d

...

d

d

i

...

i

i

c...cc

...

c...cc

c...cc
,(3)

where u1,u2,...,un are the upper bounds of the loop

index variables, and k
n

kk iii ,...,, 21 are the solutions to

a system of recurrence equations (1) with
constraints (2).

The lexicographical order of iterations being
executed at times k-1 and k is preserved when
a solution satisfies the following constraint

() () ��
!""#$ =−<≤∀∧��

!""#$ >−∃ %%
=

−

=

− 0:1..0:
1

1

1

1
n

j

k
j

k
jqj

n

j

k
j

k
jpj iiapqtsqiiap

. (4)

Resolving inequalities (3) and (4), we find k that
is usually in the domain of real numbers. As the
number of times under the free schedule we take & '

n21 t,...,t,t

kmax .

A solution to systems (1) and (2) can be in the
domain of integers and/or real numbers. There exist
numerous techniques permitting generating code
scanning elements of a set being represented with
affine constraints, but to our knowledge, there is no
technique permitting generating code scanning
elements of a set being represented with non-linear
constraints.

To verify that solutions to a system of recurrence
equations are integers, we can transform the system
of recurrence equations

((
((

)

*
++
++
,

-
+((

((
(

)

*

++
++
+
,

-
⋅((

((
)

*
++
++
,

-
=((

((
)

*
++
++
,

-
+((

((
(

)

*

++
++
+
,

-
⋅((

((
)

*
++
++
,

-

+

+

+

n

2

1

k
n

k
2

k
1

nn2n1n

n22221

n11211

n

2

1

1k
n

1k
2

1k
1

nn2n1n

n22221

n11211

d

...

d

d

i

...

i

i

c...cc

...

c...cc

c...cc

b

...

b

b

i

...

i

i

a...aa

...

a...aa

a...aa

into the form

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp369-376)

���
��
�

�
���
��
�

�
���
�
�
�

			
	

�

−���
�
�
�

			
	

�

+���
��
�

�
			
		

�
⋅���
�
�
�

			
	

�

⋅���
�
�
�

			
	

�

=���
��
�

�
			
		

� −

+

+

+

n

2

1

n

2

1

k
n

k
2

k
1

nn2n1n

n22221

n11211

1

nn2n1n

n22221

n11211

1k
n

1k
2

1k
1

b

...

b

b

d

...

d

d

i

...

i

i

c...cc

...

c...cc

c...cc

a...aa

...

a...aa

a...aa

i

...

i

i .(5)

If all of the coefficients of the inverted matrix on
the left-hand side of (5) are integers, then the

solutions represented with k
n

kk iii ,...,, 21 are also

integers; otherwise they could be both integer and/or
real numbers.

4 Finding Free Schedules
The idea of the algorithm presented in this section is
as follows. Given relation R, we find ultimate
dependence sources to be executed at time 0 and
next form and resolve a correspondent recurrence
equation(s) to build Rk. On the basis of relation Rk,
we form and resolve appropriate inequalities to find
the upper bound of k, kmax, which represents the
maximal number of times under the free schedule.
Using relation Rk, we form set S(k) comprising
iterations to be executed at time k, k=1,2,...,kmax,
under the free schedule. When all the elements of
S(k) are integers and described by affine forms, then
any well-known technique to generate code
scanning elements of S(k) can be applied. Finally,
we expose independent iterations, that is, those that
do not belong to any dependence and generate code
enumerating these iterations. According to the free
schedule, they are to be executed at time 0.

Algorithm. Finding the free schedule for the
loop with a single dependence relation

Input: dependence relation R represented in the
normalized form.

Output: Rk; the number of times under the free
schedule, kmax; set of operations to be executed at
time k, S(k), k=1,2,..., kmax; code representing the
free schedule provided that all the elements of set
S(k) are integers and represented by affine
constraints.
1) Find ultimate dependence sources (operations to
be executed at time 0), UDS, as
UDS = domain R – range R.
2) Taking into account set UDS, form appropriate
recurrence equations in such a manner as described
in Section 3.
3) Resolve all the equations formed at step 2 and
build Rk(UDS) as described in Section 3.
4) Find the upper bound of k, kmax, on the basis of
constraints imposed on input and output variables of
Rk and the upper bounds of the loop indices by
means of constructing and resolving appropriate
inequalities and constraints honoring the fact that
the operations to be executed at time k must be

lexicographically greater than those executed at time
k-1 (see Section 3).
5) Form set S(k) as
S(k)= { range Rk (UDS): constraint(elements of
S(k) � Integers)}.
6) When the elements of set S(k) are integers and
represented by only affine constraints (do not
include non-linear expressions), generate code
scanning operations of set S(k) applying any well-
known technique, for example [1,3,4,19].
7) Find a set, IND, representing independent
operations, that is, ones that are no source or
destination of any dependence as follows
IND= LD – (domain R range R)
where LD is a set representing the loop domain.
8) Generate code scanning iterations of set IND
applying any well-known technique, for example
[1,3,4,19].

