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Abstract: - Mathematical optimization is the formal title given to the branch of computational science that seeks to 
answer the question „What is best?“ for problems in which the quality of any answer can be expressed as a numerical 
value. Such problems arise in all areas of mathematics, the physical, chemical and biological sciences, engineering, 
architecture, economics, and management, and the range of techniques available to solve them is nearly as wide. Such 
problems arise also in the information sources of local authorities. The modernizing Government agenda is 
accelerating, with the emphasis on the local delivery of improved public service. Thus, to get a quality answer to a 
strategic enquiry, the special methods are necessary; when a simulated annealing method seems to be suitable. 
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1   Introduction 
Regional data sources are supposed to serve for 
analyzing and answering strategic regional enquiries, so 
that this informational environment would serve for an 
effective area administration and also as an information 
resource for other institutions and for citizens. From a 
data analysis perspective, the local authority approach is 
the process of gathering meaningful information about 
the subject matter being researched that will help the 
individual(s) analyzing the information draw conclusions 
or make assumptions. From an information systems 
perspective, the local authority approach is the system 
that provides users with online analytical processing or 
data analysis to answer strategic questions and identify 
significant trends or patterns in the information that is 
being examined.  
 
 
2   Regional Data Sources 
Local authorities exist in a very complex organizational 
environment, which has been subjected to an ever 
increasing pace of changes. This situation has generated 
a huge impact on the local government's reaction 
towards two major elements in its administration – 
decision making and technology approaching. Methods 
for gathering high-quality and meaningful information 
are methods of mathematical optimization. 
 
 
2.1 Requirement of Strategic Enquiries 
Information systems within public administration are 
most frequently realized by database software. Above 

all, these are so-called transaction database systems, 
which are designed for work with operational data of the 
organization. Transaction systems work with actual 
operational data, they are, however, less suitable for 
analyses in time relations, more complex enquiries etc. 
Another approach to data sources is brought in by data 
warehouse technologies, when data are drawn from 
heterogeneous sources of transaction applications and 
are stored for a certain period of time, so that they can be 
used for comparisons, analyses and predictions [5]. 
     Regional data warehouse can be realized on different 
levels of elaboration and efficiency. The simplest 
architecture is represented by the application of enquiry 
tools directly on operational data; the second is the 
model of local data marts, which already involves 
separation of enquiry mechanism from operational data 
and creation of subject-oriented enquiries; the third 
possible solution is represented by independent data 
marts, extended by the process of extraction and 
transformation of heterogeneous data; and finally, the 
most ideal, complicated and financially demanding is the 
architecture of enterprise data warehouse with dependent 
data marts. 
     The selection of a suitable variant of data warehouse 
architecture must reflect current needs and possibilities 
of regional institutions. Currently local authorities have 
minimal experience about data warehousing and data 
mining processes. Data warehouse building is 
complicated, and financially and organizationally 
demanding. The solution can be to begin with easier 
variants - either the application of enquiry tools directly 
on operational data (see Figure 1) or the model of local 
data marts, which already involves separation of enquiry 
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mechanism from operational data and creation of 
subject-oriented enquiries (see Figure 2). 
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Fig. 1: Application of analytical tools directly on 

operational data 
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Fig. 2: Separation of enquiry mechanism from 

operational data 
 
 
2.2 Optimization Methods 
Mathematical optimization is the formal title given to the 
branch of computational science that seeks to answer the 
question „What is best?“ for problems in which the 
quality of any answer can be expressed as a numerical 
value. Such problems arise in all areas of mathematics, 
the physical, chemical and biological sciences, 
engineering, architecture, economics, and management, 
and the range of techniques available to solve them is 
nearly as wide.  
     The goal of an optimization problem can be 
formulated as follows: find the combination of 
parameters (independent variables) which optimize a 
given quantity, possibly subject to some restrictions on 
the allowed parameter ranges. The quantity to be 
optimized (maximized or minimized) is termed the 
objective function; the parameters which may be 
changed in the quest for the optimum are called control 
or decision variables; the restrictions on allowed 
parameter values are known as constraints. A general 
constrained nonlinear programming problem (NLP) 
takes the following form 
 

