

Enhancing Concurrent Node Movements in Mobile Ad-hoc Networks
while Preserving Connection Stability

JORGE BARREIROS1,2, FERNANDA COUTINHO1

1Instituto Superior de Engenharia de Coimbra do Instituto Politécnico de Coimbra
2Centro de Informática e Sistemas da Universidade de Coimbra

Rua Pedro Nunes, 3030-199 Coimbra
PORTUGAL

Abstract: - In mobile ad-hoc networks loss of communication paths can occur because the movement of
nodes may create network partitions, effectively preventing communication between nodes in disjoint
sections. Some methods were previously proposed to specifically address this issue. For instance, connection
stability may be preserved by constraining and adapting the movements of each individual node in order to
ensure that there is always some viable communication path between any two nodes on the network. This is
accomplished by establishing a set of waypoints each node should transverse before arriving to its desired
position. The order by which the nodes move to these waypoints is specified by the algorithm. However,
multiple alternate solutions for the problem can be found by varying the sub-set of nodes that moves in each
step, and the degree of concurrency in the movements of the nodes is directly dependant on the choices made.
In this work, we point out that there is an opportunity for applying an optimization method that will enable to
maximize the number of nodes that move towards their destinations in each step, while ensuring connectivity
is maintained. We present such optimization and show how it impacts overall system performance.

KeyWords: - movement coordination, mobile ad hoc networks, genetic algorithms, platooning.

1 Introduction
Mobile ad hoc networks (MANETs) are self-
organizing, infrastructureless networks. MANETs
are particularly promising as the communication
infrastructure of mobile robotics deployed to
perform some collaborative task. This is the case of
a wide range of applications from the usual rescue
teams for disaster area to the popular robotic
football competitions.
In a MANET, nodes are able to communicate
directly if they are in the transmission range of each
other. If not, they must communicate using a multi-
hop route. A MANET node is required to operate
also as a router so that it can be able to forward data
packets coming from neighbor nodes.
The movement of the networked nodes and the
influence of the environment where they move
make MANETs highly dynamic structures. A stable
connectivity can only be achieved during small
time intervals and thus hopping must be performed
in an adaptive fashion. So, intensive effort has been
devoted by the research community to develop
efficient routing schemes for MANETs. Recent
evaluations of most popular routing strategies can
be found in [4, 8, 5, 9, 3]. More extensive materials

discussing the subject can be obtained in [12, 11,
7].
Previous research in [1, 2] explores the possibility
to coordinate the mobility of the nodes in a fashion
that keeps stable connectivity among them. This
method is particularly suitable in situations where,
at the moment of network deployment, specific
locations that should be transversed by some nodes
are known. One critical step of the algorithm is the
selection of a set of mutually non-interfering nodes
at each step of the movement. These nodes will
then progress to their desired destination and
several such steps are taken until all nodes arrive at
their desired positions. In [1] the authors present a
heuristic that builds a feasible solution for the
problem, but express no optimization concerns
regarding the selection of the maximum number of
nodes. In [2] an optimization method is indeed
presented, but it is concerned with the derivation of
the actual physical movements of the nodes and not
node selection. We believe that it is possible to
build improved paths if more care is taken when
making such selection. In this paper, we attempt to
develop a mechanism for creating an improved
solution to the problem by using the capabilities of
a genetic algorithm.

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp92-97)

In the next section, we describe the base algorithm
for adjusting node movements while preserving
connectivity. We then follow by describing genetic
algorithms and how they were applied in this
specific case. We present some results and
respective analysis, and then proceed to the
conclusion of our work

