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Abstract: - In a liberalized electricity market, participants have several types of contracts to sell or buy electrical 
energy. Increasing electricity markets liquidity and, simultaneously, providing to market participants tools for 
hedging against spot electricity price were the two main reasons for the appearance of those types of contracts. 
However, due to the payoff nonlinearity characteristic of those contracts, deciding the optimal portfolio that best 
adjusts to their necessities becomes a hard task. This paper presents an optimization model applied to optimal 
contract allocation using Particle Swarm Optimization (PSO). This optimization model consists on finding the 
portfolio that maximizes the electricity producer results and simultaneously allows the practice of the hedge 
against the volatility of the System Marginal Price (SMP). Risk management is considered through the 
consideration of a mean-variance optimization function. An example for a programming period is presented 
using spot, forward and options contracts. PSO performance in such type of problems is evaluated by comparing 
it with the Genetic Algorithms (GA). 
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1   Introduction 
Power systems have suffered on the last decades 
profound regulatory changes on the way that they 
were operated. Traditional vertically integrated power 
systems saw their organizational and operational 
structure completely changed. In countries where 
those changes occurred, we assisted to a complete 
separation between several activities (generation, 
transmission, distribution). However, transmission 
and distribution activities maintain the natural 
monopoly status. 
      In competitive electricity markets, charge 
characteristics (like seasonality, mean-reversion, 
stochastic growth), producers characteristics (like the 
technology used in generation, generators 
availability, fuel prices [1]) and technical constraints 
introduce big challenges but also big risk, like, for 
example, high price volatility.  
     Before the restructuration process, the model 
traditionally used was based on monopoly and 
regulated public utilities. Prices were stable and 
predictable over a relatively long time horizon and, 
therefore, the risk involved in the energy business 
was low. However, this has dramatically changed. 
The liberalization of the electric sector, besides the 
price volatility introduction, leads to a clear 
competition in several sectors of activity and in 
particular in the generation sector. Power producers 

have to change the way they do their business and 
evolve from monopoly to unbundled companies 
structure on direct competition. Power producers 
have to adapt themselves to the new reality, having to 
reduce the overcapacity by closing power plants or 
abandoning plans for the construction of new ones. 
They also have to rethink the entire productive 
process and study the possibility of constructing new 
power stations using new technologies. 
 In the new competitive environment, energy can 
be negotiated in a spot market, managed by the 
Market Operator (MO), where Producers and the 
Load Serving Entities (LSE) sell or buy, respectively, 
the energy on a half-hour or hour basis. The supply 
and demand bids are then aggregated creating the 
supply and demand curve, which sets the quantity of 
electric power to be traded at the price given by the 
intersection point of these curves, usually known as 
System Marginal Price (SMP). However, due to the 
demand and producer’s characteristics [2], the SMP 
is very volatile, being very difficult to predict.  
 This leads the agents of those markets to search 
for hedging tools that allow them to turn their results 
more predictable [3,4]. Responding to that necessity, 
derivatives markets allow negotiating contracts for 
which the underlying active is the electric energy. 
Those markets allow electric energy market 
participants to practice the hedge against the volatility 
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of the SMP and simultaneously allow them to reduce 
the risk of credit and to turn the market more liquid. 
 Derivatives markets negotiate forward, futures 
and options contracts. The main difference between 
forward and futures contracts is that forward 
comprise the physical delivery of the negotiated 
electric energy and futures contracts are exclusively 
of financial type. Options contracts are similar to 
forward and futures having as main difference the 
fact that options give the buyer the power to decide or 
not the exercise of the option. For that he has to pay 
previously a certain amount of money designated by 
premium. Options exercise can be physical or 
financial. They are normally associated to forward 
contracts when they comprise the physical delivery of 
the underlying asset. 
 However, to make use of these types of contracts, 
agents of electricity markets (and producers in 
particular) need models to evaluate the correct price 
of contracts. Decision-support systems are required to 
define the type of contracts to establish and their 
characteristics. 
 Characteristics of electricity prices, such as: 
mean-reversion, high degree of skewness and non-
constant volatility, exclude price modelling using 
commodity cost-of-carry models. So, Black & 
Scholes formula is not applied to electricity option 
pricing. A procedure to evaluate the option price in 
electricity markets, known as risk-neutral valuation, 
is presented in [2] and [5]. Binomial model could also 
be applied to evaluate options price on electricity 
markets but it requires some adjustments. 
 Finding the optimal portfolio that maximizes 
results and simultaneously practices the hedge against 
the volatility of the System Marginal Price (SMP) 
seems to be a hard task in electricity markets. An 
approach based on the efficient frontier concept is 
proposed in [6] and an approach based on 
maximization of a mean-variance function using 
genetic algorithms to solve the stochastic 
optimization problem is proposed in [5]. 
     In this paper, we introduce a new approach to the 
problem, making use of Particle Swarm Optimization 
[7] to find the optimal solution. A mean-variance 
optimization function is used to maximize the results 
and simultaneously to practice the hedge against the 
volatility of the SMP. Scenario prediction is not 
addressed in this paper; however, in [8], we present a 
technique to find the maximum and the minimum 
SMP for a programming period with a certain 
confidence level α. 
 At least, to demonstrate that PSO is a very 
successful meta-heuristic, namely, with problems of 
this complexity, a comparison is made with a 

