
Simulation-Optimization Model For Fuzzy Waste Load Allocation 
 

M. SAADAT POUR, A. AFSHAR, O. BOZORG HADDAD 
Department of Civil Engineering 

IRAN University of Science and Technology 
Narmak, Tehran 

IRAN 
 

Abstract:  A simulation-optimization model is developed for waste load allocation in a fuzzy optimization 
framework. The model provides the best compromise solution to the pollution dischargers and pollution control 
agencies. To deal with uncertainties due to randomness and vagueness of the goals and parameters, fuzzy sets 
with appropriate membership functions are introduced. The fuzzy waste load allocation model (FWLAM) 
incorporate QUAL2E as a Water Quality Simulation Model and GA (Genetic Algorithm) as an optimization tool 
to find the optimal fraction removal level to the dischargers and pollution control agency (PCA).The GA directs 
the decision variables in a real-value form to QUAL2E as an input file. QUAL2E simulates the decision 
variables and calculates the state variables. Penalty functions are employed to control the infeasible solutions. 
This fuzzy optimization model with genetic algorithm has been used for a hypothetical problem. Results 
demonstrate a very suitable convergence of proposed optimization algorithm to the global optima. 
 
Keywords: Optimization, Waste Load Allocation, Genetic Algorithm, Fuzzy, QUAL2E. 
 

Introduction 

The determination of an optimal waste load 
allocation for a river basin is an aspect of water 
quality management that has received considerable 
attention. Optimal waste load allocation implies that 
the treatment vector selected not only maintains the 
water quality standards, but also results in the best 
value for the objective function defined for the 
manager problem.  
A WLA model is, in general, a mathematical model 
incorporating a water quality simulation model 
within the framework of multi-objective 
optimization. It normally consists of three 
components:(1) an optimization model expressing 
the objectives, goals, and constraints of the water 
quality management problem; (2) a water quality 
simulation model that simulate the water quality 
constituents in the river system; and (3) means of 
addressing uncertainty inherent in the system. 
Generally, two sets of objectives are considered in 
the decision-making process for water quality 
management of a river system. The first set of 
objectives is determined by the pollution control 
agency (PCA) that deals with satisfying water 
quality standards. The second set of objectives deals 
with the minimization of waste treatment cost 
,which is paid by the dischargers in the river 

system. These two sets of objectives are often in 
conflict with each other. 
Most WLA models employ the well known 
Streeter-Phelps (S-P) equations (Streeter and Phelps 
1925) with Camp-Dobbins (Camp 1963; Dobbins 
1964) modifications to simulate biodegradation and 
to map waste loads into downstream constituents. 
While S-P equations are effective in modeling DO 
and biochemical oxygen demand (BOD), they 
cannot be extended to model transport of other 
constituents (e.g., nitrogen, phosphorus and 
chlorophyll). Several simulation models are now 
available (e.g., QUAL2K, QUAL2E and WASP4) 
for modeling transport of most pollutants in a river 
system. Efforts to incorporate such simulation 
models in WLA models began with Cardwell and 
Ellis (1993) who addressed model uncertainty 
considering different models [S-P equations, 
QUAL2E (Brown and Barnwell 1987) and WASP4 
(Robert et al,1988) simultaneously in a single 
framework. 
Optimization methods have been developed to 
incorporate multiple and conflicting goals of the 
dischargers and the PCAs. Recently, Suresh and 
Mujumdar (1999), Sasikumarand Mujumdar (2000), 
and Mujumdar, Sasikumar (2002) and Mujumdar, 
Vemula (2004) have incorporated multiple and 
conflicting goals in the WLA models and addressed 
uncertainty due to both randomness and 
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imprecision. In this paper, we try to use a 
Simulation-Optimization (S-O) approach to 
integrate the Fuzzy Waste Load Allocation model 
with a water quality simulation Model.  
Several advantages of the S-O methodology have 
been realized in various fields of water resources, 
including groundwater management (Gorelick et al. 
1984; McKinney and Lin 1994), reservoir operation 
(Oliveira and Loucks 1997), surface water quality 
and quantity management (Dai and Labadie 2001), 
water distribution systems (Sakarya and Mays 
2000) and waste load allocation (Lence (1993), 
Burn (2001)). A major advantage of the S-O 
methodology proposed in this paper is that the 
physical processes such as the mass and 
temperature balance are accounted through 
simulation outside the optimization model, thus 
reducing the size and complexity of the 
optimization model. 
In this paper GA (Genetic Algorithm) is used as an 
optimization tool which is linked to QUAL2E 
FORTRAN source code. For a given pollution 
abatement matrix, the water quality model, 
QUAL2E, calculates the Jacobian matrix whose 
elements represent the marginal effects of increase 
in each pollutant load on downstream DO levels of 
the river. 
It is well known that classical, nonlinear 
optimization method pose a difficulty in achieving 
global or near global optimal solutions. As an 
alternative, therefore, the genetic algorithm (GA) 
assures global or near global solutions, has been 
employed to solve the fuzzy optimization problem.  

