
Numerical Solution of Non-Linear Ordinary Differential Equations via
Collocation Method (Finite Elements) and Genetic Algorithms

Nikos E. Mastorakis

Military Institutes of University Education (ASEI)
Hellenic Naval Academy, Terma Hatzikyriakou 18539,

Piraeus, GREECE

http://www.wseas.org/mastorakis

Abstract: - In this paper a new method for solving (non-linear) ordinary differential equations is proposed. The
method is based on finite elements (collocation method) as well as on genetic algorithms. The method seems to
have some advantages in comparison with the typical sequential (one – step and multi – step) methods.

Key-Words: - Ordinary Differential Equations, Finite Elements, Genetic Algorithms, Evolutionary Computing,
Collocation

1 Introduction

Research in numerical solution of Ordinary
Differential Equations (ODEs) is an open field
during the last centuries and many numerical
methods have been adopted to solve initial value
problems. The importance of ODE is great because
mathematical models that occur in science (physics,
chemistry, biology, economy, geology, space
science, etc) and engineering (electrical, mechanical,
civil, etc…) are usually ordinary differential
equations.

Euler’s method, Heun’s method, Polygon method,
Runge–Kutta methods are the most usual one–step
methods, while Milne–Simpson,
Adams–Bashforth–Moulton methods are the most
usual multi–step method. Suppose that a first–order

ODE is expressed in the form:),(yxf
dx
dy

=

Common feature in one–step methods is the
“discovery” and the usage of a (discrete) sequence

),(1 iiii yxFyy +=+ where F is a function or
procedure or algorithm in which ix and iy are
involved.

Common feature in the so–called multistep
methods is the “discovery” and the usage of a
(discrete) sequence

),,,,,,,,(22111 kikiiiiiiiii yxyxyxyxFyy −−−−−−+ += L
 The previous formula describes a k – step method.

More details can be found in many textbooks and
surveys like [1] ÷ [3].

A disadvantage of all these methods is that the
numerical errors are accumulated and so the solution

of the initial value problems is affected by these
errors.

Especially when the interval of solution is big, we
have to use small step of increase which affects the
complexity of the method. Therefore, to increase
accuracy we must decrease the step of the method,
which unavoidably leads to big computational load
and complexity.

In this paper, an attempt is made to solve this
problem by using finite elements (collocation
method) and genetic algorithms. Finite elements’
method yields a set of non–linear algebraic
equations. These non–linear equations can be solved
via Genetic Algorithm (GA) [4]. The solution of the
non–linear (algebraic) equations via GAs is
examined in [4] with more details and specific
examples.

In section 2, we present the main “finite
elements”. In section 3, a formulation of the general
initial value problem is given. In section 4, a
formulation of the general boundary value problem is
presented. Finally, some concluding remarks are
provided in 5.

2 Overview of the Main Finite
Elements

“Finite Elements” are bases of functions such that
the solution of an initial (or boundary) value problem
to be able to be expressed as a linear combination of
these functions. Below we remind the most common
finite elements. Finite elements are basis functions
that are nonzero only in small regions (“the
elements”).

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp36-42)

Suppose that we have to solve the following
initial value problem over the interval],[10 +nxx

),(yxf
dx
dy

= (1)

with the initial condition

 00)(yxy = (1.a)

2.1 Finite Elements: Piecewise Linear
Functions (“hat functions”)

In the interval],[10 +nxx we consider the points:

1210 +〈〈〈〈〈 nn xxxxx L (3)

as well as the functions

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧ ≤≤
−
−

=

elsewhere

xxx
xx
xx

0

10
01

1

0φ (4.1)

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

≤≤
−

−

≤≤
−

−

=
+

+

+

−
−

−

elsewhere

xxx
xx
xx

xxx
xx

xx

jj
jj

j

jj
jj

j

j

0

1
1

1

1
1

1

φ (4.j)

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧
≤≤

−
−

=
+

+
+

elsewhere

xxx
xx

xx
nn

nn

n

n

0

1
1

1φ (4.n+1)

It is proved that the functions jφ compose a basis of
the space of functions that are continuous in the
interval],[10 +nxx . In applications we consider the
solution of our (Non-Linear) Ordinary Differential

Equations as a linear combination of the finite subset
{ }110 ,,, +nn φφφφ L of this basis.

