
On the Solution of Ill-Conditioned Systems of Linear
and Non-Linear Equations via Genetic Algorithms (GAs) and

Nelder-Mead Simplex Search

Nikos E. Mastorakis
Military Institutes of University Education (ASEI)

Hellenic Naval Academy, Terma Hatzikyriakou 18539,
Piraeus, GREECE

http://www.wseas.org/mastorakis

Abstract: - Solution of Ill-Conditioned Systems of Linear and/or Non-Linear Equations are tested via Genetic
Algorithms. The method is compared with other methods via specific numerical examples. Directions for future
research are also provided.

Key-Words: - Ill-Conditioned Systems, Non – linear equations, genetic algorithms, numerical solutions

1 Introduction

Ill-Conditioned Systems arise in many problems

in modeling and simulation of physical, engineering,
socio-economic and biological systems.

Solving Systems of Linear Equations or Solving
Systems of non-Linear Equations is now always an
easy task, due to ill-conditioning of these systems in
many times.

We recall that a system of linear equations
 BAX =
is called ill- Conditioned

0det ≈A
Also, we recall that a system of non-linear

equations 0)(=Xf is called ill-conditioned at the
point *X (where *X is a point-solution of

0)(=Xf , i.e. 0)(* ≈Xf) if 0))((det * ≈XfJ in
a closed set containing *X where J is the Jacobian
matrix of 0)(=Xf

Ill-Conditioned Systems are very sensitive to

roundoff errors and, therefore, may pose problems
during computation of the solution [6]. During
computing process, these errors induce small
changes in the coefficients which, in turn, result a
large error in the solution [6].

In this paper, we attempt to overcome this
problem by using evolutionary computing. We shall
need the following definitions from the Genetic
Algorithms practice:

Fitness function is the objective function we want to
minimize.

Population size specifies how many individuals
there are in each generation. We can use various
Fitness Scaling Options (rank, proportional, top,
shift linear, etc…[16]), as well as various Selection
Options (like Stochastic uniform, Remainder,
Uniform, Roulette, Tournament)[16].
Fitness Scaling Options: We can use scaling
functions. A Scaling function specifies the function
that performs the scaling. A scaling function
converts raw fitness scores returned by the fitness
function to values in a range that is suitable for the
selection function. We have the following options:
Rank Scaling Option: scales the raw scores based on
the rank of each individual, rather than its score.
The rank of an individual is its position in the sorted
scores. The rank of the fittest individual is 1, the
next fittest is 2 and so on. Rank fitness scaling
removes the effect of the spread of the raw scores.
Proportional Scaling Option: The Proportional
Scaling makes the expectation proportional to the
raw fitness score. This strategy has weaknesses
when raw scores are not in a "good" range. Top
Scaling Option: The Top Scaling scales the
individuals with the highest fitness values equally.
Shift linear Scaling Option: The shift linear scaling
option scales the raw scores so that the expectation
of the fittest individual is equal to a constant, which
you can specify as Maximum survival rate,
multiplied by the average score.

We can have also option in our Reproduction in
order to determine how the genetic algorithm
creates children at each new generation. For

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp29-35)

example, Elite Counter specifies the number of
individuals that are guaranteed to survive to the next
generation.
Crossover combines two individuals, or parents, to
form a new individual, or child, for the next
generation.

Crossover fraction specifies the fraction of the next
generation, other than elite individuals, that are
produced by crossover.

Scattered Crossover: Scattered Crossover creates a
random binary vector. It then selects the genes
where the vector is a 1 from the first parent, and the
genes where the vector is a 0 from the second
parent, and combines the genes to form the child.

Mutation: Mutation makes small random changes in
the individuals in the population, which provide
genetic diversity and enable the GA to search a
broader space.
Gaussian Mutation: We call that the Mutation is
Gaussian if the Mutation adds a random number to
each vector entry of an individual. This random
number is taken from a Gaussian distribution
centered on zero. The variance of this distribution
can be controlled with two parameters. The Scale
parameter determines the variance at the first
generation. The Shrink parameter controls how
variance shrinks as generations go by. If the Shrink
parameter is 0, the variance is constant. If the Shrink
parameter is 1, the variance shrinks to 0 linearly as
the last generation is reached.

