
Numerical Solution of Non-Linear Ordinary Differential Equations via 
Collocation Method (Finite Elements) and Genetic Algorithms 

 
Nikos E. Mastorakis 

Military Institutes of University Education (ASEI) 
Hellenic Naval Academy, Terma Hatzikyriakou 18539,  

Piraeus, GREECE  
   

http://www.wseas.org/mastorakis 
 
 
Abstract: - In this paper a new method for solving (non-linear) ordinary differential equations is proposed. The 
method is based on finite elements (collocation method) as well as on genetic algorithms. The method seems to 
have some advantages in comparison with the typical sequential (one – step and multi – step) methods. 
 
 
Key-Words: - Ordinary Differential Equations, Finite Elements, Genetic Algorithms, Evolutionary Computing, 
Collocation 
 
1 Introduction 

Research in numerical solution of Ordinary 
Differential Equations (ODEs) is an open field 
during the last centuries and many numerical 
methods have been adopted to solve initial value 
problems. The importance of ODE is great because 
mathematical models that occur in science (physics, 
chemistry, biology, economy, geology, space 
science, etc) and engineering (electrical, mechanical, 
civil, etc…) are usually ordinary differential 
equations. 

Euler’s method, Heun’s method, Polygon method, 
Runge–Kutta methods are the most usual one–step 
methods, while Milne–Simpson,  
Adams–Bashforth–Moulton methods are the most 
usual multi–step method. Suppose that a first–order 

ODE is expressed in the form: ),( yxf
dx
dy

=  

Common feature in one–step methods is the 
“discovery” and the usage of a (discrete) sequence 

),(1 iiii yxFyy +=+  where F is a function or 
procedure or algorithm in which ix  and iy  are 
involved. 

Common feature in the so–called multistep 
methods is the “discovery” and the usage of a 
(discrete) sequence  

),,,,,,,,( 22111 kikiiiiiiiii yxyxyxyxFyy −−−−−−+ += L  
 The previous formula describes a k – step method. 

More details can be found in many textbooks and 
surveys like [1] ÷ [3]. 

A disadvantage of all these methods is that the 
numerical errors are accumulated and so the solution 

of the initial value problems is affected by these 
errors.  

Especially when the interval of solution is big, we 
have to use small step of increase which affects the 
complexity of the method. Therefore, to increase 
accuracy we must decrease the step of the method, 
which unavoidably leads to big computational load 
and complexity. 

In this paper, an attempt is made to solve this 
problem by using finite elements (collocation 
method) and genetic algorithms. Finite elements’ 
method yields a set of non–linear algebraic 
equations. These non–linear equations can be solved 
via Genetic Algorithm (GA) [4]. The solution of the 
non–linear (algebraic) equations via GAs is 
examined in [4] with more details and specific 
examples. 

In section 2, we present the main “finite 
elements”. In section 3, a formulation of the general 
initial value problem is given. In section 4, a 
formulation of the general boundary value problem is 
presented. Finally, some concluding remarks are 
provided in 5. 
 
 

2 Overview of the Main Finite 
Elements 

“Finite Elements” are bases of functions such that 
the solution of an initial (or boundary) value problem 
to be able to be expressed as a linear combination of 
these functions. Below we remind the most common 
finite elements. Finite elements are basis functions 
that are nonzero only in small regions (“the 
elements”). 
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Suppose that we have to solve the following 
initial value problem over the interval ],[ 10 +nxx  

 

),( yxf
dx
dy

=                                                      (1) 

 
with the initial condition 
 
      00 )( yxy =                                                     (1.a) 
 
 
 
 
2.1 Finite Elements: Piecewise Linear 
Functions (“hat functions”) 
 
In the interval ],[ 10 +nxx  we consider the points:  
 

1210 +〈〈〈〈〈 nn xxxxx L                                          (3) 
 
as well as the functions 
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It is proved that the functions jφ  compose a basis of 
the space of functions that are continuous in the 
interval ],[ 10 +nxx . In applications we consider the 
solution of our (Non-Linear) Ordinary Differential 

Equations as a linear combination of the finite subset 
{ }110 ,,, +nn φφφφ L  of this basis. 
 
 
Usually the points 1210 ,,,,, +nn xxxxx L  are 
equispaced. So  
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2.2 Finite Elements: Piecewise Square 

Functions  
 
In the interval ],[ 10 +nxx  we consider the points: 

1210 +〈〈〈〈〈 nn xxxxx L  
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We also consider  
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and 
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Especially  
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It is proved that the functions 
{ },...,,,,,,, 111100 ++ nnnn φψφψφψφψ L  compose a basis 
of the space of functions that are continuous in the 
interval ],[ 10 +nxx . In applications, we consider the 
solution of our (Non-Linear) Ordinary Differential 
Equations as a linear combination of the finite subset 
{ }111100 ,,,,,,, ++ nnnn φψφψφψφψ L  of this basis. 
 