Description of the River System 
Table 1 gives the description of a river system to 
which FWLAM is applied for water quality 
management. The relevant components of the 
system are identified as sets. Set Q represent the 
collection of mesh point (water quality check 
points) where the water quality is of interest in the 
river system. Set D is the collection of dischargers 
(e.g. industries). Set T is the collection of 
uncontrollable source of pollutant in the system 
(e.g. BOD addition due to runoff and scour in a 
stream). Set P is the collection of the pollutants in 
the river system (e.g. point source of BOD, a 
mixture of toxic substance, etc). Set V is the 
collection of water quality parameter with a 
desirable level greater than the permissible level 
(e.g. dissolved oxygen concentration). Set S is the 
collection of water quality parameters with the 
desirable level less than permissible level (e.g. toxic 

pollutant concentration). A pollutant is assumed to 
affect one or more than one water quality parameter 
in the sets V or S or both. Note that no water quality 
parameter is common to sets V and S.  
 
Table1.River System Description  

Set Description of the 
set 

Element 
representation 

Number 
of 
elements 

Q Water quality 
mesh point l N q  

D Dischargers m N d  

P Pollutants n N p  

T 
Uncontrollable 
source of 
pollutants 

p N t  

V 

Water quality 
parameters: 
desirable 
level>permissible 
level 

i N v  

S 

Water quality 
parameters: 
desirable 
level<permissible 
level 

j N s  

Genetic Algorithms 
Evolutionary Algorithms can be divided into three 
main areas of research: Genetic Algorithms (GA), 
Evolution Strategies (ES) and Evolutionary 
Programming (EP). Genetic Programming began as 
a general model for adaptive process but has since 
become effective at optimization while Evolution 
Strategies was designed from the beginning for 
variable optimization. The schematic diagram of 
these algorithms which are made of the several 
iterations of basic Evolution Cycle is shown below: 

Present
Generation

Selected
Parents

New
Generation Variation, Mutation

Replacement Selection

 
Figure1: Schematic Diagram of Evolution Cycle  

 
A GA is a robust method for searching the optimum 
solution to a complex problem, although it may not 
necessarily lead to the best possible solution. A GA 
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generally represents a solution using strings (also 
referred to as chromosomes) of variables that 
represent the problem.  
A GA starts with a population of chromosomes, 
which are combined through genetic operators to 
produce successively better chromosomes. The 
genetic operators used in the reproductive process 
are selection, crossover and mutation. 
Chromosomes in the population with high fitness 
values have a high probability of being selected for 
combination rather than chromosomes with low 
fitness. Combination is achieved through the 
crossover of pieces of genetic material between 
selected chromosomes. Mutation allows for the 
random mutations of bits of information in 
individual genes. Through successive generations 
fitness should progressively improve. Various 
schemes for selection, crossover, and mutation 
exist. 

