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Abstract: - Solution of Ill-Conditioned Systems of Linear and/or Non-Linear Equations are tested via Genetic 
Algorithms. The method is compared with other methods via specific numerical examples. Directions for future 
research are also provided. 
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1 Introduction 

 
Ill-Conditioned Systems arise in many problems 

in modeling and simulation of physical, engineering, 
socio-economic and biological systems.  

Solving Systems of Linear Equations or Solving 
Systems of non-Linear Equations is now always an 
easy task, due to ill-conditioning of these systems in 
many times. 

We recall that a system of linear equations 
 BAX =  
is called ill- Conditioned  

0det ≈A  
Also, we recall that a system of non-linear 

equations 0)( =Xf  is called ill-conditioned at the 
point *X  (where *X  is a point-solution of 

0)( =Xf , i.e. 0)( * ≈Xf ) if  0))((det * ≈XfJ  in 
a closed set containing  *X where J  is the Jacobian 
matrix of 0)( =Xf  

 
Ill-Conditioned Systems are very sensitive to 

roundoff errors and, therefore, may pose problems 
during computation of the solution [6]. During 
computing process, these errors induce small 
changes in the coefficients which, in turn, result a 
large error in the solution [6]. 

In this paper, we attempt to overcome this 
problem by using evolutionary computing. We shall 
need the following definitions from the Genetic 
Algorithms practice: 
 
Fitness function is the objective function we want to 
minimize.   

Population size specifies how many individuals 
there are in each generation. We can use various 
Fitness Scaling Options (rank, proportional, top, 
shift linear, etc…[16]), as well as various Selection 
Options (like Stochastic uniform, Remainder, 
Uniform, Roulette, Tournament)[16].  
Fitness Scaling Options: We can use scaling 
functions. A Scaling function specifies the function 
that performs the scaling. A scaling function 
converts raw fitness scores returned by the fitness 
function to values in a range that is suitable for the 
selection function. We have the following options: 
Rank Scaling Option: scales the raw scores based on 
the rank of each individual, rather than its score. 
The rank of an individual is its position in the sorted 
scores. The rank of the fittest individual is 1, the 
next fittest is 2 and so on. Rank fitness scaling 
removes the effect of the spread of the raw scores. 
Proportional  Scaling Option: The Proportional 
Scaling makes the expectation proportional to the 
raw fitness score. This strategy has weaknesses 
when raw scores are not in a "good" range. Top 
Scaling Option: The Top Scaling scales the 
individuals with the highest fitness values equally. 
Shift linear Scaling Option: The shift linear scaling 
option scales the raw scores so that the expectation 
of the fittest individual is equal to a constant, which 
you can specify as Maximum survival rate, 
multiplied by the average score.  
 
 
We can have also option in our Reproduction in 
order to determine how the genetic algorithm 
creates children at each new generation. For 
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example, Elite Counter specifies the number of 
individuals that are guaranteed to survive to the next 
generation.  
Crossover combines two individuals, or parents, to 
form a new individual, or child, for the next 
generation.  
 
Crossover fraction specifies the fraction of the next 
generation, other than elite individuals, that are 
produced by crossover.   
 
Scattered Crossover:  Scattered Crossover creates a 
random binary vector. It then selects the genes 
where the vector is a 1 from the first parent, and the 
genes where the vector is a 0 from the second 
parent, and combines the genes to form the child.  
 
Mutation: Mutation makes small random changes in 
the individuals in the population, which provide 
genetic diversity and enable the GA to search a 
broader space.  
Gaussian Mutation: We call that the Mutation is 
Gaussian if the Mutation adds a random number to 
each vector entry of an individual. This random 
number is taken from a Gaussian distribution 
centered on zero. The variance of this distribution 
can be controlled with two parameters. The Scale 
parameter determines the variance at the first 
generation. The Shrink parameter controls how 
variance shrinks as generations go by. If the Shrink 
parameter is 0, the variance is constant. If the Shrink 
parameter is 1, the variance shrinks to 0 linearly as 
the last generation is reached. 

Migration is the movement of individuals between 
subpopulations (the best individuals from one 
subpopulation replace the worst individuals in 
another subpopulation). We can control how 
migration occurs by the following three parameters.  
Direction of Migration: Migration can take place 
in one direction or two. In the so-called “Forward 
migration” the nth subpopulation migrates into the 
(n+1)'th subpopulation. while in the so-called “Both 
directions Migration”, the nth subpopulation 
migrates into both the (n-1)th and the (n+1)th 
subpopulation.  
Migration wraps at the ends of the subpopulations. 
That is, the last subpopulation migrates into the first, 
and the first may migrate into the last. To prevent 
wrapping, specify a subpopulation of size zero.  