Evolutionary Programming (EP) technique called 
Genetic Algorithms (GA). 
 
2   Particle Swarm Optimization 
Particle swarm optimization has roots on artificial life 
in general and on bird flocking, fish schooling and 
swarming theory in particular [7]. 
     On a given iteration, a set of solutions called 
“particles” move around the search space from one 
iteration to another according to rules that depend on 
three factors [9]: inertia (the particles tend to move in 
the direction they have previously moved), memory 
(the particles tend to move in the direction of the best 
solution found so far on their trajectory) and 
cooperation (the particles tend to move in the 
direction of the global best solution, that is, in the 
direction found by all particles). 
 The movement rule followed by each particle can 
be expressed has: 
 

Xi
new=Xi+Vi

new (1) 
 
     Where: 
 

Xi
new represents the new position of 

particle i 
Xi represents the previous position of 

particle i 
Vi

new represents the velocity of particle i 
and is given by equation (2) 
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     Where: 
 
αi,k represents a weight fixed at the 

beginning of the process 
designated by cognitive 
acceleration parameter 

αi,j represents a weight fixed at the 
beginning of the process 
designated by social acceleration 
parameter 

randi.k
randi,j

represent random numbers from a 
uniform distribution on [0,1] 

dec(t) represents a function that will 
decrease with the iteration number 
reducing the importance of inertia 
term 

pbesti represents the best position found 
so far by particle i 

pbest(gbest) represents the best global position 
of all particles 
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3   Problem Formulation 
The problem related with the optimal contracts 
allocation for producers in a liberalized market is a 
very complex problem and has a very high 
importance. For a certain programming period, the 
producer has to decide which amount of energy he 
should sell and on what contractual forms to use. 
     Although the options used in electricity markets 
are of financial type, we aim to demonstrate that 
options with physical exercise could be perfectly used 
in electricity markets, as they appear to be a powerful 
tool for the producer to practice the hedge against the 
volatility of the SMP. 
     Options positions that have to be considered in the 
decision-support system are: short call1 and long put2. 
Our decision-support system considers that producers 
can use forward contracts to sell the energy. 
     The developed decision-support system has as 
main objective finding the optimal portfolio of 
contracts that a certain producer should establish for a 
programming period i with a duration h. This 
decision-support system is based on the maximization 
of a Mean-Variance function of the profit (π) for a set 
of scenarios forecasted for the considered 
programming period. 
 