Max-Min Formulation 
Different goals associated with water quality 
management in the river system are considered in 
this section. The quantities of interests are the 
concentration levels, C il  and C jl  of the water 
quality parameters, and the fraction removal levels 
(treatment levels), x imn and x jmn , of the pollutants. 
The pollution control agency sets a desirable level, 
C D

il , and a minimum permissible level, C L
il  for the 

water quality parameter i at the mesh point l (C D
il > 

C L
il ). Similarly, C D

jl  and C H
jl  represent respectively, 

the desirable and maximum permissible levels of 
the water quality parameter j at the mesh point l 
(C D

jl < C H
jl ).  The quantities x imn and x jmn  are the 

fractional removal levels of the pollutant n from the 
discharger m to control the water quality parameters 
i and j, respectively. The aspiration level of the 
discharger m with respect to x wmn   (w stand for 

either i or j) is represented as x L
wmn . The 

corresponding maximum fraction removal level 
acceptable to the discharger m is represented as 
x M

wmn . 
The first goal, E il  is defined that the concentration 
level, C il  as close as possible to the C D

il .The 
desirable level, C D

il   is assigned a membership value 
of 1. The minimum permissible level, C L

il  , is 
assigned a membership value of zero.  

Goal E jl  is similar to the goal E il  but with respect 
to water quality parameter j. The desirable level, 
C D

jl , for the water quality parameter j at the mesh 
point l is assigned a membership value of 1. The 
maximum permissible level, C H

jl  is assigned a 

membership value of zero. The goal F imn  is defined 

as making fraction removal level x imn  as close as 

possible to the x L
imn . The fraction removal level, 

x L
imn , corresponding to the aspiration level of the 

discharger m with regard to x imn  is assigned a 
membership value of 1.The maximum acceptable 
level, x M

imn , is assigned a membership value of 0.  
This membership function may be interpreted as the 
variation of satisfaction level of the discharger m in 
treating the pollutant n to control the water quality 
parameter i in the river system. 
Goal F jmn   and membership function )( jmnjmnF xµ    

is similar to the goal F imn   and the membership 

function )( imnF x
imn

µ     but with respect to water 
quality parameter j.  
Non increasing or non decreasing membership 
function are assigned to each of the fuzzy sets. The 
non increasing membership function reflect the 
premise “the less the better or at least not the 
worse,” whereas the non decreasing membership 
function reflect the premise “the more the better or 
at least not the worse.  
Based on the membership function for the fuzzy 
goals, the MAX-MIN formulations of FWLAM are 
presented in this section. Shape of the membership 
function may be chosen by the decision maker. The 
crisp equivalent of the fuzzy multiple-objective 
optimization problem provides the basis for the 
MAX-MIN formulation of FWLAM. The model 
maximizes the satisfaction level,λ , in the system. 
The model is expressed as 
Max λ                                                                   (1) 

∀λ≥µ )C( ililE i,l                                      (2) 

∀λ≥µ )C( jljlE j,l                                    (3) 

∀λ≥µ )x( imnimnF i,m,n                            (4) 

∀λ≥µ )x( jmnjmnF j,m,n                           (5) 

∀≤≤ D
ilil

L
il CCC i,l                                  (6) 

∀≤≤ H
jljl

D
jl CCC  j,l                                 (7) 
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∀≤≤ M
imnimn

L
imn xxx i,m,n                        (8) 

∀≤≤ M
jmnjmn

L
jmn xxx j,m,n                       (9) 

∀≤≤ MAX
imnimn

MIN
imn xxx i,m,n                   (10) 

∀≤≤ MAX
jmnjmn

MIN
jmn xxx j,m,n                   (11) 