2 Node Movement Coordination
In [1] a method for adjusting the movements of
nodes and preserving global connectivity is
presented. We will provide a brief description of
some aspects of that work that are of relevance to
ours.
 Given an initial setup of globally connected nodes
(ie. all nodes are able to communicate with each
other, even though multi-hops may be required) and
the desired final (also connected) setup, a set of
waypoints is determined for each node.
The paths taken by the nodes are then determined
by the sequence of waypoints by which each node
should pass on its way to the destination. These
waypoints are computed so that connectivity is
always ensured all along the complete movement
from the initial to the final positions. This is
illustrated in Figure 1and Figure 2. In this example,
if each node moved along the straight path between
its current and final position (i.e. along the dashed
line), node C would clearly loose connectivity with
other nodes along the way. The same couldn’t be
said about nodes A and B, since these would always
be within the specified transmission range of each
other. To solve this problem, a set of paths is
generated that ensures that, when node C loses
connectivity with node B (the node it is initially
connected to), it is already within transmission
range of A and will remain so until both arrive at
their new location.
The same number of waypoints is used for all the
nodes, and all nodes should pass by each. All nodes
are required to pass by their i-th waypoint
simultaneously, and then proceed straight to the
(i+1)-th waypoint with constant speed. This implies
that each node will be required to move with speed
proportional to the distance between the waypoints
he is currently between.

Figure 1 - Node C will loose connectivity when
all nodes move from their initial positions

Figure 2 - Modified paths ensure connectivity all
along the movement

The solution is constructed by handling a tree
representation of the connectivity of initial and final
topologies of the nodes - the connectivity trees.
These trees are built by removing loops from a
graph that represents the connections between
nodes - the connectivity graph. It is shown in [1]
that movement between the initial and final
configuration can be accurately represented by
operations that, when applied successively to the
initial connectivity tree, will transform it into the
final connectivity tree. These operations correspond
in fact to specific movements on the geometric
plane (specific waypoint positions) that are ensured
to preserve the connectivity of the nodes.

Figure 3 - Example of initial and final
configuration of nodes.

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp92-97)

Figure 4 - Connectivity graphs corresponding
to the example of Error! Reference source not
found..

Figure 5 – Connectivity trees, after loop
elimination is applied to graphs in Error!
Reference source not found..

In [1] it is established that given any node topology
whose connectivity tree is equivalent to the desired
final connectivity tree, it is trivial to find a path for
each node that ensures connectivity along the way
and that will place all nodes in the desired
positions. The required movement is simply a linear
motion from the current position to the desired
position, setting the speed for each node in such a
way that all will end movement simultaneously.
See the following example (Figure 6):

Figure 6 - Moving nodes from a connection tree
equivalent to the desired configuration.

The importance of this fact is that it allows us to
reduce the problem to finding the transformations
required to convert the initial topology into one
whose connectivity tree is equivalent to that of the

desired final positioning, regardless of the actual
physical positions of the nodes.
A possible first step in such transformation would
be to (for instance) to make the following
transformation to the initial connectivity tree:

Figure 7 – Moving node C (and its sub-tree) to
node A.

In this case we are moving the subtree with root C
(we consider the root node to be A, for illustration
purposes) to become a direct descendant of node A.
This corresponds to the relative positions of A and
C in the final connectivity tree. By applying such a
process repeatedly to each node in (ie. moving it to
(or towards) its parent node on the final
connectivity tree), we can effectively derive a series
of steps that describe the movements that the actual
nodes need to make.
The movements required to place a node as
descendant of the correct node are determined by
finding the shortest path between both nodes.
Applying this to the example of Error! Reference
source not found., this would generate the
following candidate movements and paths:
C→B→A (meaning: move node C from node B to
node A)
D→B→C→F (meaning: move node D from node B
to node C, and then move node D from C to F)
E→C→B
F→C→E
G→F→C→B
H→C→E
I→A→B→C→F→G

It turns out that it is impossible to carry out all these
movements simultaneously, so the movement to the
final destination is made in several steps, with
possibly different nodes moving in each step. For
example, it isn’t possible to ensure connectivity if
movements E→C→B and F→C→E are taken
simultaneously. This is elaborated on [1] but
essentially, it can be synthesized by saying that if a
node is moving to became descendant of other node
that other node should not move.

