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Abstract: - Real world optimization problems are typically complex and difficult to solve. In this work it is 
intended to address these problems through a combination of two techniques: Constraint Logic Programming 
(CLP) and Genetic Algorithms (GA). This approach aims to benefit, on the one hand, from the easiness and 
naturalness of the CLP to express problems whose formulation is based on constraints, and on the other hand, from 
the ability that GA have in attaining good solutions to a particular problem, manly when specific and efficient 
methods to solve the problem suitable way do not exist. As a case study these ideas were tested to solve the Facility 
Layout Problem which is one of the most difficult problems that face researchers experimenting with complex 
systems to real world applications. It relies with the design and location of production lines, machinery and 
equipment, inventory storage and shipping facilities.  
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1 Introduction 
This paper describes the work done by our research 
team that originates the new starting RECEO project. 
The project main goal is to combine the Constraint 
Logic Programming (CLP) [1] with Genetic 
Algorithms (GA) [2,3,4] to solve certain kind of 
optimization problems. These problems are essentially 
characterized by holding a wide variety of constraints 
and by presenting, most of times, a too much large 
solutions space to be computationally practicable the 
search for the optimal solution. In the end we expect 
have a combination of CLP with GA that represents a 
new approach that combines the advantages of the 
techniques solve problems. CLP will offer an ease and 
natural way to express problems whose formulation is 
based on constraints and that GA have the ability in 
attaining good solutions to a particular problem, 
manly when specific and efficient methods to solve 
them in a suitable way do not exist. 
 
 
1.1 The Technology 
In the last decade CLP emerged as new technology to 
deal with complex combinatorial problems. This 
technology matches the declarative aspects of the 

Logic Programming (LP) paradigm with the 
techniques for constraint satisfaction [5] in a proper 
way for problem solving. This hybrid technique 
improves the search strategies used in logic 
programming, once it adds constraints and consistence 
verification techniques. With this scheme, the solution 
space can be largely reduced. 

The constraints and consistency verification 
techniques were initially developed to solve the 
Constraint Satisfaction Problems (CSP), which for a 
long time had been an Artificial Intelligence (AI) 
research field. Many combinatorial problems, 
characterized by a large number of constraints, are 
well suited for CLP, namely scheduling problems, 
timetabling, planning, placement, configuration, and 
routing. Others areas of application goes from the 
natural language processing, to the circuit analysis and 
games theory. CSP seeks assignments to a set of 
variables X = {x1, x2, ..., xm} from a set of 
corresponding domains D={d1, d2, ..., dm}, one per 
variable, satisfying a set of constraints C={c1, c2,..., 
cn} over subsets of the cartesian space spanned by D. 
CSP is a binary problem, in which a set of 
assignments to the variables X satisfies or not all the 
constraints [6]. A solution for a CSP is a domain value 
assignment for each variable, in a way that all the 
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constraints are satisfied. It has been verified that CLP 
offers a more natural way to express real world 
problems in a computer program, the development 
time is shorter, the maintenance processes are simpler 
and the efficiency is equivalent to that of the programs 
developed in procedural languages according to the 
paradigm of constraint satisfaction [6]. 

Since the end of the eighties the CLP technology, 
and in particular the Constraint Logic Programming 
with Finite Domains (CLP(FD)) [1,6], has been 
applied successfully solve problems in several areas 
where other technologies had lapsed. It provides 
declarative, abstract and an elegant way to specify 
problems. The systems based on constraints present a 
strong theoretical component, being equally appealing 
to the industry. Many of these problems present 
common features to the combinatorial problems and, 
therefore, they are difficult to solve. 

