
Constraint Programming and Genetic Algorithms to
Solve Layout Design Problem

JOSÉ TAVARES

GECAD – Knowledge Engineering and Decision Support Group
Institute of Engineering – Polytechnic of Porto

Rua Dr. António Bernardino de Almeida, 4200-072 Porto – PORTUGAL
Phone: +351 2 8340500, Fax: +351 2 8321159,

 http://www.dei.isep.ipp.pt/~jtavares

Abstract: - Real world optimization problems are typically complex and difficult to solve. In this work it is
intended to address these problems through a combination of two techniques: Constraint Logic Programming
(CLP) and Genetic Algorithms (GA). This approach aims to benefit, on the one hand, from the easiness and
naturalness of the CLP to express problems whose formulation is based on constraints, and on the other hand, from
the ability that GA have in attaining good solutions to a particular problem, manly when specific and efficient
methods to solve the problem suitable way do not exist. As a case study these ideas were tested to solve the Facility
Layout Problem which is one of the most difficult problems that face researchers experimenting with complex
systems to real world applications. It relies with the design and location of production lines, machinery and
equipment, inventory storage and shipping facilities.

Key-words: Facilities Layout Design, Constraint Satisfaction, Constraint Logic Programming, Genetic Algorithms.

1 Introduction
This paper describes the work done by our research
team that originates the new starting RECEO project.
The project main goal is to combine the Constraint
Logic Programming (CLP) [1] with Genetic
Algorithms (GA) [2,3,4] to solve certain kind of
optimization problems. These problems are essentially
characterized by holding a wide variety of constraints
and by presenting, most of times, a too much large
solutions space to be computationally practicable the
search for the optimal solution. In the end we expect
have a combination of CLP with GA that represents a
new approach that combines the advantages of the
techniques solve problems. CLP will offer an ease and
natural way to express problems whose formulation is
based on constraints and that GA have the ability in
attaining good solutions to a particular problem,
manly when specific and efficient methods to solve
them in a suitable way do not exist.

1.1 The Technology
In the last decade CLP emerged as new technology to
deal with complex combinatorial problems. This
technology matches the declarative aspects of the

Logic Programming (LP) paradigm with the
techniques for constraint satisfaction [5] in a proper
way for problem solving. This hybrid technique
improves the search strategies used in logic
programming, once it adds constraints and consistence
verification techniques. With this scheme, the solution
space can be largely reduced.

The constraints and consistency verification
techniques were initially developed to solve the
Constraint Satisfaction Problems (CSP), which for a
long time had been an Artificial Intelligence (AI)
research field. Many combinatorial problems,
characterized by a large number of constraints, are
well suited for CLP, namely scheduling problems,
timetabling, planning, placement, configuration, and
routing. Others areas of application goes from the
natural language processing, to the circuit analysis and
games theory. CSP seeks assignments to a set of
variables X = {x1, x2, ..., xm} from a set of
corresponding domains D={d1, d2, ..., dm}, one per
variable, satisfying a set of constraints C={c1, c2,...,
cn} over subsets of the cartesian space spanned by D.
CSP is a binary problem, in which a set of
assignments to the variables X satisfies or not all the
constraints [6]. A solution for a CSP is a domain value
assignment for each variable, in a way that all the

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp214-219)

constraints are satisfied. It has been verified that CLP
offers a more natural way to express real world
problems in a computer program, the development
time is shorter, the maintenance processes are simpler
and the efficiency is equivalent to that of the programs
developed in procedural languages according to the
paradigm of constraint satisfaction [6].

Since the end of the eighties the CLP technology,
and in particular the Constraint Logic Programming
with Finite Domains (CLP(FD)) [1,6], has been
applied successfully solve problems in several areas
where other technologies had lapsed. It provides
declarative, abstract and an elegant way to specify
problems. The systems based on constraints present a
strong theoretical component, being equally appealing
to the industry. Many of these problems present
common features to the combinatorial problems and,
therefore, they are difficult to solve.