Fraction of Migration is the number of the  
individuals that we move between the 
subpopulations. So, Fraction of Migration is the 

fraction of the smaller of the two subpopulations 
that moves. If individuals migrate from a 
subpopulation of 50 individuals into a population of 
100 individuals and Fraction is 0.1, 5 individuals 
(0.1 * 50) migrate. Individuals that migrate from 
one subpopulation to another are copied. They are 
not removed from the source subpopulation. 
Interval of Migration counts how many 
generations pass between migrations. 
 

The Nelder-Mead simplex algorithm appeared in 
1965 and is now one of the most widely used 
methods for nonlinear unconstrained optimization 
[13]÷[16].  The Nelder-Mead method attempts to 
minimize a scalar-valued nonlinear function of n 
real variables using only function values, without 
any derivative information (explicit or implicit). The 
Nelder-Mead method thus falls in the general class 
of direct search methods. 

In this paper, we try to solve Ill-Conditioned 
Systems using Genetic Algorithm. The results are 
not satisfactory. So, after the end of the Genetic 
Algorithm, we continue with and the Nelder-Mead 
Simplex Search. The method is outlined in Session 
2 with specific examples. 

2 Numerical Results for Systems of 
Linear Equations 

Example 1: 

Consider the system of equations 

632 =+ yx  

9999.50001.30001.2 = + yx  

Note that: 0001.0)det( −=A  

We consider the error 

)0001.30001.2(9999.5)32(6 yxyxe  + −++−=   

First Method for minimizing e: 

Our first method uses a GA with fitness function the 
aforementioned error, where we use 

• Initial Population: 20 individuals; 

• Fitness Scaling: We use Rank Scaling 
Option 
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• Selection: Tournament selection with 
Tournament size 4 

• Reproduction: Elite Counter 2, Crossover 
Fraction 0.8.  

• Mutation: We use Gaussian Mutation with 
Scale 1 and Shrink 1.  

• Crossover: Scattered 

• Migration: Both Direction Migration with 
Fraction of Migration 0.2 and Interval of 
Migration 20 

• Number of Generations: 1000 

So, we run our algorithm via Matlab ([16]) for 1000 
generations and we take various solutions as in the 
following table. The initial range for each variable x, 
y is [0,1]. 

x y e 
2.2908 0.4727 3.7635* 410−  
-0.4602 2.3068 2.8466* 410−  
4.8028 -1.2019 4.6009* 410−  
-0.8790 2.5860 5.9722* 410−  
3.8601 -0.5736 5.0179* 410−  
1.5613 0.9591 3.5203* 410−  
0.4839 1.6775 7.7749* 410−  
 2.2391  0.5073 5.3724* 410−  
 0.6567  1.5620 5.3182* 410−  
 1.6299  0.9134 3.5433* 410−  
 1.1832  1.2111 3.3943* 410−  
 3.4816  -0.3212 4.1604* 410−  
 -4.9566  5.3045 5.9877* 410−  
 2.7632  0.1578 3.9210* 410−  

 
Unfortunately, our GA does not give a satisfactory 
and unique result with 1000 generations (iterations).  

We compare our first method of GAs with the 
following method of Nelder-Mead.  

 

Second Method for minimizing e:  
We use the method of Nelder-Mead with various 
initial values. We run the Nelder-Mead algorithm 
via Matlab ([16]). 
 

0x 0y  x y e 
0 0 0.2920 1.8053 3.0973* 410−  
0 4 0.0006 1.9995 3.0001* 410−  
4 0 2.9993 0.0004 3.9996* 410−  
1 1 -1.3936 2.9290 2.5355* 410−  
1 2 0.4908 1.6728 3.1636* 410−  
2 1 -0.7538 2.5025 2.7487* 410−  

 
The Nelder-Mead method does not provide also 
satisfactory results. 
 