10 ≤λ≤                                                             (12) 

ilEµ  and 
jlEµ  are the membership functions of 

goals E il  and  E jl  and 
imnFµ  and 

jmnFµ  are the 

membership functions of F imn  and F jmn  .                                                      
The crisp constraints (6) through (12) determine the 
feasible space of alternatives. The constraints (6) 
through (7) determine the water quality 
requirements set by the pollution control agency. 
Constraints (8) and (9) determine the aspiration 
level and maximum acceptable level of pollutant 
treatment efficiencies set by the dischargers. 
Constraints (10) and (11) determine the minimum 
levels of pollutant efficiencies which are expressed  
by the pollution control agency as a lower bound , 
x MIN

imn  and x MIN
jmn , and maximum acceptable 

treatment levels. It may be noted that the constraints 
(2) through (5) define the parameter λ  as the 
minimum satisfaction level in the system.  
The concentration level, C wl , of the water 
quality parameter w (the index w stands for 
either i or j) at the mesh point l can be related to 
the fraction removal level, x wmn , of the 
pollutant n from the discharger m to control the 
water quality parameter w. 
 
Water Quality Simulation Model 
As environmental controls become more costly to 
implement and the penalties of judgment errors 
become more severe, environmental quality 
management requires more efficient management 
tools based on greater knowledge of the 
environmental phenomena to be managed. In this 
paper, the most recent modification QUAL2E 
(version 3.22) is used. 
QUAL2E , which can be operated as a steady state 
is intended for use as a water quality planning tool. 
The model can be used for example, to study the 
impact of waste load in stream water quality or to 
identify the magnitude and quality characteristic of 
non point waste loads as part of field sampling 
program. 
QUAL2E have the capability to model physical, 
biological and chemical process take place in a 

water body. QUAL2E are developed based on the 
conversation of mass. QUAL2E is a multi-
constituent water quality model which can predict 
the physical, chemical and biological interaction of 
many constituents and organisms found in natural 
water bodies. The basic equation solved by 
QUAL2E, in steady state, is the one dimensional 
advection- dispersion equation as 

V
s

xA
CUA

dx
xA

x
CDA

t
C

x

x

x

Lx
+

∂
∂

−
∂
∂
∂

∂
=

∂
∂

−

.
)..(

.

)..(
     (13) 

The finite–difference form of Eq.(13), is 
successively applied to all computational elements 
of the river system. If any computational element is 
subjected to an external Load, the mass released 
from that load is added to system  

Simulation-Optimization 
The coupling between simulation and optimization 
allows the advantages of both modules to be 
retained within a single framework. The S-O 
approach, in this paper work interfaces QUAL2E 
and GA to solve the Fuzzy optimization problem. A 
simulation model generally needs a large amount of 
data for calculating the response of the system. This 
data consist of details of river discretization, 
location of headwaters, effluent flow, effluent loads 
and junctions, length of reaches and computational 
element, simulation type (Steady State or dynamic), 
units(metric or English), water quality constituents 
to model (DO,BOD),…. The data are incorporated 
into the input file of QUAL2E and remain fixed for 
all simulations. The input file also consists of the 
fraction removal levels, which are the decision 
variables of the fuzzy optimization model. During 
each call to QUAL2E, the set of fractional removal 
levels of the dischargers in the input file is replaced 
with the set provided by GA. Each runs of 
QUAL2E result in the system response in terms of 
the concentrations of the water quality indicators 
(state variables), which are written to an output file. 
This state variable required by Fitness Evaluation 
programming is taken from this QUAL2E output 
file. The main objective of interface among GA and 
QUAL2E is to evaluate the Fitness Function of the 
chromosomes. Fitness Function evaluation is 
performed after any generation. 