1.2 Test Case Problem
The Facilities Layout Problem (FLP) was the first
problem selected to experiment our ideas for
combining CLP with GA. We remember that is our
intention to extend this approach to a general
framework. FLP is one of the most complex problems
in the industry. It is defined as the planning of the
proper location of machines, employees, workstations,
warehouses and client service areas. It also involves
the design of the material and people flow pattern
around, the movement inside, at the input and at the
output of the productive plants. In a factory, the layout
is a fundamental issue. From it, the equipment and
human resources have a great influence on the real
output, whatever is the manufacturing plant’s
theoretical installed capacity. It is necessary to plan
the operations scheduling among the available
equipment for each operation type and the flow of the
materials and people among them. The warehouses
location, how they are supplied from outside, the areas
and how the distribution transportation is loaded are
also tasks of the planning process. Issues related with
layout, like work conditions (noise levels, temperature
and air quality), have to be considered. The correct
design and the dynamic management of the
manufacturing plant is a manager’s fundamental task
in order to have an efficient manufacturing process
using the available material and human resources.

The FLP was originally defined by [7], [8] and
[9]. Given the complexity of the FLP, a strong effort
was given in the research and development of

techniques to assist layout design specialists
[10,11,12]. These techniques use procedures classified
as optimal and sub optimal algorithms. For the first
ones, the attainment of the optimal solution for
problems with some dimension has shown
problematic and, therefore, other ways were explored
that give good solutions in useful time. These
algorithms are in the group of the sub optimal
algorithms.

In the modern manufacturing systems, the
traditional FLP assumptions are more and more
difficult to support. In first place, there is a tendency
to consider a third dimension given, for example,
lighter machines, higher prices of the available areas,
among others. In second, it is evidenced that in the
current industrial environment, there is a strong trend
for an increasing level of volatility and uncertainty,
where more and more companies are present in a
global market. It is also evidenced, an increasing
technological innovation and changes in the
specifications of the products, these demanded by the
consumers. All these factors contribute to reduce the
life cycle of a manufacturing layout.

1.3 Solving the Problem
Solving the FLP with the CLP(FD) technology
requires, however, the development of new models or,
at least, the adaptation of some models that are
already been used. In our particular case we had to
take in account the aspects related with the use of the
CLP(FD) technology. The model was inspired in
models of space assignment problems [10,11,12]. The
identification of the problem variables as well the
definition of its domains and the specification of the
constraints, that obviously have a geometric nature,
were important concerns in the model development.

Very early experiments to solve FLP using
CLP(FD) with and uses a Branch&Bound (B&B)
algorithm for the optimization task showed this
requires a huge computational power and is not
practicable to explore the entire search space for real
world problems. This scenario suggests that other
optimisation techniques should be used in order to
deal with such huge search space. The chosen
technique was GAs.

The experiments done by combining CLP with
GA in order to solve the FLP resulted in a system
module named as LayGeRL. This approach aims to
benefit, on one hand, from the easiness and
naturalness of the CLP to express problems whose

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp214-219)

formulation is based on constraints, and on the other
hand, from the ability that GA have in attaining good
solutions to a particular problem, manly when specific
and efficient methods to solve the problem in a
suitable way do not exist. In fact, in the method
developed the CLP has the task of constraint
reasoning and GA the optimisation task. In fact, this
combination of techniques showed not only a great
potential to solve FLP but others kinds of complex
problems.

2 CLP Modeling for the FLP
This section describes the model develop in order to
solve the FDP. In general, the model used follows the
multi-row model [10], where the production units can
be located anywhere in the facility plant and deals
only with single-floor facilities. The manufacturing
plant is modelled considering a rectangle with width
W and length L which surrounds its shape as shown in
Fig. 1. All production resources are located inside of
that rectangle. Locations inside the rectangle that do
not belong to the facilities plant are not considered by
imposing some position constraints that are going to
described below.

Fig. 1: Rectangle surrounding the Manufacturing Plant.