Migration is the movement of individuals between
subpopulations (the best individuals from one
subpopulation replace the worst individuals in
another subpopulation). We can control how
migration occurs by the following three parameters.
Direction of Migration: Migration can take place
in one direction or two. In the so-called “Forward
migration” the nth subpopulation migrates into the
(n+1)'th subpopulation. while in the so-called “Both
directions Migration”, the nth subpopulation
migrates into both the (n-1)th and the (n+1)th
subpopulation.
Migration wraps at the ends of the subpopulations.
That is, the last subpopulation migrates into the first,
and the first may migrate into the last. To prevent
wrapping, specify a subpopulation of size zero.

Fraction of Migration is the number of the
individuals that we move between the
subpopulations. So, Fraction of Migration is the

fraction of the smaller of the two subpopulations
that moves. If individuals migrate from a
subpopulation of 50 individuals into a population of
100 individuals and Fraction is 0.1, 5 individuals
(0.1 * 50) migrate. Individuals that migrate from
one subpopulation to another are copied. They are
not removed from the source subpopulation.
Interval of Migration counts how many
generations pass between migrations.

The Nelder-Mead simplex algorithm appeared in
1965 and is now one of the most widely used
methods for nonlinear unconstrained optimization
[13]÷[16]. The Nelder-Mead method attempts to
minimize a scalar-valued nonlinear function of n
real variables using only function values, without
any derivative information (explicit or implicit). The
Nelder-Mead method thus falls in the general class
of direct search methods.

In this paper, we try to solve Ill-Conditioned
Systems using Genetic Algorithm. The results are
not satisfactory. So, after the end of the Genetic
Algorithm, we continue with and the Nelder-Mead
Simplex Search. The method is outlined in Session
2 with specific examples.

2 Numerical Results for Systems of
Linear Equations

Example 1:

Consider the system of equations

632 =+ yx

9999.50001.30001.2 = + yx

Note that: 0001.0)det(−=A

We consider the error

)0001.30001.2(9999.5)32(6 yxyxe + −++−=

First Method for minimizing e:

Our first method uses a GA with fitness function the
aforementioned error, where we use

• Initial Population: 20 individuals;

• Fitness Scaling: We use Rank Scaling
Option

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp29-35)

• Selection: Tournament selection with
Tournament size 4

• Reproduction: Elite Counter 2, Crossover
Fraction 0.8.

• Mutation: We use Gaussian Mutation with
Scale 1 and Shrink 1.

• Crossover: Scattered

• Migration: Both Direction Migration with
Fraction of Migration 0.2 and Interval of
Migration 20

• Number of Generations: 1000

So, we run our algorithm via Matlab ([16]) for 1000
generations and we take various solutions as in the
following table. The initial range for each variable x,
y is [0,1].

x y e
2.2908 0.4727 3.7635* 410−
-0.4602 2.3068 2.8466* 410−
4.8028 -1.2019 4.6009* 410−
-0.8790 2.5860 5.9722* 410−
3.8601 -0.5736 5.0179* 410−
1.5613 0.9591 3.5203* 410−
0.4839 1.6775 7.7749* 410−
 2.2391 0.5073 5.3724* 410−
 0.6567 1.5620 5.3182* 410−
 1.6299 0.9134 3.5433* 410−
 1.1832 1.2111 3.3943* 410−
 3.4816 -0.3212 4.1604* 410−
 -4.9566 5.3045 5.9877* 410−
 2.7632 0.1578 3.9210* 410−

Unfortunately, our GA does not give a satisfactory
and unique result with 1000 generations (iterations).

We compare our first method of GAs with the
following method of Nelder-Mead.

Second Method for minimizing e:
We use the method of Nelder-Mead with various
initial values. We run the Nelder-Mead algorithm
via Matlab ([16]).

0x 0y x y e
0 0 0.2920 1.8053 3.0973* 410−
0 4 0.0006 1.9995 3.0001* 410−
4 0 2.9993 0.0004 3.9996* 410−
1 1 -1.3936 2.9290 2.5355* 410−
1 2 0.4908 1.6728 3.1636* 410−
2 1 -0.7538 2.5025 2.7487* 410−

The Nelder-Mead method does not provide also
satisfactory results.