3.1 Spot Market 
Producers can make use of the spot market to sell 
energy. So, the producer spot position revenue for the 
scenario j and programming period i is given by: 
 

ss
iji

ss
ji eSMPr ×= ,,  (3) 

 
Where, 
 

ss
jir ,  represents the revenue, in €, of the 

short position obtained by the producer 
in the spot market, for the 
programming period i and scenario j 

jiSMP,  represents the System Marginal Price 
for scenario j and for programming 
period i, in €/MWh 

ss
ie represents the energy amount, in 

MWh, that the producer decides to sell 
in the spot market for the 
programming period i 

 
3.2 Forward Contracts 
As it was previously stated, the producer can make 
use of forward contracts to sell energy. The revenue 

                                                           

                                                          

1 Sell a call option. 
2 Buy a put option. 

for short forward contracts positions assumed by the 
producer is given by: 
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Where, 

 
sf

jir ,  represents the revenue, in €, of the 
short position obtained by the producer 
on forward contracts, for the 
programming period i and scenario j 

sf
ik  represents the delivery price, in 

€/MWh, of the forward contract for the 
programming period i 

sf
ie represents the energy amount, in 

MWh, that the producer decides to sell 
in forward contracts for the 
programming period i 

 
3.3 Options Contracts 
As previously referred, in electricity markets options 
are usually of financial type. However, we have 
assumed that their exercise is physical and that they 
are European-style options3. 
  However, options have non-linear characteristics 
that difficult their manipulation. The exercise 
depends on the SMP for the delivery date. So, the 
revenue for the assumed positions is dependent from 
the considered scenario. 
 As we assume that options exercise is physical, 
the options positions that a producer could establish 
to sell the produced energy are: short call and long 
put. 
 For the short call position, the buyer will exercise 
the option if the SMP if greater than the exercise 
price for the delivery date because, in this situation, 
the buyer spends less money to buy the same quantity 
of energy. 
 The revenue for the short call position is, as we 
have seen, dependent on the scenario considered for 
the delivery date and is given by: 
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Where, 

 
sc

jir ,  represents the revenue, in €, of the short 
call position, for the programming 

 
3 Options are classified according to the exercise date in European 
and American options. European options can only be exercised at 
the exercise date whereas American options can be exercised at 
any time up to the exercise date. 
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period i and scenario j 
sc
ip  represents the premium, in €/MWh, of 

the call option with delivery date 
coincident with the programming period 
i 

sc
ik  represents the delivery price, in €/MWh, 

of the call option with delivery date 
coincident with the programming period 
i 

jiSMP,  represents the System Marginal Price, in 
€/MWh, for scenario j and programming 
period i 

      
 For the long put position, the buyer of the option 
will exercise it if the SMP is lower than the exercise 
price for the exercise date because, in this situation, 
the producer (buyer) will sell the same quantity of 
energy more expensive than if he sells it in the spot 
market. 
 The revenue of the long put position is given by: 
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Where, 

 
lp

jir ,  represents the revenue, in €, of the 
long put position, for the programming 
period i and scenario j 

lp
ik  represents the delivery price, in 

€/MWh, of the put option with 
delivery date coincident with the 
programming period i 

lp
ip represents the premium, in €/MWh, of 

the put option with delivery date 
coincident with the programming 
period i 

jiSMP,
represents the System Marginal Price, 
in €/MWh, for scenario j and 
programming period i 

 
3.4 Optimization Problem 
The optimization problem formulation aims to 
maximize a Mean Variance function and is given by: 
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(9) 
 
Where, 

 
)(πiE  represents the expected value of the 

profit, in €, for the programming 
period i 

δi represents the producer risk aversion 
factor for the programming period i 

)(πiVar  represents the variance of the profit, in 
€, for the programming period i 

min,ie  represents the minimum energy, in 
MWh, that the producer can produce 
during the programming period i 

max,ie  represents the maximum energy, in 
MWh, that the producer can produce 
during the programming period i 

ss
ie represents the energy, in MWh, sold 

by the producer in the spot market in 
the programming period i 

sf
ie represents the energy, in MWh, 

negotiated in forward contracts 
assumed by the producer for the 
programming period i 

sc
ie represents the energy, in MWh, 

associated to the short call position 
assumed by the producer for the 
programming period i 

lp
ie represents the energy, in MWh, 

associated to the long put position 
assumed by the producer for the 
programming period i 

