
From Business World to Software World: Deriving Class
Diagrams from Business Process Models

WARARAT RUNGWORAWUT1 AND TWITTIE SENIVONGSE2

Department of Computer Engineering, Chulalongkorn University
254 Phyathai Road, Pathumwan, Bangkok 10330 THAILAND

Abstract: - Business world and software world coexist and interface when there is a demand to implement an
information system in business environment. People in business world have more knowledge in business
processes and logics of the information system while people in software world have more expertise in building
software artifacts. This paper proposes a guideline to help software designers to build a software model, i.e. a
UML class diagram in this case, from a business process model, i.e. a BPMN diagram which is given by a
business analyst. The guideline borrows the idea of object-oriented domain analysis to identify UML classes
from a business process model and enhance by knowledge about the application domain such as domain-
specific patterns and other kinds of semantics. At this stage, software designers can follow this guideline to
manually create class diagrams, but it is expected that the guideline can be automated in parts and will
complement the concept of OMG’s MDA by supporting the building of its PIM.

Key-Words: - Business process model, Software Model, Business Process Modeling Notation, UML Class
Diagram, Domain Analysis, Platform-Independent Model, Model Driven Architecture

1 Introduction
OMG’s Model Driven Architecture (MDA) is the
base architecture for software development with a
number of modeling standards, which will be used
to create software models, and turns the models into
engineering artifacts [1]. Three steps are at the core
of MDA. First, Platform-Independent Model (PIM)
is created to model the business logic of the
software. It is at the high level of abstraction and is
independent of any implementation technology.
Second, PIM is automatically or semi-automatically
mapped into one or more Platform-Specific Model
(PSM) which still models the business logics but
with more details on a specific technology platform
on which the software system will be implemented
(such as CORBA, EJB, Web Services platforms,
database models, and others). Finally, PSM is
mapped, again automatically or semi-automatically,
into implementation code of the target platform.
MDA separates technology-independent concepts
from technology-dependent concepts, and supports
reuse of high level models for their implementation
onto different platforms.
 Since MDA starts from PIM which is a software
model, the motivation of our work is how to
complement MDA as the world of software still has
to interface with the world of business. On top of
PIM, there are requirements from users in the
business world, the information from which should
be analyzed into PIM. We can start the

development process with some formal
‘requirement’ model from the business side, i.e. a
business process model, before deriving into
software models. Business process models describe
flows of processes or activities within the boundary
of the business functions [2] and are created by
business analysts who have good understanding of
the business requirements, but may not have
knowledge about how to realize the business
activities in terms of software modules. On the
other hand, software models are constructed by
software designers who know more about the
techniques to model the composition and
cooperation of software modules that collectively
implement the business functions. As business
process models and software models present
different views of the business applications [2],
bridging the gap between the two views can help
software designers to derive PIM. However, it is
generally difficult to derive a software model from a
business process model since business process
models do not represent directly the building blocks
of the software to be designed and implemented [3].
 Despite the difficulty, close consideration reveals
that a process flow generally refers to concepts that
can be building blocks for the corresponding
software model. This paper reports an initial
attempt to stretch MDA up to the business world by
bridging business process models (BPMs) and PIMs
(i.e. BPM2PIM). Here we propose an initial

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp233-238)

guideline to help software designers to construct a
software model (i.e. a UML class diagram [4]) from
a business process model (i.e. a BPMN diagram [5]).
The guideline borrows the idea of object-oriented
domain analysis to identify UML classes from
BPMN processes and adding details to the classes
by semantic information of the application domain
such as domain-specific software patterns and other
knowledge about the application domain.
 An overview of BPM2PIM approach is in
Section 2. Section 3 explains the guideline under
BPM2PIM to derive class diagrams from business
process models in details. Discussion about the use
of this guideline is in Section 4 and about related
work in Section 5. Section 6 gives a conclusion and
future work.