It is worth to note that in the general case, set
S(k) yielded by the algorithm above, can comprise
elements that are not integers and/or are represented
not only by affine constraints but also by non-linear
expressions. For example, consider the following
loop
Example 1
for i=1 to 1000 do
for j=1 to 1000 do

a(2*j+3,i+1)=a(2*i+j+1,i+j+3)
endfor
endfor.

Petit finds the following dependence relation for
this loop
R={[-x1+2x2+4,2x1-2x2-6]->[x1,x2]:
1<=-x1+2x2+4<=1000 && 1<=2x1-2x2-6<=1000
&& 1<=x1<=1000 && 1<=x2<=1000}.

Ultimate dependence sources are contained in the
following set
UDS = {[t1,t2]: Exists(alpha: 2alpha=t2 &&
2t2+4<=t1<=-t2+997 && 2<=t2) OR Exists(alpha:
2alpha=t2 && 1<=t1<=-t2+997 && t1<=t2+3 &&
2<=t2)}.

The solution to an appropriate system of
recurrence equations yielded with Mathematica is as
follows
x1 � k � � 1

4 � 17
�� � 4 �� � 1

4 � 3 � � 17 � � k � � 14 � 3 � � 17 � � k �� t1 �
21� 2k � � 3 � � 17 � 1 � k � � 3 � � 17 � 1 � k ��� 2 � t1 � t2 �� ,

x2 � k �!� 1

17
4 � 1� k �"� 1723� 2k � 34 � 3 � � 17 � k �

14 � 17 � 3 � � 17 � k � 34 � 3 � � 17 � k � 14 � 17 � 3 � � 17 � k �� � 34 � 6 � 17 � � 3 � � 17 � k � 2 � 3 � � 17 � k � 17 � 3 � 17 �#�
t1 �� � 17 � 7 � 17 � � 3 � � 17 � k � � 3 � � 17 � k � 17 � 7 � 17 � � t2 �

For times 0,1,2, we yield the following sets.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp369-376)

The elements to be executed at time 0 are
comprised in the set S(0) = []{ }21,tt .

The elements to be executed at time 1 are
represented with the set

S(1)= � ��
�� � ���	
� −+++ 1

2

1
,2 2121 tttt .

The elements to be executed at time 2 are
contained in the set

S(2)= � �
�� � ������ ++++

2

1

4

5

2

3
,3

2

3
2 2121 tttt .

Elements of set S(0) are integers (they are
represented with ultimate dependence sources).
Since dependence ultimate sources are all even
numbers, elements of S(1) are also integer numbers.
But there are both integer and non-integer numbers
in S(2), for example when t1=1 and t2=2 (an element
of the ultimate dependence sources set), the
correspondent element is [8, 4.5], which does not
belong to the loop domain. For t1=1 and t2=4, the
correspondent element is [11, 7], which describes
the operation in the loop domain. Hence, there is the
need for developing techniques permitting us to
generate code when set S(k) can comprise elements
that are not integers and/or are represented not only
with affine constraints but also with non-linear
expressions.

5 Examples
In this section, we attach two examples illustrating
applying the approach presented in the previous
section. For the loop below
Example 2
for i=1 to n do
for j=1 to n do

a(i,j)=a(i,2*j)
endfor
endfor
Petit finds the dependence relation
R:= {[i,j] -> [i,2j]: 1<=i<=n && 1<=2j<=n}
which does not require the normalization. The loop
domain is defined as follows
LD:={[i,j]:1<=i,j<=n}.

Independent operations are represented with the
following set
IND:= LD – (domain(R) union range(R)) = {[i,j]:
Exists(alpha: 2alpha=1+j && i,j<=n<=2j-1 &&
1<=i)}.

Ultimate dependence sources are the result of the
following calculation
UDS:= domain(R) – range(R) = {[t1,t2]:
Exists(alpha: 2alpha=1+t2 && 1<=t1<=n && 1<=t2
&& 2t2<=n)}.