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp92-97)

In order to determine which nodes will actually
move in each situation, a simple heuristic is
employed in [1]. This heuristic randomly removes
nodes from consideration until the movement of all
remaining nodes is possible, and then tries to
randomly add removed nodes while an unfeasible
solution isn’t created.
In this work we propose to use a genetic algorithm
for making such a selection, with the goal of
increasing the number of nodes moving in each step
and thus reducing the number of steps required to
attain the desired position.

3 Genetic Algorithms
We propose using genetic algorithms [6, 10] in
order to find the optimal translation path from the
initial to final configuration.
Genetic algorithms (GA) are a group of stochastic
optimization techniques. These algorithms work
with a set of candidate solutions to the problem (a
population of individuals, using GA terminology)
and seek to evolve them using concepts derived
from genetics and natural selection. Each individual
holds enough information (the genes) to describe a
possible solution to the problem. They are
evaluated regarding the quality of that solution (i.e.
their fitness is computed), and a probabilistic
selection method (based on the fitness of each
individual) is used to find group of individuals (the
parents) that will be used to create the next
generation of the population. The individuals of the
new generation are created by applying genetic
inspired transformations (operators) to the parents.
Among these transformations we can find
mutations and crossover. The mutation operator
does random changes to the genes, while the
crossover combines parts of the genes of two
parents to create a single individual. After multiple
iterations, the quality of the population will
increase, and when a predetermined stopping
condition is met, the solution for the problem will
be found on the genes of the best individual of the
last generation.

1.Randomly initialize population
2.While stopping condition is not met

a) Evaluate population
b) Select parents
c) Crossover
d) Mutation
e) Substitute old population

Algorithm 1 – Simple Genetic Algorithm.

There are, of course, multiple variants of this
simple framework.

4 Genetic Algorithm Setup
Each solution is easily represented by a binary
string, in which each position corresponds to
whether or not each one of the possible movements
is to be made in this step.
Standard one-point crossover and mutation are used
to generate the descendants of the progenitors,
whose selection is probabilistic based on a
tournament scheme. Elitism is also implemented by
carrying over the best individual in each population
to the next one. The fitness of each individual is
equal to the number of nodes that are specified to
move, plus a significant bonus if the solution is
valid. Invalid solutions are permitted, although they
are heavily penalized.
 We made the following modification to the
standard genetic algorithm. Whenever the fitness of
the best individual remains constant for a given
number of iterations, a new feasible individual is
created with the heuristic described in [1] and
injected into the population. This serves two
purposes:

• It ensures that a valid solution is found by the
algorithm.

• It injects diversity to broaden the scope of the
search when stuck at a (local) maximum.

The first point is important, because, since solutions
are heavily constrained (as is the case with many
engineering problems), it may be hard for the GA
to find one initial good solution if the number of
alternate paths is large. This givens the algorithm a
push in the right direction, making sure a feasible
solution is found (even if it is sub-optimal). One
potential problem is that is that the first feasible
solution will dominate the entire population,
leading to poor diversity and low chances of
finding better solutions, even if they are available.
This effect is partially countered by the injection of
new feasible individuals, greatly increasing the
possibility of generating new and better solutions
by application of the standard GA operators.
The genetic algorithm is a computation-intensive
process. Presently, we propose that the application
of such method should follow the guidelines
indicated in [1], in which a more powerful node
could compute all the waypoints and then send
these to every other node.

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp92-97)

The following picture shows the paths generated for
a 27 node example.

Figure 8 – Paths obtained by applying the
genetic algorithm to node selection to a set of 27
nodes.

5 Results and Analysis
We conduct a series of experiements with randomly
initialized nodes and target positions (the node sets
had between 30 and 60 nodes). The genetic
algorithm was configured to have a population of
50 solutions and ran for 1000 generations. Mutation
and crossover were applied with probabilities 4%
and 90%, respectively. New individuals were
injected after 100 generations of constant fitness of
the best individual.
The results are summarized in the tables below.
Values are presented as the ratio between the
number of steps required to move nodes to target
position with or without optimization. At each run,
a set of random nodes was generated and both the
optimized and non-optimized algorithms were run.
After 30 runs, the results averaged to the following.