 Model Application 
The application of FWLAM is demonstrated with a 
hypothetical river network (Figure.2). The river 
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network is applied to a 500 km reach of the river, 
which stem from four headwaters and nine point 
loads. For simplicity no incremental flow or 
withdrawal along the stream is assumed to influence 
the flow in the river system. In QUAL2E, a reach is 
defined as a stretch of river which model input 
parameters or coefficients (physical, chemical and 
biological) remain constant. A new reach is defined 
at a location where a new junction is encountered or 
a significant change in model input coefficient 
occurs or the number of computational elements in 
the reach will be 20. Accordingly, the 500-km long 
stretch of the river is discretized into 16 reaches of 
varying lengths, each of which is further discretized 
into computational elements of 2 km, following the 
QUAL2E restriction of twenty computational 
elements within each reach.  Nine reaches receive a 
point source of BOD waste load from the 
dischargers located at the beginning of them. The 
only pollutant in the system is the point source of 
BOD waste load. The water quality parameter of 
interest is dissolved oxygen deficit (DO deficit) at a 
finite number of mesh points due to these point 
sources of BOD. Water quality is checked at 23 
mesh points. A trapezoidal cross-sectional shape 
with side slope 1:1 is considered for the river. 
It may be noted that since the desirable level of the 
DO deficit is smaller than the permissible level, this 
water quality parameter belongs to the set S 
described in table 1. The set V and T are empty sets. 
The elements in the sets P, D and Q are, 
respectively, BOD point sources, nine dischargers, 
and 23 mesh points. Since the sets P and S contain 
only one element each, the suffixes j and n are 
dropped from the constraints and objective function 
for convenience. Denoting the DO deficit at the 
water quality mesh point l by C l , and the fractional 
removal level for the mth discharger by x m , and 
using linear membership function for the fuzzy 
goals. The MAX-MIN formulation can be 
simplified as follows: 
Max λ  
Subject to 

∀λ≥⎥
⎦

⎤
⎢
⎣

⎡

−
−

D
l

H
l

l
H
l

CC
CC

l 

∀λ≥⎥
⎦

⎤
⎢
⎣

⎡

−
−

L
m

M
m

m
M
m

xx
xx

m 

∀≤≤ H
ll

D
l CCC l 

Max[x L
m ,x MIN

m ] ∀≤≤ M
mm xx  m  

0 ≤≤ λ 1 
Two typical membership functions corresponding to 
the fuzzy goals E l  (goal of the pollution control 
agency related to the DO deficit at mesh point l), 
and F m  (goal related to the fraction removal level 
for discharger m) .A minimal fraction removal level 
of 0.25 is imposed by the pollution control agency 
on all dischargers (i.e., x MIN

m =0.25, ∀m).  
For this simulation-optimization model, we use GA 
as an optimization method. The GA process is done 
corresponding to the follow illustration. 
Step1: Generating initial random populations with 
N chromosomes. 
Step2: Simulating these chromosomes; in 
simulation process, the state variables are calculated 
in water quality simulation model (QUAL2E ) and 
written in output file. 
Step3: Evaluating the fitness functions of 
chromosomes. Minimum nonzero membership of 
these chromosomes divided by penalty coefficient 
that the times which state variables (dissolved 
oxygen deficit) are more than permissible level is 
exponent of it, is introduced as a fitness function of 
any chromosome. 
Step4: Sorting the fitness functions of all 
chromosomes in decreasing fashion. 
Step5: Choosing N chromosomes for participation 
in reproduction process in roulette wheel approach. 
Step6: Permitting to some of the chromosomes to 
participate in crossover process and swap some of 
their gens together. 
Step7: Permitting random mutation to be made to 
individual gens in some chromosomes. 
Therefore, new populations are generated and then 
we go to step2 and go on until the termination 
criteria met. In this study, the fitness function is 
very small and the algorithm is sensitive to penalty 
coefficient. When we use a small penalty 
coefficient, we have a lot of infeasible solution. 
Because we reduce the elimination of infeasible 
chromosomes and we have extra space for 
searching and the time for achieving to the best 
solution is increased. In other word, we will be far 
off the best solution. On the other hand, when we 
choose a high penalty coefficient, we limit the 
search space and the good chromosomes with high 
fitness functions have more probability to be 
selected for next generation and the chromosomes 
with small fitness functions which may have good 
gens in some of their bits, have low probability for 
choosing and may be, they are eliminated. 
Therefore, the number of good chromosomes in 
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next generation will be high and it causes the 
crossover not to have an important role in GA 
process. We try to survey the penalty coefficient 
with number 1.1 and 1.5, also we change the 
crossover and mutation probability and crossover 
type, too. We change the crossover type to one-cut 
point and two-cut point and crossover probability 
(Pc) to 40%, 60% and 80%. We change mutation 
probability (Pm)  to 2%, 5% and 10%, too. 
Generally, we have 36 states and we survey the 
results of any states in 10 Runs. With comparison 
Convergence, Standard deviation, Maximum, 
Average and Minimum diagrams of fitness 
functions and Standard deviation, Maximum, 
Average and Minimum of final fitness function in 
10 Runs in any states, we choose the best state 
which follow us to the optimal solution. The state 
was Pc=40%, Pm=2%, penalty coefficient =1.5 and 
Crossover type=two-cut point. The best fitness 
function which is obtained through 1000 generation 
and 80 populations, is *λ = 0.22 In comparison 
between 36 states, which discussed in this section, 
we choose the state, which has maximum fitness 
function and minimum standard deviation of final 
fitness function in 10 Runs. The diagrams of these 
36 states are shown in figure.3. through 5 and 
figure.6. through 11. 
 