The system of recurrence equations to find
relation Rk (written using the Mathematica syntax) is
of the form
RSolve[{x1[k+1]==x1[k],x2[k+1]==2x2[k],
x1[0]==t1,x2[0]==t2}, {x1[k],x2[k]},k] .

The solutions to this system are
x1[k] � t1,
x2[k] � t2*2k.

They both are represented with positive integers,
and the upper bound of k can be obtained from the
inequality
t2*2k � n,
that yields

()2
2

Log

t

n
Log

k

���
�����

≤ ,

and kmax is

()
()
()

 !
 "#"=

!

""
""
"
#

" $$
%
&''()

=
22

max 2
max

2 Log

nLog

Log

t

n
Log

k
t

.

Relation Rk may be written as follows
Rk:= { [t1,t2]->[t1,t2*2k]: Exists(alpha: 2alpha=1+t2
&& 1<=t1<=n && 1<=t2 && 2t2<=n) &&
t2*2^(k)<=n} ,
and set S(k) is of the form
S(k) := range Rk = { [t1,t2*2k]: Exists(alpha:
2alpha=1+t2 && 1<=t1<=n && 1<=t2 && 2t2<=n)
&& t2*2^(k)<=n} .

The elements of set S(k) can be scanned by the
code
for (k=1; k<=trunc(log(n)/log(2))+1; k++) {
parfor(t1=1; t1<= n; t1++) {
parfor(t2=2*intDiv(intDiv(n+1+1,2),2)-1; t2<=n;
t2 += 2) {
if(t2*2^(k)<=n) {

a(t1,t2*2^(k))=a(t1,2t2*2^(k));
}
}
}
} .

This loop was built manually because of
limitations of existing tools.

Independent operations and ultimate dependence
sources can be enumerated with the loop

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp369-376)

parfor(t1 = 1; t1<=n; t1++) {
parfor(t2=1; t2<=intDiv(n,2); t2+=2) {

a(t1,t2)=a(t1,2t2);
}
parfor(t2=2*intDiv(intDiv(n+1+1,2),2)-1; t2<=n;
t2+=2) {

a(t1,t2)=a(t1,2t2);
}
} .

This loop was generated with the codegen
function of the Omega library.

Figure 1 presents the loop domain and
dependences for the loop of Example 2 when n=10.

0
1
2
3
4
5
6
7
8
9

10
11

0 1 2 3 4 5 6 7 8 9 10 11

Indep. Iterations
Ult. Dep. Sources

Time 1
Time 2
Time 3

Fig. 1. Loop domain with dependences for the loop
of Example 2 for n=10.
For the loop below
Example 3
for i=1 to m do
for j=1 to m do

a(i,j)=a(i,2*n-j)
endfor
endfor
Petit finds the dependence relation
R := { [i,j] -> [i,2n-j]: 1<=i<=m && 1<=j<n &&
2n<=m+j}
which does not require the normalization.

The loop domain is defined as follows
LD := { [i,j]: 1<=i,j<=m} .

Independent operations are calculated as follows
IND := LD – (domain(R) union range(R)) = { [i,j]:
2n,1<=j<=m && 1<=i<=m} union { [i,j]: 1<=i<=m
&& 1<=j<=m && m+j<2n} union { [i,n]: 1<=n<=m
&& 1<=i<=m} .

Ultimate dependence sources are contained in the
following set
UDS := domain(R) – range(R) = { [t1,t2]: 1<=t1<=m
&& 1<=t2<n && 2n<=m+t2} .

The system of recurrence equations to find
relation Rk (written using the Mathematica syntax) is
of the form
RSolve[{ x1[k+1]==x1[k],x2[k+1]==2n-x2[k],
x1[0]==t1,x2[0]==t2} , { x1[k],x2[k]} ,k].

The solutions to this system are
x1[k] � t1,
x2[k] � (-1)k (n(-1)k-n+t2).

x2[k] can be simplified to the form
x2[k] � t2, when k is an even number
x2[k] � 2n-t2, when k is an odd number.

Because x2[k] is periodic, kmax=1. This means
that there are only two times under the free
schedule: time 0 to execute independent iterations
and ultimate dependence sources and time 1 to
execute dependence destinations.