2 BPM2PIM
The BPM2PIM approach makes MDA reachable
from the business world by stretching vertically the
top of MDA to meet business process models (Fig.
1). Business process models become part of model-
driven software development by application of a
BPM2PIM guideline. This guideline would describe
the process to derive a PIM software model from a
business process. In this paper, we restrict the
guideline only to a mapping between a business
process, which is modeled by a process modeling
notation (e.g. BPMN), and a PIM, which is modeled
by a UML class diagram. The preliminary version
of the guideline is hence called the Business-
Process-Model-to-Class-Diagram (BPM2CD)
guideline.

Fig. 1 BPM2PIM approach with BPM2CD
guideline

 The BPM2CD guideline comprises three parts:
(1) Applying business process analysis (2) Applying
formal domain-specific semantics (3) Applying
additional semantics. Applying business process
analysis is the part that analyzes the business process
model in order to identify building block concepts of
the software to be constructed. This is an analogy to
domain analysis for object-oriented software design
which derives a conceptual model of the software
from a use case specification [6]. The resulting
conceptual model of the software is augmented by
domain-specific semantics either existing ones (such
as software patterns) and other add-on semantics.
The end result is a more detailed class diagram at
PIM level. Details of these three parts are in the
next section.

3 BPM2CD
The BPM2CD guideline describes the derivation
process for designing a class diagram from a
business process model. At this stage, software
designers can follow the guideline to manually
derive a PIM-level class diagram. Nevertheless,
more automation is targeted as discussed in Section
6.

3.1 Applying Business Process Analysis
It is assumed that a business analyst would describe
business requirements in terms of a business process
model which is expressed by some process modeling
language. A business process model describes, from
start to finish, the flow of processes, events, or
transactions within the business as well as the
associated logics to produce or complete something
of value to the business organization [2].

Fig. 2 Business process model
for purchase order

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp233-238)

 Fig. 2 shows a business process of a vendor
processing purchase orders of goods from its
customers. After receiving a purchase order,
checking is performed to see if there is enough
goods in stock to complete the purchase order. If so,
a sales order is opened, the tax is calculated, and the
sale is confirmed. But if not, the restock process is
performed to reorder goods from a supplier before
the purchase order is responded as an outstanding
order. The business process can in fact be modeled
by any business process modeling language, but
here it is represented by BPMN language [5].
 The business process model in a graphical
notation as above is seen as a requirement from the
business analyst. Therefore it is analogous to the
traditional requirement obtained from interviewing
users of the business organisation which may be
written in descriptive text or formally developed by
a system analyst in the form of a UML use case
specification.

Business
Analogy

Object-Oriented
Analysis & Design
(OOA&D)

Associated Document
to OOA&D

Business Processes Requirement Analysis Use Cases

Roles in
Organization Domain Analysis Conceptual Model

Responsibility/
Interaction

Responsibility
Assignment,
Interaction Design

Design Class Diagram,
Collaboration Diagram

(a) Analogy between business and OOA&D terms

(b) Domain analysis strategies applied to use case

(c) Domain analysis strategies applied to business process

Fig. 3 Use-case-to-conceptual-model strategies
and the analogous business-process-to-

conceptual-model strategies

 In [6], a comparison is given between terms in
the business world and those in the world of
software development (Fig. 3(a)). The comparison
clearly shows the correspondence between a
business process in a business process model and a
use case in a use case specification. There are also
established strategies for domain analysis, i.e. noun
phrase strategy and concept category strategy, which
will analyze the use case specification in order to
identify classes that model the software (i.e. to build
a conceptual model of the software) [6] (Fig. 3(b)).
In the noun phrase identification strategy, use case
descriptions will be examined in order to identify
important noun phrases that may become the object-
oriented classes of the software. This can be
enhanced by the concept category strategy which
uses the use case name to lookup a repository of
concepts (or keywords), namely the concept
category, within the application domain. The
concepts found will be identified as the classes of
the software. The BPM2CD guideline therefore
defines its business process analysis part by adopting
such use-case-to-conceptual-model strategies to
identify software classes from a business process
model (Fig. 3(c)).