Figue.2: Hypothetical River Network 
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Figure.3: Maximum of  Objective 
FunctionValue Obtained in Each 

Generation Over 10 Runs 
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Figure.4: Maximum, Average and Minimum 

Objective Function Value Obtained 
in Each Generation Over 10 Runs 
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Figure.5: Standard Deviation of 

Objective Function Values Obtained 
in Each Generation Over 10 Run 
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Figure.6: Maximum of Final Objective Function 

Values Obtained Over 10 Runs 
in One-Point Cut Crossover 
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Figure.8: Average of Final Objective Function 

Values Obtained Over 10 Run 
in One-Point Cut Crossover 
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Figure.10: Minimum of Final Objective Function 

Values Obtained Over 10 Runs 
in One-Point Cut Crossover 
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Figure.7: Maximum of Final Objective Function 

Values Obtained Over 10 Runs 
in Two-Point Cut Crossover 
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Figure.9: Average of Final Objective Function 

Values Obtained Over 10 Runs 
in Two-Point Cut Crossover 
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Figure11: Minimum of Final Objective Function 

Values Obtained Over 10 Runs 
in Two-Point Cut Crossover 

 

CONCLUSION 

A fuzzy waste load allocation model is developed in 
the present study to incorporate uncertainties due to 

randomness and vagueness in simulation- 
optimization model for water quality management. 
This water quality problem is formulated as a fuzzy 
multi-objective optimization which goals of 
pollution control agency and the dischargers are 
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expressed with appropriate membership functions. 
The model is applied to a hypothetical river system 
to illustrate the fuzzy optimization modeling in 
water quality management. In fuzzy optimization 
model, we use Genetic Algorithm as an 
optimization tool which was linked with water 
quality simulation model, QUAL2E. Generally, 
water quality management characterized by various 
types of uncertainties due to randomness associated 
with various components of a river system such as 
river flow, effluent flow, temperature, source of 
pollutant, water quality parameter and other 
variables. Using these forms of uncertainties with 
fuzzy optimization will provide proper solutions in 
water quality management. Further more, in waste 
load allocation problems; the waste treatment cost is 
an important factor in decision making process. But 
because of vagueness, lack of adequate data and 
nonlinearity of cost function cause difficulties 
which we preclude to use cost function in 
optimization problem directly. In the fuzzy waste 
load allocation, the cost function is eliminated and 
goals of dischargers are expressed with appropriate 
membership functions. In the optimization model 
with GA, to handle the constraints, the penalty 
coefficient is used. The number of states which 
membership of state variables (dissolved oxygen 
deficit) is zero and the state variables are more than 
permissible level is exponent of penalty coefficient 
and cause the fitness function will be small. 
Generally, assigning appropriate value for penalty 
coefficient and appropriate shape for membership 
functions helps the decision makers to decide 
properly in water quality management. For this 
case, which is presented in this paper, we can use S-
P model with linear membership function and solve 
the fuzzy optimization problem with linear 
programming, too. But use QUAL2E and GA, when 
we have nonlinear membership functions or coupled 
system with interactions between algae, 
phosphorous, nitrogen and dissolved oxygen is very 
useful. 
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