Relation Rk can be written as follows
Rk:={ [t1,t2]->[t1,t2]: k=0 && 1<=t1<=m &&
1<=t2<n && 2n<=m+t2} union { [t1,t2]->[t1,2n-t2]:
k=1 && 1<=t1<=m && 1<=t2<n && 2n<=m+t2} .
and set S(k) is of the form
S(k):= range Rk = { [t1,t2]: k=0 && 1<=t1<=m &&
1<=t2<n && 2n<=m+t2} union { [t1,t2]: k=1 &&
n<t2<=2n-1,m && 1<=t1<=m} .

The elements of set S(k) can be scanned by the
code
if(k ==0 && n>=2 && n<=m-1) {
parfor(t1=1; t1<=m; t1++) {
parfor(t2=max(2*n-m,1); t2 <= n-1; t2++) {

a(t1,t2)=a(t1,2*n-t2);
}
}
}
if(k == 1 && n >= 2 && n <= m-1) {
parfor(t1 = 1; t1 <= m; t1++) {
parfor(t2 = n+1; t2 <= min(m,2*n-1); t2++) {

a(t1,t2)=a(t1,2*n-t2);
}
}
} .

Independent operations and ultimate dependence
sources can be enumerated with the loop
parfor(t1=1; t1<=m; t1++) {
parfor(t2=1; t2<=min(-m+2*n-1,m); t2++) {

a(t1,t2)=a(t1,2*n-t2);
}
parfor (t2=max(-m+2*n,1); t2<=n-1; t2++) {

a(t1,t2)=a(t1,2*n-t2)
}
if (m>=n && n>=1) {

a(t1,t2)=a(t1,n);
}
parfor (t2 = max(2*n,1); t2 <= m; t2++) {

a(t1,t2)=a(t1,2*n-t2);
}
} .

The both above codes were genererated with the
codegen function of the Omega library.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp369-376)

Figure 2 presents the loop domain and
dependences for the loop of Example 3 when m=10
and n=5.

0
1
2
3
4
5
6
7
8
9

10
11

0 1 2 3 4 5 6 7 8 9 10 11

Indep. Iterations
Ult. Dep. Sources
Time 1
1

Fig. 2. Loop domain for the loop of Example 3
when 2n=m=10.

6 Related work
Concerning the loop parallelization, the following
facts are known.

If the level of dependences is the only available
representation, then Allen and Kennedy's algorithm
(loop distribution) is known to be optimal [6] with
respect to its input, that is, it finds maximal
parallelism that is contained in the representation of
the dependences it handles.

For the case of a single statement with uniform
dependences, linear scheduling (optimized
Lamport's hyperplane method) is asymptotically
optimal [8].

For the case of several statements with uniform
dependences, the Lamport's hyperplane method has
been extended in work [14] where it is shown that
a linear schedule plus shifts leads to finding
maximum parallelism.

For the case of polyhedral approximations of
dependences (including direction vectors), Darte
and Vivien's algorithm is optimal [7].

For affine dependences, the most powerful
algorithm is Feautrier’s one based on multi-
dimensional affine schedules [12]. But as mentioned
by Feautrier, it is not optimal for all codes with
affine dependences. However, among all possible
affine schedules, it is optimal [20].

Since the approach presented in [16,17] (affine
time partition mappings) is based on affine
schedules, it does not allow us to detect maximal
loop parallelism for affine dependences in the
general case.

The technique presented in this paper is to
contribute to understanding the problem of free
schedules for loops with affine dependences and it is
optimal for both non-parameterized and

parameterized loops whose dependences can be
represented with a single dependence relation.

7 Conclusion
In this paper, we have presented the algorithm that
permit us to build free schedules for both non-
parameterized and parameterized loops whose
dependences are represented with a single
dependence relation. If a free schedule is
represented by affine forms, code can be generated
easily by means of well-known techniques and
public available tools, for example, the Omega
project software, available on the Internet site
ftp://ftp.cs.umd.edu/pub/omega or the Polylib code
generator, available on the Internet site
http://www.irisa.fr/cosi/ALPHA/welcome.html.
When a free schedule is represented by non-linear
forms, techniques should be developed to generate
code enumerating iterations to be executed at
correspondent times under the free schedule.

We have focused on the free schedule as a very
important approach for understanding the
parallelism contained in a loop, not necessarily for
its run-time execution.

The task for further research is to develop
techniques permitting us to build free schedules for
loops whose dependences are represented by
multiply dependence relations. The challenge here is
to be able to compute a schedule in a symbolic way
and to generate the corresponding code with
a complexity that depends on the loop structure but
not on the volume of the computation it describes.
This challenge deserves more attention from the
research community.