Third Method for minimizing e (Hybrid Method): 
We use the first method, but after 1000 generations 
(iterations) we continue with Nelder-Meed (via 
Matlab, ([16]). 
The results are much better, because in each case 
and independently on the initial values we obtain: 

9−=x  and 8=y  
 
So, using the aforementioned GA with random 
initial population, we find after 1000 generations 

8999.2−=x  and  0666.0=y  and 410*3.9665 −=e  
Using these values 8999.2−=x , 0666.0=y  for 
Nelder-Meed we find 9−=x , 8=y  and 

1910*0856.8 −=e  

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Generation

Fi
tn

es
s 

va
lu

e

Best: 0.00039665 Mean: 0.0030154

 

 

Example 2: 

Consider again the system 
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632 =+ yx  

9999.50001.30001.2 = + yx  

and the error 

22 ))0001.30001.2(9999.5())32(6( yxyxe  + −++−=
 

First Method for minimizing e: 

The error e can be considered as fitness function in 
our  GA where we use:  

• Initial Population: 20 individuals 

• Fitness Scaling: We use Rank Scaling 
Option 

• Selection: Tournament selection with 
Tournament size 4 

• Reproduction: Elite Counter 2, Crossover 
Franction 0.8.  

• Mutation: We use Gaussian Mutation with 
Scale 1 and Shrink 1.  

• Crossover: Scattered 

• Migration: Both Direction Migration with 
Fraction of Migration 0.2 and Interval of 
Migration 20 

• Number of Generations: 1000 

We run again our algorithm via Matlab ([16]) for 
1000 generations and we take various solutions as in 
the following table. . The initial range for each 
variable x, y is [0,1]. 

 

x y e 
3.8601 -0.5736 2.1777* 710−  
1.9899 0.6733 1.0787* 710−  
0.7546 1.4970 3.9951* 710−  
0.4230 1.7181 1.7562* 710−  
4.6694 -1.1130 1.0479* 710−  
5.4876 -1.6587 1.5078* 710−  
-0.5143 2.3429 1.8869* 710−  
-0.4182 2.2787 1.1411* 710−  
-1.9146  3.2763 2.8597* 710−  
-0.7863 2.5240 3.7120* 710−  

 
Second Method for minimizing e: 
We use the method of Nelder-Mead with various 
initial values. We run the Nelder-Mead algorithm 
via Matlab ([16]). 
 

0x 0y  x y e 
0 0 0.3305 1.7796 4.8399* 810−  
0 10 0.0008 1.9995 4.8500* 810−  
0 1 0.0012 1.9992 4.5207* 810−  
1 0 2.9968 0.0020 9.5757* 810−  

 
The Nelder-Mead method does not provide also 
satisfactory results in every case. 
 
Third Method for minimizing e (Hybrid Method): 
We use the first method, but after 1000 generations 
(iterations) we continue with Nelder-Meed (via 
Matlab, ([16]). 
The results are much better, because in each case 
and independently on the initial values we obtain: 

9−=x  and 8=y  
 
Thus, using the aforementioned GA with random 
initial population, we find after 1000 generations 

8644.0=x  and 4237.1=y  and 410*6652.6 −=e   
 
 Using these values 8644.0=x , 4237.1=y  as 
initial values for Nelder-Meed we find  9−=x , 

8=y   and 1810*0587.1 −=e  
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3 Numerical Results for Systems of 
Non-Linear Equations 

Example 3: 

Suppose the system of non-linear equations: 

1322 −=+− yxx  

9999.10001.69999.32 2 −=+− yxx  

therefore 0))((det * ≈XfJ . This creates problems 
in the numerical solution of the afore mentioned 
system 

To overcome these difficulties we consider the error 

9999.10001.69999.32132 22 ++−+++−= yxxyxxe

 

First Method for minimizing e: 

As first method we try to run the Genetic Algorithm 
with the aforementioned parameters. 

So, we run our algorithm via Matlab ([16]) for 1000 
generations and we take various solutions as in the 
following table. The initial range for each variable x, 
y is also [0,1]. 

 

x y e 
1.5704 -0.1084 5.3803* 410−  
0.9379 -0.0013 2.0284* 410−  
-0.0998 -0.4033 7.7005* 410−  
0.7587 -0.0195 6.7849* 410−  
-0.0773 -0.3869 1.1607* 410−  
1.7718 -0.1986 2.9938* 410−  
0.4306 -0.1080 1.3845* 410−  
 -0.5223  -0.7725 2.0829* 410−  
1.9471  -0.2990 2.7950* 410−  
 -0.7527  -1.0240 3.3292* 410−  
 2.3876  -0.6418 1.5481* 410−  
 1.0577 -0.0011 9.3678* 510−  
 1.8430  -0.2368 0.0010 
 1.6076  -0.1232 8.6899* 410−  

 

Second Method for minimizing e: 
We use the method of Nelder-Mead with various 
initial values. We run the Nelder-Mead algorithm 
via Matlab ([16]). 
 