 
 Equation (7) is the objective function of this 
problem and represents a mean-variance function of 
the profit. This type of function is useful in problems 
of this nature because it allows finding the portfolio 
that maximizes the profit and simultaneously allows 
the practice of the hedge against the volatility of the 
SMP. The constraint (8) represents production limits.  
 The profit π for each programming period i and 
scenario j is the sum of all revenues minus the costs 
of production. However, the costs of production are 
function of the scenario j considered for that period. 
The profit and the cost of production can be 
expressed as follows: 
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 The profit is given by equation (10) and the 
production cost, expressed in €, by equations (11) to 
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(14). As we can see, production cost will depend on 
the considered scenarios due to the non-linear 
characteristics of options. 
 The satisfaction of constraints (8) and (9) can be 
achieved in practice by applying a penalty factor to 
the fitness function. 

 
4   Study Case 
The model presented in this paper is based on the 
maximization of the Mean Variance of the profit (π) 
for a certain programming period i. The expected 
value and the variance of the return are calculated for 
a set of scenarios S. 
 Let us consider that period i has the characteristics 
presented in Table 1. 
 

Table 1- Characteristics of programming period i 
Duration (h) 1 

SMP scenario 1 
(€/MWh; probability) 

(26; 0.6) 

SMP scenario 2 
(€/MWh; probability) 

(23; 0.4) 

 
4.1   Contracts characteristics 
The characteristics of options contracts, with delivery 
date coincident with the programming period i, are 
presented in Table 2. 
 

Table 2 - Characteristics of options contracts for 
period i 

 Exercise Price 
(€/MWh) 

Premium
(€/MWh) 

Short Call 24.21 0.80 
Long Put 25.32 1.82 

 
 Forward contracts with delivery date coincident 
with programming period i are negotiated at 23.25 
€/MWh. 
 The production cost function considered is equal 
to 

21,0220)( ggg PPPC ×+×+=  

with Pg in MW, C in €, =200 MW and =5 
MW. 

min
gP max

gP

 The risk aversion factor (δ i) is assumed to be 
equal to 0.5. 
 
4.2   Penalty functions 
The following penalty function (15) has been used to 
satisfy restriction (8): 
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 The following penalty function (18) can be used 
to satisfy restriction (9): 
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4.3   PSO Parameters 
The Particle Swarm Optimization (PSO) parameters 
used to find the optimal solutions are listed in Table 
3. 
 

Table 3 - Parameters used in PSO 
Parameter  
Nº. of Particles 20 
Nº. of Iterations 6000 
Nº. of Evaluations 120000 
Cognitive Acceleration 2 
Social Acceleration 2 
Initial inertia weight 0.9 
Final inertia weight 0.4 

 
4.4   Genetic Algorithm Parameters 
To evaluate PSO performance and that it is a very 
successful optimization method, we need to compare 
it with others and for that we choose an evolutionary 
technique called Genetic Algorithms (GA). The GA 
parameters used to find the optimal solutions are 
listed in Table 4. 
 

Table 4 - Parameters used in Genetic Algorithm 
Parameter  
Population Size 50 
Max. Generations 2400 
Nº. of Evaluations 120000 
Crossover Rate 0.8 
Mutation Rate 0.2 
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4.5   PSO Results vs. GA Results 
To demonstrate PSO superiority over GA in this 
particular problem, we use as stopping criteria the 
maximum number of evaluations and for each 
variable and was fixed in 120000. To achieve that, in 
PSO we use 20 particles and 6000 iterations and in 
GA were necessary 2400 generations to get the same 
number of evaluations because we use a population 
size of 50. Due to random initialization, the trajectory 
for each run is different. To compare PSO and GA 
were used 1000 runs to calculate averages and 
standard deviation of the results. The results for the 
considered case study using PSO are presented in 
Table 5. 
 