Number of
Nodes

Average
Opt. /Non. Opt

30 node set 0,83
40 node set 0,82
50 node set 0,80
60 node set 0,79

It can be seen, from the table above, that the
proposed approach does indeed offer effective
improvements over the quality of the solutions
generated by the unoptimized version.
Growing improvements are obtained consistently
all over the runs. As the number of nodes increases,
so does the magnitude of the difference between
both approaches, albeit slightly. The simple

heuristic may be unable to keep up the increased
complexity that emerges when the node number is
increased.
In light of the results, the approach chosen in this
work seems to be adequate for the problem. The
changes to the standard GA seemed to be adequate
for the task at hand.

6 Conclusions and Future Work

In this work we presented an improvement over an
existing algorithm for coordinating the movements
of mobile nodes in a ad-hoc network environment,
with the purpose of ensuring no partitioning of the
network ever occurs. The changes introduced in the
original work offer significant improvement over
the quality of the original solutions, while ensure
that their connection-preserving properties of the
maintaining. The increased performance results
from an increase in the concurrence of node
movements.
Other works address different optimization issues
in this area, namely physical movement
optimization It would be interesting in the future to
combine both approaches into an holistic
optimization scheme, where simultaneous
optimization at different levels would be conducted,
with global evaluation of the impact.
In order to enhance the applicability and scalability
of the algorithm, and considering the environment
the algorithm is to be executed in, thought should
be given to deriving distributed mechanisms to
accomplish the same tasks.

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp92-97)

References

[1] “Choosing Paths that Prevent Network

Partitioning in Mobile Ad-hoc Networks”, F.
Coutinho, J. Barreiros, J. Fonseca, Presented at
WFCS 2004, Vienna, Austria, Sept. 2004

[2] “Mobile Node Path Optimization with Network
Partitioning Avoidance”, F. Coutinho, J.
Barreiros, submitted to CEE 2005, Coimbra,
Portugal.

[3] “A Comparison of Routing Strategies for
Vehicular Ad Hoc Networks”, H. Füßler, M.
Mauve, H. Hartenstein, M. Käsemann, D.
Vollmer, Fakultät für Mathematik und
Informatik, Universität Mannheim, Reihe
Informatik, Germany, 2002.

[4] “Wireless, mobile ad-hoc networking”, M.
Gerla, G. Pei, and S.-J. Lee, Presented at
IEEE/ACM FOCUS'99, New Brunswick, NJ,
May 1999.

[5] “Position based routing algorithms for ad-hoc
networks: a taxonomy”, S. Giordano, I.
Stojmenovic, L. Blazevic, Institute for
Computer Communications and Applications,
École Polytechnique Fédérale de Lausanne,
Switzerland, 2001.

 [6] “Genetic Algorithms in Search, optimization
and machine learning”, Goldberg, D. Addison
Wesley, 1989.

[7] “The handbook of ad hoc wireless networks”,
Mohammad Ilyas (Ed.), CRC Press, 2003, ISBN
0-8493-1332-5.

[8] “A review of current routing protocols for ad
hoc mobile wireless networks”, E. Royer, C.-K.
Toh, IEEE Personal Communications, April
1999.

 [9] “A Survey on position-based routing in mobile
ad-hoc networks”, M. Mauve, J. Widmer, H.
Hartenstein, Praktische Informatik IV,
Universität Mannheim, Germany, 2001.

[10] “An introduction to Genetic Algorithms”,
Mitchel, M., MIT Press, 1996

[11] “Ad hoc mobile wireless networks : protocols
and systems”, C.-K. Toh, Prentice Hall, 2002,
ISBN 0-13-007817-4.

[12] “Ad hoc networking”, Charles E. Perkins
(Ed.), Addison-Wesley, 2001, ISBN 0-201-
30976-9.

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp92-97)