References:
[1] C. Ancourt and F. Irigoin, Scanning polyhedra

with DO loops, In Proceedings of the Third
ACM/SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 1991, pp.
39-50.

[2] D. Bacon, S. Graham, and O. Sharp, Compiler
transformations for high-performance
computing, Computing Surveys, Vol. 26(4),
1994, pp. 345-420.

[3] C. Bastoul, Code Generation in the Polyhedral
Model Is Easier Than You Think, In
Proceedings of the PACT'13 IEEE
International Conference on Parallel
Architecture and Compilation Techniques,
Juan-les-Pins, 7-16, 2004.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp369-376)

[4] P. Boulet, A. Darte, G.-A. Silber, and
F. Vivien, Loop paralellelization algorithms:
from parallelism extraction to code generation.
Technical Report 97-17, LIP, ENS-Lyon,
France, June , 1997.

[5] A. Darte and Y. Robert, Constructive methods
for scheduling uniform loop nests. IEEE
Transactions on Parallel and Distributed
Systems, Vol. 5, No. 8, 1994, pp. 814-822.

[6] A. Darte, F. Vivien, On the optimality of Allen
and Kennedy's algorithm for parallelism
extraction in nested loops, Journal of Parallel
Algorithms and Applications, Special issue on
"Optimizing Compilers for Parallel
Languages", Vol. 12, 1997, pp. 83-112.

[7] A. Darte, F. Vivien, Optimal Fine and Medium
Grain Parallelism Detection in Polyhedral
Reduced Dependence Graphs, International
Journal of Parallel Programming, Vol. 25(6),
1997, pp. 447-496

[8] A. Darte, L. Khachiyan, Y. Robert, Linear
Scheduling is Nearly Optimal, Parallel
Processing Letters, Vol. 1(2), 1991, pp. 73-81.

[9] A. Darte, Y. Robert, F. Vivien, Scheduling and
Automatic Parallelization, Birkhäuser Boston,
2000.

[10] P. Feautrier, Dataflow analysis for array and
scalar references. International Journal of
Parallel Programming, 20(1), 1991, pp. 23-53.

[11] P. Feautrier, Some efficient solutions to the
affine scheduling problem, Part I, One-
dimensional time. International Journal of
Parallel Programming, Vol. 21(5), 1992, pp.
313-348.

[12] P. Feautrier, Some efficient solutions to the
affine scheduling problem, Part II,
multidimensional time. International Journal of
Parallel Programming, Vol. 21(6), 1992.

[13] P. Feautrier, M. Griebl, C. Lengauer, Index Set
Splitting, International Journal of Parallel
Programming, Vol. 28(6), 2000, pp. 607-631.

[14] P. Le Gouëslier d'Argence, Affine Scheduling
on Bounded Convex Polyhedric Domains is
Asymptotically Optimal, TCS 196(1-2), 1998,
pp. 395-415.

[15] W. Kelly, V. Maslov, W. Pugh, E. Rosser,
T. Shpeisman, D. Wonnacott, The Omega
Library Interface Guide, Technical Report CS-
TR-3445, Dept. of Computer Science,
University of Maryland, College Park, March
1995.

[16] W. Lim, G.I. Cheong, M.S. Lam, An affine
partitioning algorithm to maximize parallelism
and minimize communication, In Proceedings
of the 13th ACM SIGARCH International
Conference on Supercomputing, Rhodes,
Greece, 1999.

[17] W. Lim, M.S. Lam, Maximizing parallelism
and minimizing synchronization with affine
transforms, In Conference Record of the 24th
ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 1997.

[18] W. Pugh, D. Wonnacott, An Exact Method for
Analysis of Value-based Array Data
Dependences, Workshop on Languages and
Compilers for Parallel Computing, 1993.

[19] F. Quilleré, S. Rajopadhye, D. Wilde,
Generation of Efficient Nested Loops from
Polyhedra, International Journal of Parallel
Programming, 28(5), 2000.

[20] F. Vivien, On the optimality of Feautrier's
scheduling algorithm, In Proceedings of the
EUROPAR'2002, 2002.

[21] http://www.maplesoft.com
[22] http://www.wolfram.com
[23] http://maxima.sourceforge.net
[24] http://www.mupad.com
[25] R. Bagnara et al., The automatic solution of

recurrence relations. I. Linear recurrences of
finite order with constant coefficients,
Quaderno 334, Dipartimento di Matematica,
Università di Parma, Italy, 2003

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp369-376)