 
 

1.2 Test Case Problem 
The Facilities Layout Problem (FLP) was the first 
problem selected to experiment our ideas for 
combining CLP with GA. We remember that is our 
intention to extend this approach to a general 
framework. FLP is one of the most complex problems 
in the industry. It is defined as the planning of the 
proper location of machines, employees, workstations, 
warehouses and client service areas. It also involves 
the design of the material and people flow pattern 
around, the movement inside, at the input and at the 
output of the productive plants. In a factory, the layout 
is a fundamental issue. From it, the equipment and 
human resources have a great influence on the real 
output, whatever is the manufacturing plant’s 
theoretical installed capacity. It is necessary to plan 
the operations scheduling among the available 
equipment for each operation type and the flow of the 
materials and people among them. The warehouses 
location, how they are supplied from outside, the areas 
and how the distribution transportation is loaded are 
also tasks of the planning process. Issues related with 
layout, like work conditions (noise levels, temperature 
and air quality), have to be considered. The correct 
design and the dynamic management of the 
manufacturing plant is a manager’s fundamental task 
in order to have an efficient manufacturing process 
using the available material and human resources. 

The FLP was originally defined by [7], [8] and 
[9]. Given the complexity of the FLP, a strong effort 
was given in the research and development of 

techniques to assist layout design specialists 
[10,11,12]. These techniques use procedures classified 
as optimal and sub optimal algorithms. For the first 
ones, the attainment of the optimal solution for 
problems with some dimension has shown 
problematic and, therefore, other ways were explored 
that give good solutions in useful time. These 
algorithms are in the group of the sub optimal 
algorithms. 

In the modern manufacturing systems, the 
traditional FLP assumptions are more and more 
difficult to support. In first place, there is a tendency 
to consider a third dimension given, for example, 
lighter machines, higher prices of the available areas, 
among others. In second, it is evidenced that in the 
current industrial environment, there is a strong trend 
for an increasing level of volatility and uncertainty, 
where more and more companies are present in a 
global market. It is also evidenced, an increasing 
technological innovation and changes in the 
specifications of the products, these demanded by the 
consumers. All these factors contribute to reduce the 
life cycle of a manufacturing layout. 

 
 

1.3 Solving the Problem 
Solving the FLP with the CLP(FD) technology 
requires, however, the development of new models or, 
at least, the adaptation of some models that are 
already been used. In our particular case we had to 
take in account the aspects related with the use of the 
CLP(FD) technology. The model was inspired in 
models of space assignment problems [10,11,12]. The 
identification of the problem variables as well the 
definition of its domains and the specification of the 
constraints, that obviously have a geometric nature, 
were important concerns in the model development. 

Very early experiments to solve FLP using 
CLP(FD) with and uses a Branch&Bound (B&B) 
algorithm for the optimization task showed this 
requires a huge computational power and is not 
practicable to explore the entire search space for real 
world problems. This scenario suggests that other 
optimisation techniques should be used in order to 
deal with such huge search space. The chosen 
technique was GAs.  

The experiments done by combining CLP with 
GA in order to solve the FLP resulted in a system 
module named as LayGeRL. This approach aims to 
benefit, on one hand, from the easiness and 
naturalness of the CLP to express problems whose 
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formulation is based on constraints, and on the other 
hand, from the ability that GA have in attaining good 
solutions to a particular problem, manly when specific 
and efficient methods to solve the problem in a 
suitable way do not exist. In fact, in the method 
developed the CLP has the task of constraint 
reasoning and GA the optimisation task. In fact, this 
combination of techniques showed not only a great 
potential to solve FLP but others kinds of complex 
problems. 

 
 

2 CLP Modeling for the FLP 
This section describes the model develop in order to 
solve the FDP. In general, the model used follows the 
multi-row model [10], where the production units can 
be located anywhere in the facility plant and deals 
only with single-floor facilities. The manufacturing 
plant is modelled considering a rectangle with width 
W and length L which surrounds its shape as shown in 
Fig. 1. All production resources are located inside of 
that rectangle. Locations inside the rectangle that do 
not belong to the facilities plant are not considered by 
imposing some position constraints that are going to 
described below. 

 

 
Fig. 1: Rectangle surrounding the Manufacturing Plant. 

 
Production units (PU) are the production 

resources to be located in the plant. These could be a 
simple workstation with a machine and, optionally, 
with a small area for temporary storage of materials, 
or a collection of workstations where the facility itself 
is a layout sub problem. In our model it is also 
acknowledge that there are some alternative PUs to 
perform the same operation. To the set of PUs that are 
able to carry out the same process operation we call a 
PU class. 