3.1.1 Noun Phrase Identification Strategy
With the noun phrase identification strategy, a
software designer will examine the business process
model in order to identify important noun phrases
that would become classes at PIM level. Fig. 4
highlights the important noun phrases found in the
business process model of Fig. 2.

Fig. 4 Noun phrase identification

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp233-238)

3.1.2 Concept Category Strategy
Concept category is a repository that maintains
concepts or key vocabularies for application
domains. The concepts are listed by categories that
are generally important for any domains. It is
assumed that domain experts define this knowledge
base for a common use by software designers. Each
process name in the business process model (such as
check Purchase Order in Fig. 3 (c)) is used to
lookup in the concept category in order to find
concepts that relate to the process name. The result
is a number of concepts, some of which may already
be identified by the noun phrase identification
strategy, and some of which may not be present in
the business process model but they relate to the
business domain. Fig. 5 gives an example of the
concepts, related to the processing of a purchase
order, which are identified by looking up the concept
category.

Fig. 5 Concepts in concept category

3.1.3 Conceptual Model
The software designer examines the concepts
resulting from applying the two strategies and
decides on the concepts that would constitute the
conceptual model of the class diagram at PIM level.
Fig. 6 (a) shows the conceptual model derived by the
noun phrase identification strategy. This can be
added by the concepts from the concept category
strategy in Fig. 6 (b).

(a) From noun phrase identification strategy

(b) From concept category strategy

Fig. 6 Conceptual model

3.2 Applying Formal Domain-Specific
Semantics

The conceptual model roughly forms the structure of
PIM. Details such as attributes, methods, and
relationships between classes can be added by
studying existing formal domain-specific semantics.
Such semantics can be in several forms, e.g.
descriptive text, ontology, or the formal model such
as software patterns.
 Software patterns provide a solution for
understanding and modeling a specific part for a
business software system. Patterns are always at a
higher level of abstraction than normal analysis
classes. There are several kinds of patterns that can
be applied to modeling software. In this paper, the
focus is on archetype patterns which describe
possible PIMs that can be adopted by specific
business domains [7]. We can adopt parts of the
order archetype pattern (Fig. 7 (a)) and the product
archetype pattern (Fig. 7 (b)), cataloged in [7], to
our purchase order example. The two archetype
patterns can refine the conceptual model with details
such as attributes, operations, composition,
aggregation, and inheritance of the classes. The
result of the merging between the archetype patterns
and the conceptual model is depicted in Fig. 8.

3.3 Applying Additional Semantics
Additional semantics, unlike formal semantics in
Section 3.2, refers to other knowledge about the
business domain which may not be cataloged
formally. For our example, suppose that there is no
archetype pattern for the detail of RestockPolicy.
The software designer can add information about the
approaches to reordering of goods and formulate
into a class diagram as in Fig. 9.
 RestockOnHand refers to reordering of goods
when insufficient stock is on hand or the inventory
level has reached a reorder point. RestockEconomic

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp233-238)

refers to reordering of goods based on the Economic
Quantity Order model which considers the quantity
to order that minimizes the total variable costs
required to order and hold inventory [8]. In both
approaches, the quantity to order can be optimal
quantity. The final PIM resulting from the
BPM2CD guideline can be obtained by attaching
Fig. 9 to Fig. 8 on the RestockPolicy class.

(a) Order archetype pattern

(b) Product archetype pattern

Fig. 7 Part of order and product
archetype patterns

Fig. 8 Applying archetype

patterns to conceptual model

Fig. 9 Additional semantics

4 Related Work
Mapping between business process models and
UML has been targeted by a number of researches,
and most of the time, it is manual or semi-automatic.
The obvious case is the straightforward mapping
between UML activity diagrams and process flow
languages such as in [9], [10]. The less obvious
case is the mapping to other UML diagrams. In
[11], dependencies between the Event Driven
Process Chain (EPC) model and several kinds of
UML diagrams, including class diagrams, have been
established. Their approach identifies UML classes
based on the information from the EPC model only
and identifies an event in the EPC model as a UML