Third Method for minimizing e (Hybrid Method):
We use the first method, but after 1000 generations
(iterations) we continue with Nelder-Meed (via
Matlab, ([16]).
The results are much better, because in each case
and independently on the initial values we obtain:

9−=x and 8=y

So, using the aforementioned GA with random
initial population, we find after 1000 generations

8999.2−=x and 0666.0=y and 410*3.9665 −=e
Using these values 8999.2−=x , 0666.0=y for
Nelder-Meed we find 9−=x , 8=y and

1910*0856.8 −=e

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Generation

Fi
tn

es
s

va
lu

e

Best: 0.00039665 Mean: 0.0030154

Example 2:

Consider again the system

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp29-35)

632 =+ yx

9999.50001.30001.2 = + yx

and the error

22))0001.30001.2(9999.5())32(6(yxyxe + −++−=

First Method for minimizing e:

The error e can be considered as fitness function in
our GA where we use:

• Initial Population: 20 individuals

• Fitness Scaling: We use Rank Scaling
Option

• Selection: Tournament selection with
Tournament size 4

• Reproduction: Elite Counter 2, Crossover
Franction 0.8.

• Mutation: We use Gaussian Mutation with
Scale 1 and Shrink 1.

• Crossover: Scattered

• Migration: Both Direction Migration with
Fraction of Migration 0.2 and Interval of
Migration 20

• Number of Generations: 1000

We run again our algorithm via Matlab ([16]) for
1000 generations and we take various solutions as in
the following table. . The initial range for each
variable x, y is [0,1].

x y e
3.8601 -0.5736 2.1777* 710−
1.9899 0.6733 1.0787* 710−
0.7546 1.4970 3.9951* 710−
0.4230 1.7181 1.7562* 710−
4.6694 -1.1130 1.0479* 710−
5.4876 -1.6587 1.5078* 710−
-0.5143 2.3429 1.8869* 710−
-0.4182 2.2787 1.1411* 710−
-1.9146 3.2763 2.8597* 710−
-0.7863 2.5240 3.7120* 710−

Second Method for minimizing e:
We use the method of Nelder-Mead with various
initial values. We run the Nelder-Mead algorithm
via Matlab ([16]).

0x 0y x y e
0 0 0.3305 1.7796 4.8399* 810−
0 10 0.0008 1.9995 4.8500* 810−
0 1 0.0012 1.9992 4.5207* 810−
1 0 2.9968 0.0020 9.5757* 810−

The Nelder-Mead method does not provide also
satisfactory results in every case.

Third Method for minimizing e (Hybrid Method):
We use the first method, but after 1000 generations
(iterations) we continue with Nelder-Meed (via
Matlab, ([16]).
The results are much better, because in each case
and independently on the initial values we obtain:

9−=x and 8=y

Thus, using the aforementioned GA with random
initial population, we find after 1000 generations

8644.0=x and 4237.1=y and 410*6652.6 −=e

 Using these values 8644.0=x , 4237.1=y as
initial values for Nelder-Meed we find 9−=x ,

8=y and 1810*0587.1 −=e

100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

18

Generation

Fi
tn

es
s

va
lu

e

Best: 6.6652e-008 Mean: 6.6652e-008

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp29-35)

3 Numerical Results for Systems of
Non-Linear Equations

Example 3:

Suppose the system of non-linear equations:

1322 −=+− yxx

9999.10001.69999.32 2 −=+− yxx

therefore 0))((det * ≈XfJ . This creates problems
in the numerical solution of the afore mentioned
system

To overcome these difficulties we consider the error

9999.10001.69999.32132 22 ++−+++−= yxxyxxe

First Method for minimizing e:

As first method we try to run the Genetic Algorithm
with the aforementioned parameters.