As in the plant, a surrounding rectangular shape is 
used to represent the actual PU shape. Fig. 2 shows 
the rectangular model for two PUs. This rectangular 
shape is as a function of three parameters: the width, 
the length and the optional gap value that represents 

the minimal distance that has to be respected in 
relation to the others PUs. 

 

Facility Fiu Gap of Fjv

Gap of Fiu
Facility Fjv 

 
Fig. 2: Two facilities with a rectangular shape 

approximation. 
 
PUs require always a constant minimum area, but 

their width and length may change inside predefined 
limits. Considering the areas as fixed, it is obvious 
that, if the width increases then the length has to 
decrease. This approach is used to deal with two 
situations. One situation occurs when a PU is a 
department or a cell containing several machines 
requiring a given area, but with flexible shape. The 
other occurs when the PU has fixed area and shape, 
and it must be decided what will be the best 
orientation in the plant (north-south or east-west). 

To evaluate the quality of the layout solutions it is 
possible to consider a large number of cost functions 
types. Those cost function types may use qualitative 
and/or quantitative factors. The selected cost function 
focuses on quantitative factors. It is based in two 
parameters: the product demand (which defines the 
flow volume) and the distance between each PU pair 
having material flowing between them. This leads to 
the solution cost computation made by the expression 
(1), where fiujv is the flow value between PU u of class 
i and PU v of class j and diujv is their relative distance 
being usually given by an euclidean or a rectilinear 
metric. This distance is dependent, obviously, from 
the position where the facilities are placed. 
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It is obvious that the PUs in the plant placement 

have to obey to some constraints. Some of them are 
implicit to the problem in order to get a correct layout; 
others are related to the problem specific requirements 
or user requirements, like technological ones, 
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environmental ones, strategic ones and others. It was 
identified some geometric constraints that are 
supposed to cover a wide range of FLP cases. 

 
No Overlap is the constraint that should always be 

present and which imposes that any PU must be 
placed in the plant in such way that is not going to 
overlap with the others; 

Neighbourhood is used to deal with situations where 
it is desirable to locate two PUs close to each other 
as, for example, when there is a large volume of 
material flowing between them; 

Distance is a constraint used to impose a given 
relation of distance between two PUs or between a 
known point and a PU. One possible situation 
occurs when some PUs have to operate in a 
temperature-controlled environment not 
compatible with others, located in the 
neighbourhood; 

Absolute Position constraints are used to force PUs to 
be located, either inside or outside of a given area 
of the manufacturing plant. With these constraints, 
it is possible to reserve space areas for different 
purposes like offices or warehouses. These 
constraints are also used to prevent the location of 
the PUs in areas that are not inside in the real plant 
but are inside of the plant’s surrounding 
rectangular shape; 

Relative Position constraints are the ones that make 
possible handling situations like, for example, "PU 
A is at right of PU B". There are four possible 
relative position constrains: ‘at right of’; ‘at left 
of’; at front of’ and ‘at back of’; 

Orientation constraints deals with situations like the 
ones that it is necessary to constraint the 
orientation of a PU or define that several PUs have 
some kind of relation in terms of its orientation. 

 
 

3 The Optimization Algorithm 
Solving a problem following the CLP(FD) paradigm 
usually involves three steps: i) the definition of the 
problem variables and their domain; ii) the statement 
of constraints and, finally, iii) the solution 
enumeration step, which instantiates the variables, one 
by one, with a value from their domain. Frequently, 
the last step is an optimization task using a B&B 
algorithm. The next subsection describes the 
developed approach to combine CLP paradigm with 
GA for the optimization task. 

3.1 The combination approach 
The approach followed is similar to the work done in 
order hybridize a B&B algorithm and GA [13]. Their 
work follows three main principles: i) use current 
problem encoding; ii) hybridize if and where possible; 
iii) and adapt the genetic operators [3]. In this work 
the GA operators are implemented in CLP paradigm 
as illustrated in Fig. 3. The main process is on the GA 
side. This process can be viewed as the client and the 
CLP engine can be viewed as the server. The main 
process needs to start the CLP engine, to be able to 
use its services (see Fig. 4). When the CLP starts, it 
begins by creating the problem variables with their 
finite domain, and then places the constraints 
according to the problem specifications. The CLP 
engine resumes to its start up by returning its current 
state to the main process. 