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp233-238)

class. Our approach, on the other hand, considers
both the information in the business process model
and other external semantic information, and also
adopts the object-oriented ‘lexical analysis’
approach to identify classes. In [12], the work
focuses on the use of patterns for business processes
and also on deriving UML classes from the process
patterns. Similar to our approach, some semantic
information is added to complete the resulting class
diagrams but no clear guideline has been given on
how to identify the classes and where the additional
semantics come from. Also their approach adopt
UML profile for Web application architecture to
organize the resulting class diagrams so their class
diagrams would exhibit platform information, i.e.
‘PSMer’ than the class diagrams from our approach.
In [13], an analysis on business operations results in
solution artifacts (e.g. business objects, process
flows, user interfaces, application connectors) that
altogether will form a architectural model of the
solution to the business problems. Their solution
model is a PIM, but it is more of an architectural
model, not a software model as in our approach.

5 Conclusion
The paper has presented the BPM2CD guideline that
attempts to bridge a business process model and a
PIM-level class diagram. The techniques to apply a
business process analysis and domain-specific
semantics respectively to the business process model
and the conceptual model of the software have been
discussed.
 As mentioned before, the guideline can be used
manually by software designers. Nevertheless, more
degree of automation is foreseen to make the
guideline goes along better with the philosophy of
automatic or semi-automatic mapping between
models in MDA. Automated analysis of noun
phrases and verbs together with the use of ontology
for the concept category is possible. The resulting
candidate concepts can be recommended to software
designers for further class selection through a
supporting design tool. Moreover, formulation of
domain-specific semantics into class diagrams can
be automated such as a formulation from ontology-
based domain semantics. Also, the derivation
process could be enhanced for MDA by a formal
mapping between the metamodel of the business
process modeling language and UML metamodel.
 A closer look at the application of domain-
specific semantics is also expected. There should be
a classification of such semantics, i.e. what kinds of
formal and additional semantics can be applied in
the guideline.

References:

[1] MDA Resources. Object Management Group.

Available: www.omg.org/mda/index.htm
[2] H. Smith, BPM and MDA: Competitors,

Alternatives or Complementary, WhitePaper,
Available: www.BPtrends.com , July 2003.

[3] A. Kleppe, J. Warmer and W. Bast, MDA
Explained: The Model Driven Architecture
Practice and Promise, Addition-Wesley, 2003.

[4] Object Management Group (OMG), UML
Specification version 2.0, October 2, 2004
Available: www.uml.org

[5] Business Process Management Initiative
(BPMI), Business Process Modeling Notation
(BPMN) version 1.0, May 3, 2004. Available:
www.bpmi.org

[6] C. Larman, Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and
Design, Prentice Hall, Inc., 1997.

[7] J. Arlow and I. Neustadt, Enterprise Pattern
and MDA: Building Better Software with
Archetype Patterns and UML, Pearson
Education, Inc., 2003.

[8] R. H. Wison, A Scientific Routine for Stock
Control, Harvard Business Review, vol. 13,
1934, pp. 116-128.

[9] P. Jiang, Q. Mair, J. Newman, Using UML to
Design Distributed Collaborative Workflows:
from UML to XPDL, Proceedings of the 12th
IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative
Enterprises (WETICE’03), 2003.

[10] S. A. White, Process Modeling Notations and
Workflow Patterns, White Paper, Available:
www.BPtrends.com, March 2004.

[11] P. Loos and T. Allweyer, Object-Orientation in
Business Process Modeling through Applying
Event Driven Process Chains (EPC) in UML,
Proceedings of 2nd International Enterprise
Distributed Object Computing Workshop
(EDOC’98), 1998, pp.102-112.

[12] O. H. Barros, Business Information System
Design Base on Process Pattern and
Frameworks, Industrial Engineering
Department, University of Chile, September
2004. Available: www.BPtrends.com

[13] Y. Huang, S. Kumaran and K. Bhaskaran,
Platform-Independent Model Templates for
Business Process Integration and Management
Solutions, Proceedings of IEEE International
Conference on Information Reuse and
Integration (IRI’03), 2003, pp.617-622.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp233-238)