Usually the points 1210 ,,,,, +nn xxxxx L are
equispaced. So

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧ ≤≤
−

=

elsewhere

xxx
h

xx

0

10
1

0φ (5.1)

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≤≤
−

≤≤
−

=
+

+

−
−

elsewhere

xxx
h

xx

xxx
h
xx

jj
j

jj
j

j

0

1
1

1
1

φ (5)

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧
≤≤

−

=
+

+

elsewhere

xxx
h

xx
nn

n

n

0

1

1φ (5.n+1)

2.2 Finite Elements: Piecewise Square

Functions

In the interval],[10 +nxx we consider the points:

1210 +〈〈〈〈〈 nn xxxxx L

We define
2

10'
0

xx
x

+
= ,

2
21'

1
xx

x
+

= ,…,

2
1'

1
jj

j

xx
x

+
= −

− ,
2

1' ++
= nn

n
xx

x

We also consider

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp36-42)

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

≤≤
−⋅−

−⋅−

≤≤
−⋅−

−⋅−

=
+

+

+

−
−−

−−

elsewhere

xxx
xxxx

xxxx

xxx
xxxx

xxxx

jj
jjj

jj

jj
jjjj

jj

j

0

)()(

)()(

)()(

)()(

1
1

'
1

'

1
1

'
1

1
'

1

φ (6)

and

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧
≤≤

−⋅−

−⋅−

=
+

+

+

elsewhere

xxx
xxxx

xxxx
jj

jjjj

jj

j

0

)()(

)()(
1

1
''

1

ψ (7)

Especially

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≤≤
−⋅−

−⋅−
=

elsewhere

xxx
xxxx

xxxx

0

)()(
)()(

10
10

'
01

1
'
0

0φ and

⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧
≤≤

−⋅−

−⋅−
= +

+++

elsewhere

xxx
xxxx

xxxx
nn

nnnn

nn

n

0
)()(

)()(
1

1
'

1

'

1φ .

It is proved that the functions
{ },...,,,,,,, 111100 ++ nnnn φψφψφψφψ L compose a basis
of the space of functions that are continuous in the
interval],[10 +nxx . In applications, we consider the
solution of our (Non-Linear) Ordinary Differential
Equations as a linear combination of the finite subset
{ }111100 ,,,,,,, ++ nnnn φψφψφψφψ L of this basis.

2.3 Finite Elements: Hermite Functions
The basic Hermite functions are defined as follows

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≤≤−+−⋅+

≤≤+⋅−

=

elsewhere

xxx

xxx

x

0

01)12()1(

10)12()1(

)(2

2

φ (8)

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≤≤−+

≤≤−

=

elsewhere

xxx

xxx

x

0

01)1(

10)1(

)(2

2

ψ (9)

For nj ,,2,1 L= we define

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≤≤

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
−

=
+−

−+

elsewhere

xxx
xx

xx

x
jj

jj

j

j

0

2
)(

11
11

φ
φ (10)

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≤≤

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
−

⋅
−

=
+−

−+

−+

elsewhere

xxxxx
xxxx

x
jj

jj

jjj

j

0

2
2)(

11
11

11 ψ
ψ (11)

as well as

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≤≤
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
−

= −

elsewhere

xxx
xx
xx

x

0

2
)(

10
11

0

0

φ
φ (10.0)

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≤≤

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
−

=
+

−+

+

+

elsewhere

xxx
xx

xx

x
nn

nn

n

n

0

2
)(

1
12

1

1

φ
φ 10.n+1)

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≤≤

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
−

⋅
−

= −

−

elsewhere

xxx
xx
xxxx

x

0

2
2)(

10
11

011

0

ψ
ψ (11.0)

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp36-42)

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧
≤≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
⋅

−

=
+

+

++

+

elsewhere

xxx
xx

xxxx

x
nn

nn

nnn

n

0

2)(
1

2

12

1

ψ
ψ (11.n)

We consider again the solution of the differential
equation as a linear combination of the finite subset
{ }11221100 ,,,,,,,,,, ++ nnnn ψφψφψφψφψφ L of this
basis.