0x 0y  x y e 
0 0 0.1866 -0.2205 7.3412* 510−  
0 1 0.0057 -0.3295 1.1253* 410−  
0 2 0.0049 -0.3300 1.5000* 410−  
2 1 0.6420 -0.0427 2.0056* 510−  
2 2 2.4808 -0.7309 3.7497* 510−  
-1 -1 -0.8720 -1.1681 1.5202* 410−  

 

Third Method for minimizing e (Hybrid Method): 
We use the first method, but after 1000 generations 
(iterations) we continue with Nelder-Meed (via 
Matlab, ([16]). 
Unfortunately, the results in this system of non-
linear equations are not so good as in the case of 
linear equations. This case is faced by increasing the 
mutation.  We use uniform mutation with 0.3 rate.  

That means that the algorithm will select a fraction 
of the vector entries of an individual for mutation, 
where each entry has a probability of 0.30 of being 
mutated. In the second step, the algorithm replaces 
each selected entry by a random digit 0 or 1.  
After this change, the results of our hybrid method 
are also impressive, as we have convergence to x=1 
and y=0. 
So, using the aforementioned GA (uniform mutation 
with 0.3 rate) starting from random initial 
population, we find after 1000 generations 

99682.0=x , 00355.0=y  and 
610*2060.9 −=e .  
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Note the result of mutation in the previous figure. 
 
 
In the sequel, we use these values 99682.0=x , 

00355.0=y  as starting points for our Nelder-Meed 
algorithm and we find solution 

1≈x  and 0≈y  

 

Example 4: 

Here, we consider the system of non-linear 
equations: 

1322 −=+− yxx  

9999.10001.69999.32 2 −=+− yxx  

with the error 

2222 )9999.10001.69999.32()132( ++−+++−= yxxyxxe
 

First Method for minimizing e: 

We start again minimizing the error e (fitness 
function) using the Genetic Algorithm with the 
aforementioned parameters. We run our algorithm 
via Matlab ([16]) for 1000 generations. Some 
solutions are given in the following table. The initial 
range for each variable x, y is also [0,1]. 

x y e 
0.3532 -0.1395 3.5571*10-7 
2.0725 -0.3835 3.8563*10-8 
-0.8753 -1.1722 2.5894*10-8 
1.2539 -0.0215 1.0702*10-9 

1.5044 -0.0848 7.3618*10-9 
2.4817 -0.7318 1.1828*10-9 
-0.2560 -0.5258 2.7406*10-8 
-1.1089 -1.4826 1.7773*10-6 
2.4342 -0.6856 2.9775*10-8 
0.7235 -0.0256 7.8382*10-7 
 2.5727  -0.8246 4.1497*10-7 
-0.4219 -0.6739 1.6545*10-8 
-1.3301 -1.8097 5.0446*10-8 
2.8456 -1.1354 2.7533*10-9 

 

 

Second Method for minimizing e: 
We can use again the method of Nelder-Mead with 
various initial values. We run the Nelder-Mead 
algorithm via Matlab ([16]). 
 
 

0x 0y  x y e 
0 0 0.1866 -0.2205 3.6829*10-9 
0 1 0.0057 -0.3295 8.9839*10-9 
0 2 0.0049 -0.3300 1.1985*10-8 
2 1 0.6420 -0.0427 3.1230*10-10 
2 2 2.4808 -0.7309 1.1247*10-9 
-1 -1 -0.8720 -1.1681 1.7154*10-8 

 

Third Method for minimizing e (Hybrid Method): 

We use the hybrid method where we change the 
mutation. We use uniform mutation with 0.3 rate.  
The results of our hybrid method are also 
wonderful, as we have convergence to x=1 and y=0. 
In this case, we have the error:  
So, using the aforementioned GA (uniform mutation 
with 0.3 rate) starting from random initial 
population, we find after 1000 generations 

99977.0=x , 00068.0=y  and 
510*0767.2 −=e . 
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Note the result of mutation in the previous figure. 
 
In the sequel, we use these values 99977.0=x , 

00068.0=y  as starting points for our Nelder-Meed 
algorithm and we find solution 

1≈x  and 0≈y  
 
4 Conclusion 
In this paper, an Hybrid Method (GA + Nelder 
Meed) is proved to be a strongest tool for solving of 
Ill-Conditioned Systems of Linear and/or Non-
Linear Equations. The method is outlined via 
specific numerical examples. Some previous work 
of the author can be found in [7]÷[10].   
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