Create initial 
population 

Evaluate population 

Reproduction 
Operators 

Replace population 

Crossover and 
Mutation 

CLP Engine Main Process 

Create new individual

 
Fig. 3: Outline of the CLP and GA combination. 

 
The main process uses the state returned by the 

CLP engine to be able to create its initial population, 
perform the crossover and mutation operations, and 
finally, evaluate the individuals (see Fig. 5). The 
individuals produced by the CLP engine (creating a 
new individual or executing a crossover and a 
mutation operation), are consistent with the problem 
constraints placed during the CLP engine start up. 

 
procedure MainApp 
begin 
 <initialisation stuff> 
 Clp_State ← clp_startup  
 Min ← GA_Optimise(Clp_State) 
 <exit stuff> 
end 

Fig. 4: The main process source code skeleton. 
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Once the CLP engine is started, the optimisation 
task begins. This task is a GA like the source code 
skeleton showed in the Fig. 5. The operations in italic 
with the name starting with clp_ are implemented in 
the CLP(FD) paradigm. 

 
procedure GA_Optimise(Clp_State) 
begin  
 t ← 0 
 P0 ← clp_create_initial_population  
 clp_evaluate (Clp_State, P0) 
 while not Final Condition do 
  Pt’ ← select_from Pt 
  Pt’’ ← clp_crossover (Clp_State, Pt’) 
  Pt’’’ ← clp_mutate (Clp_State, Pt’’) 
  clp_evaluate (Clp_State, Pt’’’) 
  Pt+1 ← replace (Pt, Pt’’’) 
  t ← t + 1  
 end 
end 

Fig. 5: The GA skeleton with operators implemented using 
the CLP paradigm. 

 
 

3.2 The Genotype Representation 
Since CLP engine executes all the GA operators, the 
representation of the solutions is done directly using 
the Logic Programming (LP) like data structure 
syntax. Each individual in the GA population is only a 
reference to its respective LP representation. The 
genotype of each individual is a list of genes, where 
each one contains information about the 
respective PU. 

 
 

3.3 Recombination 
The recombination is done by the CLP engine and in a 
certain way the developed recombination operator for 
FLP performs a slightly form of mutation to ensure 
that the result of this operator will be consistent with 
the problem constraints. 

The recombination starts by breaking the parent 
genotype in two random halves. The length of the two 
halves and the genes in each half are also random. 
After breaking the parents in two halves, the 
recombination operation is carried out and the 
generated offsprings should be consistent with the 
problem constraints. However, it may happen that the 
recombination operation fails to generate an offspring. 
This happens when the operator cannot locate the 
facilities (genes) of the second half in the available 
space of the manufacturing plant, given the location of 

the facility of the first half and the problem 
constraints. A null fitness value is assigned to those 
failed offsprings and they die before the next 
generation. 
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Fig. 6: The crossover operation. 
 
 

3.4 Mutation 
As it was referred in the previous section the 
recombination operator has a side effect, which 
consists in one kind of mutation. This kind of 
mutation modifies slightly the position of some 
facilities. However, it is desirable that, from time to 
time, the orientation or the shape of some facilities 
gets also modified. Among different possible mutation 
operators, we selected the one that operates like the 
one illustrated Figure 6. It shows an example of two 
mutated random selected genes. As result e shape of 
the respective facilities was modified. 
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Figure 1: The result of a mutation operation when applied 
to an individual. 
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4 Conclusions 
As referred in the beginning, this paper describes the 
work done by our research team that originates the 
new starting RECEO project. The project goal is to 
combine the CLP with GA to address difficult 
optimisation problems. These problems are essentially 
characterized by holding a wide variety of constraints 
and by presenting, most of times, a too much large 
solutions space to be computationally practicable the 
search of the best solution. It is intended that the 
referred approach will result in an original tool that 
finds a large applicability. 