Production units (PU) are the production

resources to be located in the plant. These could be a
simple workstation with a machine and, optionally,
with a small area for temporary storage of materials,
or a collection of workstations where the facility itself
is a layout sub problem. In our model it is also
acknowledge that there are some alternative PUs to
perform the same operation. To the set of PUs that are
able to carry out the same process operation we call a
PU class.

As in the plant, a surrounding rectangular shape is
used to represent the actual PU shape. Fig. 2 shows
the rectangular model for two PUs. This rectangular
shape is as a function of three parameters: the width,
the length and the optional gap value that represents

the minimal distance that has to be respected in
relation to the others PUs.

Facility Fiu Gap of Fjv

Gap of Fiu
Facility Fjv

Fig. 2: Two facilities with a rectangular shape

approximation.

PUs require always a constant minimum area, but

their width and length may change inside predefined
limits. Considering the areas as fixed, it is obvious
that, if the width increases then the length has to
decrease. This approach is used to deal with two
situations. One situation occurs when a PU is a
department or a cell containing several machines
requiring a given area, but with flexible shape. The
other occurs when the PU has fixed area and shape,
and it must be decided what will be the best
orientation in the plant (north-south or east-west).

To evaluate the quality of the layout solutions it is
possible to consider a large number of cost functions
types. Those cost function types may use qualitative
and/or quantitative factors. The selected cost function
focuses on quantitative factors. It is based in two
parameters: the product demand (which defines the
flow volume) and the distance between each PU pair
having material flowing between them. This leads to
the solution cost computation made by the expression
(1), where fiujv is the flow value between PU u of class
i and PU v of class j and diujv is their relative distance
being usually given by an euclidean or a rectilinear
metric. This distance is dependent, obviously, from
the position where the facilities are placed.

 ∑ ∑∑∑

−

= += = =

×=
1

1 1 1 1

n

j

n

ji

NI

u

NI

v
iujviujv

i j

dfCusto (1)

It is obvious that the PUs in the plant placement

have to obey to some constraints. Some of them are
implicit to the problem in order to get a correct layout;
others are related to the problem specific requirements
or user requirements, like technological ones,

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp214-219)

environmental ones, strategic ones and others. It was
identified some geometric constraints that are
supposed to cover a wide range of FLP cases.

No Overlap is the constraint that should always be

present and which imposes that any PU must be
placed in the plant in such way that is not going to
overlap with the others;

Neighbourhood is used to deal with situations where
it is desirable to locate two PUs close to each other
as, for example, when there is a large volume of
material flowing between them;

Distance is a constraint used to impose a given
relation of distance between two PUs or between a
known point and a PU. One possible situation
occurs when some PUs have to operate in a
temperature-controlled environment not
compatible with others, located in the
neighbourhood;

Absolute Position constraints are used to force PUs to
be located, either inside or outside of a given area
of the manufacturing plant. With these constraints,
it is possible to reserve space areas for different
purposes like offices or warehouses. These
constraints are also used to prevent the location of
the PUs in areas that are not inside in the real plant
but are inside of the plant’s surrounding
rectangular shape;

Relative Position constraints are the ones that make
possible handling situations like, for example, "PU
A is at right of PU B". There are four possible
relative position constrains: ‘at right of’; ‘at left
of’; at front of’ and ‘at back of’;

Orientation constraints deals with situations like the
ones that it is necessary to constraint the
orientation of a PU or define that several PUs have
some kind of relation in terms of its orientation.

3 The Optimization Algorithm
Solving a problem following the CLP(FD) paradigm
usually involves three steps: i) the definition of the
problem variables and their domain; ii) the statement
of constraints and, finally, iii) the solution
enumeration step, which instantiates the variables, one
by one, with a value from their domain. Frequently,
the last step is an optimization task using a B&B
algorithm. The next subsection describes the
developed approach to combine CLP paradigm with
GA for the optimization task.