2.4 Finite Elements: Splines Functions
The basic procedure spline function is defined as
follows

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

≤≤ −

≤≤ −−−+− +

≤≤−+−++++

−≤≤−+

=

21)2(
4
1

10])1(3)1(3)1(31[
4
1

01])1(3)1(3)1(31[
4
1

12)2(
4
1

)(

3

32

32

3

xx

xxxx

xxxx

xx

xφ (12)

So the Spline basis is { }110 ,,, +nφφφ L where

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≤≤

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
−

=
+−

−+

elsewhere

xxx
xx

xx

x
jj

jj

j

j

0

4
)(

22
22

φ
φ (13)

1,,2 −= nj L .

Obviously a slight modification is needed for

110 ,,, +nn φφφφ

Hence

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≤≤
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
−

= −

elsewhere

xxx
xx
xx

x

0

4
)(

20
22

0

0

φ
φ (13.0)

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≤≤
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
−

= −

elsewhere

xxx
xx
xx

x

0

4
)(

30
13

1

1

φ
φ (13.1)

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≤≤
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
−

=
+−

−+

elsewhere

xxx
xx

xx

x
nn

nn

n

n

0

4
)(

12
22

φ
φ

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≤≤

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
−

=
+−

−+

+

+

elsewhere

xxx
xx

xx

x
nn

nn

n

n

0

4
)(

11
13

1

1

φ
φ (13.n+1)

We can consider again the solution of the differential
equation as a linear combination of the finite subset
{ }1210 ,...,,,,, +nφφφφ of this basis.

3 Formulation and Solution of the
General Initial Value Problem via
Collocation and Genetic Algorithm

Consider the general first – order initial problem.

),(yxf
dx
dy

= (1)

 00)(yxy = (1.a)

Suppose that { }n

jj 1=
φ is a subset of the basis of

functions (like § 2.1 or § 2.2 or § 2.3 or § 2.4), on
which our solution is expanded. Then, our solution
can be expressed as a linear combination

∑
=

=
n

j
jjcxy

0

)(φ (14)

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp36-42)

In the method of collocation [11] we select n
points in the interval],[10 +nxx

1210 +〈〈〈〈〈 nn xxxxx L .

These points can be equispaced or non –

equispaced.

Then we have the equations

∑
=

=
n

j
jj xcy

0
00)(φ (15.0)

∑ ∑
= =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

n

j

n

j
jjxjj xcxfc

0 0
11

')(,
1

φφ (15.1)

 M M

∑ ∑
= =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

n

j

n

j
njjnxjj xcxfc

n
0 0

')(, φφ (15.n)

We can solve the Equation (15.0) with respect to

one jc , say lc , where },...,1,0{ nl ∈ . Substituting this

lc into (15.1)…(15.n), we obtain a system of n non–
linear equations in n unknowns:

nll ccccc ,...,,,...,, 1110 +− . These equations are
numbered as (15a.1)…(15a.n). Please, note that these
equations do not contain lc

∑ ∑
= =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

n

j

n

j
jjxjj xcxfc

0 0
11

')(,
1

φφ (15a.1)

 M M

∑ ∑
= =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

n

j

n

j
njjnxjj xcxfc

n
0 0

')(, φφ (15a.n)

The solution of (15a.1), … , (15a.n) can be

obtained via a Genetic Algorithm following the
method of [6]. The Genetic Algorithm is used to
eliminate an error in (15a.1), …, (15a.n). The reason
that we solve (15.0) with respect to lc , as well as the
reason for executing the Genetic Algorithm on
(15a.1),…,(15a.n) instead of (15.0),(15.1),…,(15.n)
is that we must satisfy the initial condition (1.a) with
zero error.