 
2.3 Finite Elements: Hermite Functions  
The basic Hermite functions are defined as follows 
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For nj ,,2,1 L=  we define 
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as well as  
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We consider again the solution of the differential 
equation as a linear combination of the finite subset 
{ }11221100 ,,,,,,,,,, ++ nnnn ψφψφψφψφψφ L  of this 
basis. 
 
 
 
 
2.4 Finite Elements: Splines Functions  
The basic procedure spline function is defined as 
follows  
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So the Spline basis is { }110 ,,, +nφφφ L  where  
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Obviously a slight modification is needed for 
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We can consider again the solution of the differential 
equation as a linear combination of the finite subset 
{ }1210 ,...,,,,, +nφφφφ  of this basis. 

 
3 Formulation and Solution of the 
General Initial Value Problem via 
Collocation and Genetic Algorithm 

 
Consider the general first – order initial problem. 
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functions (like § 2.1 or § 2.2 or  § 2.3 or § 2.4), on 
which our solution is expanded. Then, our solution 
can be expressed as a linear combination 
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In the method of collocation [11] we select n 
points in the interval ],[ 10 +nxx  

1210 +〈〈〈〈〈 nn xxxxx L . 
 
These points can be equispaced or non – 

equispaced.  
 
Then we have the equations 
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We can solve the Equation (15.0) with respect to 

one jc , say lc , where },...,1,0{ nl ∈ . Substituting this 

lc  into (15.1)…(15.n), we obtain a system of n non–
linear equations in n unknowns: 

nll ccccc ,...,,,...,, 1110 +− . These equations are 
numbered as (15a.1)…(15a.n). Please, note that these 
equations do not contain lc  
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The solution of  (15a.1), … , (15a.n) can be 

obtained via a Genetic Algorithm following the 
method of [6]. The Genetic Algorithm is used to 
eliminate an error in (15a.1), …, (15a.n). The reason 
that we solve (15.0) with respect to lc , as well as the 
reason for executing the Genetic Algorithm on 
(15a.1),…,(15a.n) instead of (15.0),(15.1),…,(15.n) 
is that we must satisfy the initial condition (1.a) with 
zero error.  

A brief overview of the GAs methodology could 
be the following: Suppose that we have to maximize 
(minimize) the function )(xQ  which is not necessary 
continuous or differentiable. GAs are search 

algorithms which initially were insiped by the 
process of natural genetics (reproduction of an 
original population, performance of crossover and 
mutation, selection of the best). The main idea for an 
optimization problem is to start our search no with 
one initial point, but with a population of initial 
points. The 2n numbers (points) of this initial set 
(called population, quite analogously to biological 
systems) are converted to the binary system. In the 
sequel, they are considered as chromosomes (actually 
sequences of 0 and 1). 

The next step is to form pairs of these points who 
will be considered as parents for a "reproduction"   
(see the following figure) 

 

10...101|00011
11...100|01100

}→ 11...00011100
10...01100101

 

parents                       children 

"Parents" come to "reproduction" where they 
interchange parts of their "genetic material". (This is 
achieved by the so-called crossover, see the previous 
figure) whereas always a very small probability for a 
Mutation exists. (Mutation is the phenomenon where 
quite randomly - with a very small probability though 
- a 0 becomes 1 or a 1 becomes 0). Assume that 
every pair of "parents" gives k children. 

By the reproduction  the population of the 
"parents" are enhanced by the "children" and we have 
an increasement of the original population because 
new members were added (parents always belong to 
the considered population). The new population has 
now 2n+kn members. Then the process of natural 
selection is applied. According the concept of natural 
selection, from the 2n+kn members, only 2n survive. 
These 2n members are selected as the members with 
the higher values of QQ, if we attempt to achieve 
maximization of Q (or with the lower values of Q, if 
we attempt to achieve minimization of QQ). By 
repeated iterations of reproduction (under crossover 
and mutation) and natural selection we can find the 
minimum (or maximum) of Q as the point to which 
the best values of our population converge. The 
termination criterion is fulfilled if the mean value of 
Q  in the 2n-members population is no longer 
improved (maximized or minimized). More detailed 
overviews of GAs can be found in [1], [2], [3] and 
[4]. 
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So, when we have to solve a system of n 
equations in n unknown variables. 

 

0),...,,(

0),...,,(
0),...,,(

21

212

211

=

=
=

nn

n

n

xxxf

xxxf
xxxf

M
                                         

  
The square function 22

2
2

1)( nfffxQ +++= L  
or the absolute value function 

nfffxQ +++= L21)(  are defined (or in 

general any suitable norm of ),...,,( 21 nffff =
r

) and 
our problem is min )(xQ   

If the global minimum of )(xQ  is 0 at the point 
),,,( **

2
*

1 nxxx L  then **
2

*
1 ,,, nxxx L  is a solution of 

the aforementioned systems of non-linear equations. 
The method has also been used in [10]. 