3.1 The combination approach
The approach followed is similar to the work done in
order hybridize a B&B algorithm and GA [13]. Their
work follows three main principles: i) use current
problem encoding; ii) hybridize if and where possible;
iii) and adapt the genetic operators [3]. In this work
the GA operators are implemented in CLP paradigm
as illustrated in Fig. 3. The main process is on the GA
side. This process can be viewed as the client and the
CLP engine can be viewed as the server. The main
process needs to start the CLP engine, to be able to
use its services (see Fig. 4). When the CLP starts, it
begins by creating the problem variables with their
finite domain, and then places the constraints
according to the problem specifications. The CLP
engine resumes to its start up by returning its current
state to the main process.

Create initial
population

Evaluate population

Reproduction
Operators

Replace population

Crossover and
Mutation

CLP Engine Main Process

Create new individual

Fig. 3: Outline of the CLP and GA combination.

The main process uses the state returned by the

CLP engine to be able to create its initial population,
perform the crossover and mutation operations, and
finally, evaluate the individuals (see Fig. 5). The
individuals produced by the CLP engine (creating a
new individual or executing a crossover and a
mutation operation), are consistent with the problem
constraints placed during the CLP engine start up.

procedure MainApp
begin
 <initialisation stuff>
 Clp_State ← clp_startup
 Min ← GA_Optimise(Clp_State)
 <exit stuff>
end

Fig. 4: The main process source code skeleton.

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp214-219)

Once the CLP engine is started, the optimisation
task begins. This task is a GA like the source code
skeleton showed in the Fig. 5. The operations in italic
with the name starting with clp_ are implemented in
the CLP(FD) paradigm.

procedure GA_Optimise(Clp_State)
begin
 t ← 0
 P0 ← clp_create_initial_population
 clp_evaluate (Clp_State, P0)
 while not Final Condition do
 Pt’ ← select_from Pt
 Pt’’ ← clp_crossover (Clp_State, Pt’)
 Pt’’’ ← clp_mutate (Clp_State, Pt’’)
 clp_evaluate (Clp_State, Pt’’’)
 Pt+1 ← replace (Pt, Pt’’’)
 t ← t + 1
 end
end

Fig. 5: The GA skeleton with operators implemented using
the CLP paradigm.

3.2 The Genotype Representation
Since CLP engine executes all the GA operators, the
representation of the solutions is done directly using
the Logic Programming (LP) like data structure
syntax. Each individual in the GA population is only a
reference to its respective LP representation. The
genotype of each individual is a list of genes, where
each one contains information about the
respective PU.

3.3 Recombination
The recombination is done by the CLP engine and in a
certain way the developed recombination operator for
FLP performs a slightly form of mutation to ensure
that the result of this operator will be consistent with
the problem constraints.

The recombination starts by breaking the parent
genotype in two random halves. The length of the two
halves and the genes in each half are also random.
After breaking the parents in two halves, the
recombination operation is carried out and the
generated offsprings should be consistent with the
problem constraints. However, it may happen that the
recombination operation fails to generate an offspring.
This happens when the operator cannot locate the
facilities (genes) of the second half in the available
space of the manufacturing plant, given the location of

the facility of the first half and the problem
constraints. A null fitness value is assigned to those
failed offsprings and they die before the next
generation.

1 2 3

4

5 6 7

8

1

2

3

4

5

6

7

8

First Parent Second Parent

1 2 3

4

5

6 7

8

1

2

3

4

5

6 7

8

First Child Second Child

Fig. 6: The crossover operation.

3.4 Mutation
As it was referred in the previous section the
recombination operator has a side effect, which
consists in one kind of mutation. This kind of
mutation modifies slightly the position of some
facilities. However, it is desirable that, from time to
time, the orientation or the shape of some facilities
gets also modified. Among different possible mutation
operators, we selected the one that operates like the
one illustrated Figure 6. It shows an example of two
mutated random selected genes. As result e shape of
the respective facilities was modified.

1 2 3

4

5 6 7

8

1 2

3

4

5

6 7

8

Individual Mutated Individual

Figure 1: The result of a mutation operation when applied
to an individual.

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp214-219)

4 Conclusions
As referred in the beginning, this paper describes the
work done by our research team that originates the
new starting RECEO project. The project goal is to
combine the CLP with GA to address difficult
optimisation problems. These problems are essentially
characterized by holding a wide variety of constraints
and by presenting, most of times, a too much large
solutions space to be computationally practicable the
search of the best solution. It is intended that the
referred approach will result in an original tool that
finds a large applicability.