A brief overview of the GAs methodology could
be the following: Suppose that we have to maximize
(minimize) the function)(xQ which is not necessary
continuous or differentiable. GAs are search

algorithms which initially were insiped by the
process of natural genetics (reproduction of an
original population, performance of crossover and
mutation, selection of the best). The main idea for an
optimization problem is to start our search no with
one initial point, but with a population of initial
points. The 2n numbers (points) of this initial set
(called population, quite analogously to biological
systems) are converted to the binary system. In the
sequel, they are considered as chromosomes (actually
sequences of 0 and 1).

The next step is to form pairs of these points who
will be considered as parents for a "reproduction"
(see the following figure)

10...101|00011
11...100|01100

}→ 11...00011100
10...01100101

parents children

"Parents" come to "reproduction" where they
interchange parts of their "genetic material". (This is
achieved by the so-called crossover, see the previous
figure) whereas always a very small probability for a
Mutation exists. (Mutation is the phenomenon where
quite randomly - with a very small probability though
- a 0 becomes 1 or a 1 becomes 0). Assume that
every pair of "parents" gives k children.

By the reproduction the population of the
"parents" are enhanced by the "children" and we have
an increasement of the original population because
new members were added (parents always belong to
the considered population). The new population has
now 2n+kn members. Then the process of natural
selection is applied. According the concept of natural
selection, from the 2n+kn members, only 2n survive.
These 2n members are selected as the members with
the higher values of QQ, if we attempt to achieve
maximization of Q (or with the lower values of Q, if
we attempt to achieve minimization of QQ). By
repeated iterations of reproduction (under crossover
and mutation) and natural selection we can find the
minimum (or maximum) of Q as the point to which
the best values of our population converge. The
termination criterion is fulfilled if the mean value of
Q in the 2n-members population is no longer
improved (maximized or minimized). More detailed
overviews of GAs can be found in [1], [2], [3] and
[4].

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp36-42)

So, when we have to solve a system of n
equations in n unknown variables.

0),...,,(

0),...,,(
0),...,,(

21

212

211

=

=
=

nn

n

n

xxxf

xxxf
xxxf

M

The square function 22

2
2

1)(nfffxQ +++= L
or the absolute value function

nfffxQ +++= L21)(are defined (or in

general any suitable norm of),...,,(21 nffff =
r

) and
our problem is min)(xQ

If the global minimum of)(xQ is 0 at the point
),,,(**

2
*

1 nxxx L then **
2

*
1 ,,, nxxx L is a solution of

the aforementioned systems of non-linear equations.
The method has also been used in [10].

4 Formulation and Solution of the
General Boundary Value Problem via
Collocation and Genetic Algorithm

 Consider the general (second – order) initial value
problem.

),,('
2

2

yyxf
dx

yd
= (16)

axx y
dx
dy

== 0
 (16.a)

bxx y
dx
dy

n
=

+= 1
 (16.b)

Suppose that { }n

jj 1=
φ is a subset of the basis of

functions (like § 2.1 or § 2.2 or § 2.3 or § 2.4),
on which our solution is expanded as follows:

∑
+

=

=
1

0

)(
n

j
jjcxy φ .

We can use the method of collocation again in the
interval],[10 +nxx .

 The following system of non–linear equations is
obtained

∑
+

=

=
1

0
00)()(

n

j
jj xcxy φ (17.0)

∑ ∑∑
=

+

=

+

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

n

j

n

j
jj

n

j
jjxjj xcxcxfc

0

1

0
1

'
1

0
11

'')(,)(,
1

φφφ (17.1)

 M

∑ ∑ ∑
+

=

+

=

+

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

1

0

1

0

1

0

''')(),(,
n

j

n

j

n

j
njjnjjnxjj xcxcxfc

n
φφφ (17.n)

∑
+

=
++ =

1

0
11)()(

n

j
njjn xcxy φ (17.n+1)

We can solve the systems of the Equation (17.0)
(17.n+1) with respect to two variables, say

2
,1 ll cc ,

where },...,1,0{, 21 nll ∈ . Substituting these
expressions of

2
,1 ll cc into (17.1)…(15.n), we obtain

a system of n non–linear equations in n unknowns:
1111110 ,...,,,...,,,...,,

2211 ++−+− nllll ccccccc . These
equations new equations (after the elimination of