Table 5 - Optimal contractual positions using PSO 

Positions 
Average 
Quantity 
(MWh) 

Std. 
Deviation 
(MWh) 

% of total 
production 

capacity 
Short Spot 10.15 0.001419 5.1 
Short 
Forward 59.13 0.006179 29.6 

Short Call 31.56 0.003317 15.8 
Long Put 28.35 0.003274 14.2 
Total 129.19 -- 64.7 

 
     GA results for the case study are presented in 
Table 6.  
 

Table 6 - Optimal contractual positions using GA 

Positions 
Average 
Quantity 
(MWh) 

Std. 
Deviation 
(MWh) 

% of total 
production 

capacity 
Short Spot 10.15 0.006567 5.1 
Short 
Forward 59.13 0.020780 29.6 

Short Call 31.55 0.009529 15.8 
Long Put 28.35 0.011058 14.2 
Total 129.18 -- 64.7 

 
      As we can see from Table 5 and Table 6, PSO 
reveals superiority in terms of its robustness, 
evaluated by the standard deviation of the best 
solution obtained in 1000 runs. Also from Table 5 
and Table 6 we can see that only 64.7 % of the total 
production capacity should be used and that the 
producer should sell 5.1% of his total production 
capacity in the spot market. 
      In Table 7 is made a comparison between PSO 
and GA for the fitness function and computational 
time. 
 
 
 

Table 7 – Comparison of PSO with GA 

Algorithm 
Mean 

Fitness 
Value 

Std. 
Fitness 
Value 

Mean 
Time 
(sec.) 

PSO 1132.38604 6.2707e-7 10.765 
GA 1132.38604 5.8599e-6 67.914 

 
      From Table 7, beside the mean fitness values 
being equals for the two algorithms, PSO reveals 
again to be more robust (PSO standard deviation 
fitness value is 89.30 % lower than GA). PSO reveals 
also to be faster than GA to achieve better results. For 
the case study, the PSO mean computational time is 
84.15 % lower than GA. 
      Fig. 1 presents the energy to be sold under each 
type of contract. From this figure we can see that the 
majority of the energy should be sold in forward 
contracts, corresponding to 46% of the total energy 
that producer should sell. 

     
Fig.1 – Contractual positions 

   
 Fig.2 shows the graphical distribution for all 
contractual positions. 

 
Fig.2 - Graphical distribution by contractual position 

 
 The analysis of producer results for the scenarios 
S is shown in Fig. 3. 
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Fig.3 – Producer results for the set of scenarios S 

 
     From Fig.3 we can see when options are 
exercised and that producer results for the set of 
scenarios S are very stable. 
 PSO revealed to be an important tool for finding 
the optimal portfolio that allows the practice of the 
hedge against the volatility of the SMP and 
simultaneously for increasing the producer results. 
This meta-heuristic revealed also to be faster and 
more robust when compared with GA. 
 In Fig.4 is presented PSO and GA fitness 
functions evolution along the number of evaluations. 

 
Fig.4 – PSO and GA fitness functions evolution 

 
5   Conclusions 
All over the world, the electric sector is undergoing 
restructuration and liberalization processes resulting 
in competitive electricity markets.  
 However, electricity markets are not like 
traditional markets due to the specific characteristics 
of the negotiated “product”– the electric energy. One 
of the characteristics of the electricity markets that 
take more concerns to their participants is the 
volatility of the System Marginal Price (SMP). 
Derivatives markets introduce a set of tools 
(contracts), making these markets more liquid and 
allowing their participants the practice of the hedge 
against the spot market price. 
 In this paper we presented a Mean Variance 
optimization method that allows the participants of 
electricity markets (and in particular the producers) to 

practice the hedge against the volatility of the System 
Marginal Price, using forward and options contracts. 
 This method is based on the use of Particle 
Swarm Optimization (PSO), which revealed to be a 
successful meta-heuristic tool for problems with this 
complexity. For the study case presented in this 
paper, Particle Swarm Optimization (PSO) proved its 
superiority over Genetic Algorithms (GA) in 
robustness and in computational time necessary to 
find the optimal solutions. 
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