In the recent work of the research team this
approach has been explored as a specific method to
solve FLP. This approach aims to benefit, on the one
hand, from the easiness and naturalness of the CLP to
express problems whose formulation is based on
constraints, and on the other hand, from the ability
that GA have in attaining good solutions, manly when
specific and efficient methods to solve the problem
ina suitable way do not exist.

As it was referred, the work already done consists
in a specific approach for the case of FLP. However,
on the basis of the results and on the experience
acquired, the combination of these two techniques
presents interesting potentialities to evolve to a
general-purpose tool to solve optimisation problems.
In fact, the consolidation of this approach as a generic
tool is one of the main and innovative project goals.

One limitation of the work already developed
until the moment is related with the way of dealing
with constraints. These, for the problem in question,
will have to be always satisfied (hard-constraints).
This fact is not sustainable in all cases, given that
many times there are situations where the constraints
satisfaction requirements have different levels in a
way that they could be hold or not (soft-constraints).
This is an aspect to be considered in the tool that will
result from RECEO project with the development of a
mechanism that allows soft-constraints reasoning.

The biggest difficulty in the combination of these
techniques is to find a suitable problem solution
representation and to choose the operators that, in
principle, can be applied to the GA evolution. In this
situation it is intended, beyond the development of
operators with generic characteristics, to provide the
ability to develop new operators, possibly specific
ones to solve the problem in question and which
incorporate characteristics of the techniques originally
used to solve them.

References:
[1] Frühwirth, T., Herold, A., Küchenhoff, V.,

Provost, T., Lim, P., Monfroy E., and
Wallace, M. (1993). Constraint Logic
Programming - An Informal Introduction,
European Computer-Industry Research Centre.

[2] Holland, J. H. (1975) Adaptation in Natural and
Artificial Systems. Univ. of Michigan Press, Ann
Arbor, MI.

[3] Davis, L. (1991). Handbook of Genetic
Algorithms, Van Nostrand Reinhold, New York,
NY.

[4] Michalewicz, Z. (1992). Genetic algorithms +
Data Structures = Evolution Programs, Springer-
Verlag, New York, NY.

[5] Kumar, V. (1992). Algorithms for Constraint
Satisfaction Problems: A Survey, AI Magazine
13(1):32-44, 1992.

[6] Jaffar, J., and Lassez, J. (1987). Constraint logic
programming. In Proceedings of the 14th ACM
Symposium on Principles of Programming
Languages, Munich, Germany, pages 111-119.

[7] Koopmans, T. C., and Beckman, M. 1957.
“Assignment Problems and the Location of
Economic Activities”. Econometrica, 25, pp 53-
76.

[8] Armour, G.C., and Buffa, E. S. (1963). A
heuristic algorithm and simulation approach to
relative location of facilities. Management
Science, 9:294-309.

[9] Vollman, T. E. and Buffa, E. S. (1966). Facilities
layout problem in perspective. Management
Science, 12:450-468.

[10] Heragu, S. (1997). Facilities Design, PWS
Publishing Company, ISBN 0-534-95183-X.

[11] Heragu, S. S. and Kusiak, A., 1987. “The Facility
Layout Problem”, European Journal of
Operational Research, 53, pp 1-13.

[12] Montreuil, B. H., Venkatadri, U., e Ratliff, H. D.
1993. “Generating a layout from a design
skeleton”. IIE Transactions, 25(1), pp 3-15.

[13] Cotta, C., Aldana, J.F., Nebro, A.J., and Troya,
J.M. (1995). Hybridizing Genetic Algorithms
with Branch and Bound Techniques for the
Resolution of the TSP. Artificial Neural Nets and
Genetic Algorithms, D.W. Pearson, N.C. Steele,
R.F. Albrecht (eds.), Springer Verlag Wien -
New York, 277-280, ISBN 3-211-82692-0.

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp214-219)