2
,1 ll cc) are numbered as (17a.1)…(17a.n). Please,

note that these equations do not contain
2

,1 ll cc

∑ ∑∑
=

+

=

+

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

n

j

n

j
jj

n

j
jjxjj xcxcxfc

0

1

0
1

'
1

0
11

'')(,)(,
1

φφφ (17a.1)

 M

∑ ∑ ∑
+

=

+

=

+

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

1

0

1

0

1

0

''')(),(,
n

j

n

j

n

j
njjnjjnxjj xcxcxfc

n
φφφ (17a.n)

The solution of (17a.1), … , (17a.n) can be

obtained via a Genetic Algorithm.. The Genetic
Algorithm is used to eliminate an error in (17a.1), …,
(17a.n). The reason that we solve the (17.0) and
(17.n+1) with respect to

2
,1 ll cc , as well as the reason

for executing the Genetic Algorithm in
(17a.1),…,(17a.n) instead of
(17.0),(17.1),…,(17.n),(17.n+1) is that we must

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp36-42)

satisfy the boundary value conditions (16.a) and
(16.b) with zero error.

5 Concluding Remarks and Future
Research
 As GAs is a powerful tool for the solution of
systems of non–linear equations, they can find
applications in the solution of non–linear Ordinary
Differential Equations. The collocation method is
used and a system of non–linear equations is
obtained. This system is solved by GAs. Numerical
examples can outline the validity and efficiency of
our proposed method.

References:

[1] Goldberg D.E. (1989), Genetic Algorithms in

Search, Optimization and Machine Learning,
Addison-Wesley, Second Edition, 1989

[2] Grefenstette J.J., Optimization of control
parameters for Genetic Algorithms, IEEE Trans.
Systems, Man and Cybernetics, SMC 16, Jan/Feb
1986, pp. 128

[3] Eberhart R., Simpson P. and Dobbins R. (1996),
Computational Intelligence PC Tools, AP
Professionals.

[4] Kosters W.A., Kok J.N. and Floreen P., Fourier
Analysis of Genetic Algorithms, Theoretical
Computer Science, Elsevier, 229, 199, pp. 143-
175.

[5] E. Balagusuramy, Numerical Methods, Tata
McGraw Hill, New Delhi, 1999

[6] Nikos E. Mastorakis, “Solving Non-linear
Equations via Genetic Algorithms”, Proceedings
of the 6th WSEAS International Conference on
Evolutionary Computing, Lisbon, Portugal, June
16-18, 2005.

[7] Ioannis F. Gonos, Lefteris I. Virirakis, Nikos E.
Mastorakis, M.N.S. Swamy, "Evolutionary
Design of 2-Dimensional Recursive Filters via
the Computer Language GENETICA"
to appear in IEEE Transactions on Circuits and
Systems I: Fundamental Theory and
Applications. (2005)

[8] Gonos I.F., Mastorakis N.E., Swamy M.N.S.: “A
Genetic Algorithm Approach to the Problem of
Factorization of General Multidimensional
Polynomials”, IEEE Transactions on Circuits and
Systems I: Fundamental Theory and
Applications, Part I, Vol. 50, No. 1, pp. 16-22,
January 2003.

[9] Mastorakis N.E., Gonos I.F., Swamy M.N.S.:
“Design of 2-Dimensional Recursive Filters

using Genetic Algorithms”, IEEE Transactions
on Circuits and Systems I: Fundamental Theory
and Applications, Part I, Vol. 50, No. 5, pp. 634-
639, May 2003.

[10] Mastorakis N.E., Gonos I.F., Swamy
M.N.S.: “Stability of Multidimensional Systems
using Genetic Algorithms”, IEEE Transactions
on Circuits and Systems, Part I, Vol. 50, No. 7,
pp. 962-965, July 2003.

[11] Neil Gershenfeld (1999), The Nature of
Mathematical Modeling, Cambridge University
Press.

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp36-42)