 
 
 
4 Formulation and Solution of the 
General Boundary Value Problem via 
Collocation and Genetic Algorithm 
 
    Consider the general (second – order) initial value 
problem. 
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                                                   (16.b) 

 
  
Suppose that { }n

jj 1=
φ  is a  subset of the basis of 

functions (like § 2.1 or § 2.2 or  § 2.3 or § 2.4), 
on which our solution is expanded as follows:  

∑
+

=

=
1

0

)(
n

j
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We can use the method of collocation again in the 
interval ],[ 10 +nxx . 
 
    The following system of non–linear equations is 
obtained 
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We can solve the systems of the  Equation (17.0) 
(17.n+1) with respect to two variables, say 

2
,1 ll cc , 

where },...,1,0{, 21 nll ∈ . Substituting these 
expressions of  

2
,1 ll cc  into (17.1)…(15.n), we obtain 

a system of n non–linear equations in n unknowns: 
1111110 ,...,,,...,,,...,,

2211 ++−+− nllll ccccccc . These 
equations new equations (after the elimination of 

2
,1 ll cc ) are numbered as (17a.1)…(17a.n). Please, 

note that these equations do not contain 
2

,1 ll cc  
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The solution of  (17a.1), … , (17a.n) can be 

obtained via a Genetic Algorithm.. The Genetic 
Algorithm is used to eliminate an error in (17a.1), …, 
(17a.n). The reason that we solve the (17.0) and 
(17.n+1) with respect to 

2
,1 ll cc , as well as the reason 

for executing the Genetic Algorithm in 
(17a.1),…,(17a.n) instead of 
(17.0),(17.1),…,(17.n),(17.n+1) is that we must 
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satisfy the boundary value conditions (16.a) and 
(16.b) with zero error.  
 
 
5 Concluding Remarks and Future 
Research 
 As GAs is a powerful tool for the solution of 
systems of non–linear equations, they can find 
applications in the solution of non–linear Ordinary 
Differential Equations. The collocation method is 
used and a system of non–linear equations is 
obtained. This system is solved by GAs. Numerical 
examples can outline the validity and efficiency of 
our proposed method. 
 
References: 
 
[1] Goldberg D.E. (1989), Genetic Algorithms in 

Search, Optimization and Machine Learning, 
Addison-Wesley, Second Edition, 1989 

[2] Grefenstette J.J., Optimization of control 
parameters for Genetic Algorithms, IEEE Trans. 
Systems, Man and Cybernetics, SMC 16, Jan/Feb 
1986, pp. 128 

[3] Eberhart R., Simpson P. and Dobbins R. (1996), 
Computational Intelligence PC Tools, AP 
Professionals. 

[4] Kosters W.A., Kok J.N. and Floreen P., Fourier 
Analysis of Genetic Algorithms, Theoretical 
Computer Science, Elsevier, 229, 199, pp. 143-
175. 

[5] E. Balagusuramy, Numerical Methods, Tata 
McGraw Hill, New Delhi, 1999 

[6] Nikos E. Mastorakis, “Solving Non-linear 
Equations via Genetic Algorithms”, Proceedings 
of the 6th WSEAS International Conference on 
Evolutionary Computing, Lisbon, Portugal, June 
16-18, 2005. 

[7] Ioannis F. Gonos,  Lefteris I. Virirakis, Nikos E. 
Mastorakis, M.N.S. Swamy, "Evolutionary 
Design of 2-Dimensional Recursive Filters via 
the Computer Language GENETICA" 
to appear in IEEE Transactions on Circuits and 
Systems I: Fundamental Theory and 
Applications. (2005) 

[8] Gonos I.F., Mastorakis N.E., Swamy M.N.S.: “A 
Genetic Algorithm Approach to the Problem of 
Factorization of General Multidimensional 
Polynomials”, IEEE Transactions on Circuits and 
Systems I: Fundamental Theory and 
Applications, Part I, Vol. 50, No. 1, pp. 16-22, 
January 2003.  

[9] Mastorakis N.E., Gonos I.F., Swamy M.N.S.: 
“Design of 2-Dimensional Recursive Filters 

using Genetic Algorithms”, IEEE Transactions 
on Circuits and Systems I: Fundamental Theory 
and Applications, Part I, Vol. 50, No. 5, pp. 634-
639, May 2003.  

[10]  Mastorakis N.E., Gonos I.F., Swamy 
M.N.S.: “Stability of Multidimensional Systems 
using Genetic Algorithms”,  IEEE Transactions 
on Circuits and Systems, Part I, Vol. 50, No. 7, 
pp. 962-965, July 2003.  

[11] Neil Gershenfeld (1999), The Nature of 
Mathematical Modeling,  Cambridge University 
Press. 

 

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp36-42)