So, we run our algorithm via Matlab ([16]) for 1000
generations and we take various solutions as in the
following table. The initial range for each variable x,
y is also [0,1].

x y e
1.5704 -0.1084 5.3803* 410−
0.9379 -0.0013 2.0284* 410−
-0.0998 -0.4033 7.7005* 410−
0.7587 -0.0195 6.7849* 410−
-0.0773 -0.3869 1.1607* 410−
1.7718 -0.1986 2.9938* 410−
0.4306 -0.1080 1.3845* 410−
 -0.5223 -0.7725 2.0829* 410−
1.9471 -0.2990 2.7950* 410−
 -0.7527 -1.0240 3.3292* 410−
 2.3876 -0.6418 1.5481* 410−
 1.0577 -0.0011 9.3678* 510−
 1.8430 -0.2368 0.0010
 1.6076 -0.1232 8.6899* 410−

Second Method for minimizing e:
We use the method of Nelder-Mead with various
initial values. We run the Nelder-Mead algorithm
via Matlab ([16]).

0x 0y x y e
0 0 0.1866 -0.2205 7.3412* 510−
0 1 0.0057 -0.3295 1.1253* 410−
0 2 0.0049 -0.3300 1.5000* 410−
2 1 0.6420 -0.0427 2.0056* 510−
2 2 2.4808 -0.7309 3.7497* 510−
-1 -1 -0.8720 -1.1681 1.5202* 410−

Third Method for minimizing e (Hybrid Method):
We use the first method, but after 1000 generations
(iterations) we continue with Nelder-Meed (via
Matlab, ([16]).
Unfortunately, the results in this system of non-
linear equations are not so good as in the case of
linear equations. This case is faced by increasing the
mutation. We use uniform mutation with 0.3 rate.

That means that the algorithm will select a fraction
of the vector entries of an individual for mutation,
where each entry has a probability of 0.30 of being
mutated. In the second step, the algorithm replaces
each selected entry by a random digit 0 or 1.
After this change, the results of our hybrid method
are also impressive, as we have convergence to x=1
and y=0.
So, using the aforementioned GA (uniform mutation
with 0.3 rate) starting from random initial
population, we find after 1000 generations

99682.0=x , 00355.0=y and
610*2060.9 −=e .

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp29-35)

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

Generation

Fi
tn

es
s

va
lu

e

Best: 0.003638 Mean: 0.4717

Note the result of mutation in the previous figure.

In the sequel, we use these values 99682.0=x ,

00355.0=y as starting points for our Nelder-Meed
algorithm and we find solution

1≈x and 0≈y

Example 4:

Here, we consider the system of non-linear
equations:

1322 −=+− yxx

9999.10001.69999.32 2 −=+− yxx

with the error

2222)9999.10001.69999.32()132(++−+++−= yxxyxxe

First Method for minimizing e:

We start again minimizing the error e (fitness
function) using the Genetic Algorithm with the
aforementioned parameters. We run our algorithm
via Matlab ([16]) for 1000 generations. Some
solutions are given in the following table. The initial
range for each variable x, y is also [0,1].

x y e
0.3532 -0.1395 3.5571*10-7
2.0725 -0.3835 3.8563*10-8
-0.8753 -1.1722 2.5894*10-8
1.2539 -0.0215 1.0702*10-9

1.5044 -0.0848 7.3618*10-9
2.4817 -0.7318 1.1828*10-9
-0.2560 -0.5258 2.7406*10-8
-1.1089 -1.4826 1.7773*10-6
2.4342 -0.6856 2.9775*10-8
0.7235 -0.0256 7.8382*10-7
 2.5727 -0.8246 4.1497*10-7
-0.4219 -0.6739 1.6545*10-8
-1.3301 -1.8097 5.0446*10-8
2.8456 -1.1354 2.7533*10-9

Second Method for minimizing e:
We can use again the method of Nelder-Mead with
various initial values. We run the Nelder-Mead
algorithm via Matlab ([16]).

0x 0y x y e
0 0 0.1866 -0.2205 3.6829*10-9
0 1 0.0057 -0.3295 8.9839*10-9
0 2 0.0049 -0.3300 1.1985*10-8
2 1 0.6420 -0.0427 3.1230*10-10
2 2 2.4808 -0.7309 1.1247*10-9
-1 -1 -0.8720 -1.1681 1.7154*10-8

Third Method for minimizing e (Hybrid Method):

We use the hybrid method where we change the
mutation. We use uniform mutation with 0.3 rate.
The results of our hybrid method are also
wonderful, as we have convergence to x=1 and y=0.
In this case, we have the error:
So, using the aforementioned GA (uniform mutation
with 0.3 rate) starting from random initial
population, we find after 1000 generations

99977.0=x , 00068.0=y and
510*0767.2 −=e .