In the recent work of the research team this 
approach has been explored as a specific method to 
solve FLP. This approach aims to benefit, on the one 
hand, from the easiness and naturalness of the CLP to 
express problems whose formulation is based on 
constraints, and on the other hand, from the ability 
that GA have in attaining good solutions, manly when 
specific and efficient methods to solve the problem 
ina suitable way do not exist.  

As it was referred, the work already done consists 
in a specific approach for the case of FLP. However, 
on the basis of the results and on the experience 
acquired, the combination of these two techniques 
presents interesting potentialities to evolve to a 
general-purpose tool to solve optimisation problems. 
In fact, the consolidation of this approach as a generic 
tool is one of the main and innovative project goals. 

One limitation of the work already developed 
until the moment is related with the way of dealing 
with constraints. These, for the problem in question, 
will have to be always satisfied (hard-constraints). 
This fact is not sustainable in all cases, given that 
many times there are situations where the constraints 
satisfaction requirements have different levels in a 
way that they could be hold or not (soft-constraints). 
This is an aspect to be considered in the tool that will 
result from RECEO project with the development of a 
mechanism that allows soft-constraints reasoning. 

The biggest difficulty in the combination of these 
techniques is to find a suitable problem solution 
representation and to choose the operators that, in 
principle, can be applied to the GA evolution. In this 
situation it is intended, beyond the development of 
operators with generic characteristics, to provide the 
ability to develop new operators, possibly specific 
ones to solve the problem in question and which 
incorporate characteristics of the techniques originally 
used to solve them. 

References: 
[1] Frühwirth, T., Herold, A., Küchenhoff, V., 

Provost, T., Lim, P., Monfroy E., and 
Wallace, M. (1993). Constraint Logic 
Programming - An Informal Introduction, 
European Computer-Industry Research Centre. 

[2] Holland, J. H. (1975) Adaptation in Natural and 
Artificial Systems. Univ. of Michigan Press, Ann 
Arbor, MI. 

[3] Davis, L. (1991). Handbook of Genetic 
Algorithms, Van Nostrand Reinhold, New York, 
NY. 

[4] Michalewicz, Z. (1992). Genetic algorithms + 
Data Structures = Evolution Programs, Springer- 
Verlag, New York, NY. 

[5] Kumar, V. (1992). Algorithms for Constraint 
Satisfaction Problems: A Survey, AI Magazine 
13(1):32-44, 1992. 

[6] Jaffar, J., and Lassez, J. (1987). Constraint logic 
programming. In Proceedings of the 14th ACM 
Symposium on Principles of Programming 
Languages, Munich, Germany, pages 111-119. 

[7] Koopmans, T. C., and Beckman, M. 1957. 
“Assignment Problems and the Location of 
Economic Activities”. Econometrica, 25, pp 53-
76. 

[8] Armour, G.C., and Buffa, E. S. (1963). A 
heuristic algorithm and simulation approach to 
relative location of facilities. Management 
Science, 9:294-309. 

[9] Vollman, T. E. and Buffa, E. S. (1966). Facilities 
layout problem in perspective. Management 
Science, 12:450-468. 

[10] Heragu, S. (1997). Facilities Design, PWS 
Publishing Company, ISBN 0-534-95183-X. 

[11] Heragu, S. S. and Kusiak, A., 1987. “The Facility 
Layout Problem”, European Journal of 
Operational Research, 53, pp 1-13. 

[12] Montreuil, B. H., Venkatadri, U., e Ratliff, H. D. 
1993. “Generating a layout from a design 
skeleton”. IIE Transactions, 25(1), pp 3-15. 

[13] Cotta, C., Aldana, J.F., Nebro, A.J., and Troya, 
J.M. (1995). Hybridizing Genetic Algorithms 
with Branch and Bound Techniques for the 
Resolution of the TSP. Artificial Neural Nets and 
Genetic Algorithms, D.W. Pearson, N.C. Steele, 
R.F. Albrecht (eds.), Springer Verlag Wien - 
New York, 277-280, ISBN 3-211-82692-0. 

 

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp214-219)