minimize  f(x) 
subject to  h(x) = 0  x = (x1,. . . , xn)         (1) 
g(x) ≤ 0 
 
where f(x) is an objective function that we want to 
minimize. h(x) = [h1(x), . . . . , hm(x)]T is a set of m 
equality constraints, and g(x) = [g1(x), ....., gk(x)]T is a 
set of k inequality constraints. All f(x), h(x), and g(x) are 
either linear or nonlinear, convex or nonconvex, 
continuous or discontinuous, analytic (i.e., in closed-
form) or procedural (i.e., evaluated by some procedure 
or simulation). Variable space X is composed of all 
possible combinations of variables xi, i = 1, 2, . . . . , n. 
In contrast to many existing NLP theory and methods, 
our formulation has no requirements on convexity, 
differentiability, and continuity of the objective and 
constraint functions. 
     Without loss of generality, we discuss our results 
with respect to minimization problem (1), knowing that 
maximization problems can always be transformed into 
minimization problems by negating their objective 
functions. Therefore, we use optimization and 
minimization interchangeably in this thesis. Two special 
cases are involved: a) an unconstrained NLP if there is 
no constraint and b) a constraint-satisfaction[7] problem 
if there is no objective function. 
 
     With respect to minimization problem (1), we make 
the following assumptions. 
• Objective function f(x) is lower bounded, but 

constraints h(x) and g(x) can be either bounded or 
unbounded. 

• All variables xi (i = 1, 2, . . . . , n) are bounded. 
• All functions f(x), h(x), and g(x) can be either linear 

or nonlinear, convex or nonconvex, continuous or 
discontinuous, differentiable or non-differentiable. 

 
     In some applications, variables are restricted to take 
prespecifed values. According to the values that variable 
x takes, we have three classes of constrained NLPs: 
• Discrete problems: Variable x is a vector of discrete 

variables, where component xi takes discrete and 
finite values, such as integers. Although variable 
space X at this time is finite (because variable x is 
bounded), it is usually very huge, making it 
impossible to enumerate every combination of x. 

• Continuous problems: Variable x is a vector of 
continuous variables, xi  R, and x ∈ ∈  Rn. Variable 
space X is infinite. 

• Mixed-integer problems: Some variables take 
discrete values while others take continuous values. 
Let Id be the set of indices of discrete variables, and 
Ic be those of continuous variables.  
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     Active research in the past four decades has produced 
a variety of methods for solving general constrained 
nonlinear programming problems. They fall into one of 
two general formulations, direct solution or 
transformation-based. The former aims to directly solve 
constrained NLP (1) by searching its feasible regions, 
while the latter first transforms (1) into another form 
before solving it. Transformation-based formulations can 
be further divided into penalty-based and 
Lagrangian-based. For each formulation, strategies that 
can be applied are classified as local search, global 
search, and global optimization. 
     Local search. Local search methods use local 
information, such as gradients and Hessian matrices, to 
generate iterative points and attempt to locate 
constrained local minima (CLM) quickly. Local search 
methods may not guarantee to find CLM, and their 
solution quality is heavily dependent on starting points. 
These CLM are constrained global minima (CGM) [3] 
only if (1) is convex, namely, the objective function f(x) 
is convex, every inequality constraint gi(x) is convex, 
and every equality constraint hi(x) is linear. 
     Global search. Global search methods employ local 
search methods to find CLM and, as they get stuck at 
local minima, utilize some mechanisms, such as 
multistart, to escape from these local minima. Hence, 
one can seek as many local minima as possible and pick 
the best one as the result. These mechanisms can be 
either deterministic or probabilistic and do not guarantee 
to find CGM. 
     Global optimization. Global optimization methods 
are methods that are able to find CGM of constrained 
NLPs. They can either hit a CGM during their search or 
converge to a CGM when they stop.  
In this paper, we survey one of the existing methods for 
solving each class of discrete, continuous, and mixed-
integer constrained NLPs. It is simulated annealing (SA), 
that was developed for solving unconstrained NLPs. SA 
searches in variable space X and it (SA) does probalistic 
descents in variable x space with acceptance probalistic 
governed by a temperature. 
 
 
3   Strategic Data 
Regional data sources involve huge number of data, it 
means there is no problem in quantity of data. But a big 
problem is in the area of strategic question [6]; it means 
it is difficult to find optimal solution for particular 
regional strategic processes.  
     More mathematical methods make possible to search 
optimum in problem solution. One of them is method of 
Simulated Annealing that finds global optimum. 
 