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp29-35)

100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

Generation

Fi
tn

es
s

va
lu

e

Best: 9.206e-006 Mean: 1.1284

Note the result of mutation in the previous figure.

In the sequel, we use these values 99977.0=x ,

00068.0=y as starting points for our Nelder-Meed
algorithm and we find solution

1≈x and 0≈y

4 Conclusion
In this paper, an Hybrid Method (GA + Nelder
Meed) is proved to be a strongest tool for solving of
Ill-Conditioned Systems of Linear and/or Non-
Linear Equations. The method is outlined via
specific numerical examples. Some previous work
of the author can be found in [7]÷[10].

References:

[1] Goldberg D.E. (1989), Genetic Algorithms in

Search, Optimization and Machine Learning,
Addison-Wesley, Second Edition, 1989

[2] Grefenstette J.J., Optimization of control
parameters for Genetic Algorithms, IEEE Trans.
Systems, Man and Cybernetics, SMC 16,
Jan/Feb 1986, pp. 128

[3] Eberhart R., Simpson P. and Dobbins R. (1996),
Computational Intelligence PC Tools, AP
Professionals.

[4] Kosters W.A., Kok J.N. and Floreen P., Fourier
Analysis of Genetic Algorithms, Theoretical
Computer Science, Elsevier, 229, 199, pp. 143-
175.

[5] Angel Fernando Kuri-Morales, “Solution of
Simultaneous Non-Linear Equations using
Genetic Algorithms”, WSEAS Transactions on
SYSTEMS, Issue 1, Volume 2, January 2003,
pp.44-51

[6] E. Balagusuramy, Numerical Methods, Tata
McGraw Hill, New Delhi, 1999

[7] Nikos E. Mastorakis, "Solving Non-linear
Equations via Genetic Algorithms”. Proceedings
of the 6th WSEAS Conference on Evolutionary
Computing, Lisbon, Portugal, June 16-18, 2005.

[8] Gonos I.F., Mastorakis N.E., Swamy M.N.S.:
“A Genetic Algorithm Approach to the Problem
of Factorization of General Multidimensional
Polynomials”, IEEE Transactions on Circuits
and Systems I: Fundamental Theory and
Applications, Part I, Vol. 50, No. 1, pp. 16-22,
January 2003.

[9] Mastorakis N.E., Gonos I.F., Swamy M.N.S.:
“Design of 2-Dimensional Recursive Filters
using Genetic Algorithms”, IEEE Transactions
on Circuits and Systems I: Fundamental Theory
and Applications, Part I, Vol. 50, No. 5, pp.
634-639, May 2003.

[10] Mastorakis N.E., Gonos I.F., Swamy
M.N.S.: “Stability of Multidimensional Systems
using Genetic Algorithms”, IEEE Transactions
on Circuits and Systems, Part I, Vol. 50, No. 7,
pp. 962-965, July 2003.

[11] Andrew Curtis and Roel Snieder:
“Reconditioning inverse problems using the
genetic algorithm and revised parameterization”,
Geophysics, Vol. 62, No. 4.pp. 1524–1532,
July-August 1997.

[12] Ralf Östermark, “Solving Irregular
Econometric and Mathematical Optimization
Problems with a Genetic Hybrid Algorithm”,
Computational Economics, Volume 13 , Issue
2, pp. 103 - 115 , April 1999.

[13] Lagarias, J.C., J. A. Reeds, M. H. Wright,
and P. E. Wright, "Convergence Properties of
the Nelder-Mead Simplex Method in Low
Dimensions," SIAM Journal of Optimization,
Vol. 9 Number 1, pp. 112-147, 1998.

[14] J. A. Nelder and R. Mead, “A simplex
method for function minimization”, Computer
Journal, 7 , 308-313, 1965

[15] F. H. Walters, L. R. Parker, S. L. Morgan,
and S. N. Deming, Sequential Simplex
Optimization, CRC Press, Boca Raton, FL,
1991.

[16] Matlab, Version 7.0.0, by Math Works,
Natick, MA, 1994 http://www.mathworks.com

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp29-35)