 

3.1 Method of Simulated Annealing 
As its name implies, the SA exploits an analogy between 
the way in which a metal cools and freezes into a 
minimum energy crystalline structure (the annealing 
process) and the search for a minimum in a more general 
system. We briefly overview SA and its theory [1] for 
solving discrete unconstrained NLPs or combinatorial 
optimization problems. A general unconstrained NLP is 
defined as 
 
minimizei  f(i)  for  i ∈  S           (2) 
 
1. procedure SA 
2.  set starting point i = i0; 
3.  set starting temperature T = T0 and  
 cooling rate 0 < α < 1; 
4.  set NT (number of trials per temperature); 
5.  while stopping condition is not satisfied do 
6.   for k ← 1 to NT do 
7.    generate trial point i` from Si using q(i; i`); 
8.    accept i` with probability AT (i; i`) 
9.   end for 
10.   reduce temperature by T ← α x T; 
11.  end while 
12. end procedure 

Fig. 3: Simulated annealing (SA) algorithm. 
 
where f(i) is an objective function to be minimized, and 
S is the solution space denoting the finite set of all 
possible solutions. 
 
     A solution iopt is called a global minimum if it 
satisfies f(iopt) ≤ f(i), for all i ∈  S. Let Sopt be the set of all 
the global minima and fopt = f(iopt) be their objective 
value. Neighborhood Si of solution i is the set of discrete 
points j satisfying j ∈  Si ,↔ i ∈  Sj. 
     Figure 3 shows the procedure of SA for solving 
unconstrained problem (2). q(i; i`), the generation 
probability, is defined as q(i; i`) = 1/│Si│ for all i` ∈  Si, 
and AT (i; i`), the acceptance probability of accepting 
solution point i‘, is defined by: 

AT (i; i0) = exp
( ) ( )( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

+

T
ifif `

,          (3) 

where a+ = a if a > 0, and a+ = 0 otherwise. 
     Accordingly, SA works as follows. Given current 
solution i, SA first generates trial point i`. If f(i`) < f(i), i` 
is accepted as a starting point for the next iteration; 
otherwise, solution i` is accepted with probability 

 exp 
( ) ( )

⎟
⎠
⎞

⎜
⎝
⎛ −
−

T
ifif ;

.  

     The worse the i` is, the smaller is the probability that 
i` is accepted for the next iteration. The above procedure 
is repeated NT times until temperature T is reduced. 
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Theoretically, if T is reduced sufficiently slowly in 
logarithmic scale, then SA will converge asymptotically 
to an optimal solution iopt  S∈ opt [1]. In practice, a 
geometric cooling schedule, T ← αT, is generally 
utilized to have SA settle down at some solution i* in a 
finite amount of time. 
     SA can be modeled by an inhomogeneous Markov 
chain that consists of a sequence of homogeneous 
Markov chains of finite length, each at a specific 
temperature in a given temperature schedule. According 
to generation probability q(i; i`) and acceptance 
probability AT (i; i`), the one-step transition probability 
of the Markov chain is: 
 

PT (i; i`) =           (4) 

( ) ( )
( )

⎪
⎩

⎪
⎨

⎧
=
∈

−∑ ≠∈

otherwise
ii`if

Si`if

0
ji,P1

i`i,A)i`i,q( i

ij,Sj T

T

i

and the corresponding transition matrix is  

PT = [PT (i; i`)]. 

It is assumed that, by choosing neighborhood Si 
properly, the Markov chain is irreducible, meaning that 
for each pair of solutions i and j, there is a positive 
probability of reaching j from i in a finite number of 
steps. 
Consider the sequence of temperatures {Tk; k = 0, 1, 2, 
....}, where Tk > Tk+1 and limk→∞ Tk = 0, and choose NT to 
be the maximum of the minimum number of steps 
required to reach an iopt from every j ∈  S. Since the 
Markov is irreducible and search space S is finite, such 
NT always exists. The asymptotic convergence theorem 
of SA is stated as follows. 
Theorem The Markov chain modeling SA converges 
asymptotically to a global minimum of Sopt if the 
sequence of temperatures satisfies: 
 

Tk ( ) ,1log +
Δ

≥
k

N

e

T              (5) 

 
where Δ = maxi,j∈S {f(j) - f(i)│j ∈  Si}. 
 
The proof of this theorem is based on so-called local 
balance equation [1], meaning that: 
 
πT( i )PT( i, i`) = πT( i`)PT( i`, i ),           (6) 

 
where πT(i) is the stationary probability of state i at 
temperature T. 
Although SA works well for solving unconstrained 
NLPs, it cannot be used directly to solve constrained 
NLPs that have a set of constraints to be satisfied, in 

addition to minimizing the objective. The widely used 
strategy is to transform constrained NLP (1) into an 
unconstrained NLP using penalty formulations [2]. For 
static penalty formulation [2], it is very difficult to 
choose suitable penalty γ: if the penalty is too large, SA 
tends to find feasible solutions rather than optimal 
solutions. For dynamic penalty formulation [4], 
unconstrained problem [4] at every stage of λ(k) has to 
be solved optimally [1, 2] in order to have asymptotic 
convergence. However, this requirement is dificult to 
achieve in practice, given only a finite amount of time in 
each stage. If the result in one stage is not a global 
minimum, then the process cannot be guaranteed to find 
constrained global minima. Therefore, applying SA to a 
dynamic-penalty formulation does not always lead to 
asymptotic convergence. Besides, SA cannot be used to 
search in a Lagrangian space, because minimizing 
Lagrangian function. 
     For special case of (1), the generalized discrete 
augmented Lagrangian function is defined as 
 
Ld(x, λ) = f(x) + λTH(h(x)) +1/2║h(x)║2           (7) 

 
where λ = { λ1,λ2,....... λm } is a set of Lagrange 
multipliers, H is a continuous transformation 
function that satisfies  
H(x) = 0, ↔ x = 0, and ║h(x)║2 = ( )∑ =

m

i i xh
1

2  

 
 
3.2 Strategic Information 
The basic principle of the method of Simulated 
Annealing deals with the optimum searching by help of 
criteria changing. This principle seems to be suitable for 
strategic regional decisions. The management of local 
authorities needs optimum solution for particular 
problems in the context of various regional indicators. 
     Example of these strategic regional questions are 
number of doctor’s surgery in the region (see Figure 4), 
number of hospitals, number of primary schools in some 
district, size of regional high school / university (number 
of students) etc. 
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Fig. 4: Example of strategic question 
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We can show using of algorithm practically on simple 
example. Example above (see figure 5) shows three 
levels of solution. The first level (ad A) deals with 
analyzing of regional hospital (symbol H in the picture). 
We can find variously deployed municipalities around 
hospital round the hospital (black point around hospital). 
The municipalities are variously distant from hospital, 
municipalities have various number of citizens and 
various transport accessability to the hospital and. Every 
town has different population and different density 
domesticate. Every of these values we can use to the 
one’s functional funds f(x) which we will assign to every 
municipalities. This is the second level (ad B) of 
analyzing of the problem. Then we can institute each 
value of a function to algorithm and reckon optimum 
distance to the different hospitals (ad C). The number C 
is becomingly elect criterion which we will use in 
algorithm. This criterion is reduced in every step and 
also the value of a function state f(x) is reduced. This 
new state is received then with definite probability. The 
curve of probability of new state undertaking x` is in the 
picture. 
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Fig. 5: Example of SA using 

 
ad C) 
1. procedure SA 
2.  set starting point i = i0; 
3.  set starting criterion C = C0 and  
 cooling rate 0 < α < 1; 
4.  set NT (number of trials per criterion); 
5.  while stopping condition is not satisfied do 
6.   for k ← 1 to NT do 
7.    generate trial point i` from Si using q(i; i`); 
8.    accept i` with probability AC (i; i`) 

9.   end for 
10.   reduce criterion by C ← α x C; 
11.  end while 
12. end procedure 
 
 
4 Conclusion 
Using of optimization methods is necessary for efficient 
managing of region. Regional sources of information 
contain huge number of data which hides large potential 
for answering of strategic regional inquiries. 
Management of regional institution often needs to find 
optimum with solving concrete problem if the optimum 
is contingent by various criteria. Funds of criteria are 
available in line time, structural rows and at others rows. 
     Method of SA offers possibility of very effective 
algorithm to solving combinatorial exercise and gained 
solutions are either identical or very near to optimum 
solution. 
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