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Abstract: Floods are one of the major natural disasters that often threaten human lives and cause significant 
economic losses around the world. The history of mankind is filled with the stories of our struggles with floods 
to protect human races and to sustain the progression of our civilizations. Flood defense systems are designed 
and constructed to protect low-lying areas against flooding. Engineering design often is at the final stage for 
finding technical means to best accomplish the project goals. Conceptually, in the cost of the protection system, 
the most important factor in designing flood defense systems, should be in balance with the value of the 
protected area. Over the years, risk-based design and optimization methods have proven to be useful tools to 
obtain a balanced level of protection. The most common economic framework for floodplain management is 
minimization of expected annual damages and flood management expenses, structural and nonstructural flood 
control options. Levee systems have been built for flood protection in numerous rivers, lakes and coasts in the 
world over the long human history. Early flood levees usually were designed with scant quantitative analysis, 
relying primarily on occasional observations of flood stages and empirical judgments on required project 
scales. Economic design of a levee system for flood protection involves balancing costs of levee building 
(height), the losses of land value sacrificed for floodway expansion (setback) and flood damages from 
inadequate channel capacity. The application of GAs to water resources problems has been increased in recent 
years. The study of genetic algorithms (GAs) originated, and has developed into a powerful optimization 
approach. GAs have so far had very little applications in flood defense systems optimization. In this paper 
several different approaches to GA formulation are considered, along with a range of sensitivity analysis. The 
object has been to present GAs as a practical tool in levee design optimization and to examine the potential of 
different GA formulations for solving the problem. It has been demonstrated that GAs provide robust and 
acceptable solutions to the levees setback optimization problem. The results obtained indicate that there is 
potential for application of GAs to levees optimization problems, where the objective function is nonlinear and 
other optimization techniques may be difficult to apply and find the global optimum. 
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1 Introduction 
Floods are one of the major natural disasters that 
often threaten human lives and cause significant 
economic losses around the world. The history of 
mankind is filled with the stories of our struggles 
with floods to protect human races and to sustain 
the progression of our civilizations. Even with 
centuries of experiences on flood defense and 
tremendous amount of progresses have been 
achieved, flood still appears to enjoy being the 
main enemy of public in the category of natural 
disaster. Berz (2000) recently compares flood 
disasters with earthquakes, storms and other forms 
of nature disasters in the world. The study indicates 
that floods contribute to 58% of total death and 

33% of economic losses [1]. Great majority of 
flood, related death and economic losses occurred 
in developing countries.  
Flood defense systems are designed and 
constructed to protect low-lying areas against 
flooding. Decision for a flood defense system are 
multi-dimensional which involve a set of goals and 
constraints arising from political, economical and 
engineering aspects. Engineering design often is at 
the final stage for finding technical means to best 
accomplish the project goals. Over the years 
engineering design concepts have been evolved as 
the science and technology in dealing with flood 
issues progress and improve. 
The application of GAs to water resources 
problems is not deniable. Wang (1991) applied a 
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GA to the calibration of a conceptual rainfall-runoff 
model. Similar work has been reported by 
Franchini (1996), who used a GA in combination 
with sequential quadratic programming to calibrate 
a conceptual rainfall-runoff  model. There have 
been also several applications of GAs to pipe net 
work problems. Goldberg (1987), Murphy et al. 
(1993), Davidson and Goulter (1995) and Dandy et 
al (1996) used a simple and also improved GA for 
pipeline, pipe network and water supply network 
optimization. In ground-water pollution problems, 
Ritzel al. (l994) and McKinney and Lin (1994) 
have been made good experiences. 
Levee systems have been built for flood protection 
in numerous rivers, lakes and coasts in the world 
over the long human history. Early flood levees 
usually were designed with scant quantitative 
analysis, relying primarily on occasional 
observations of flood stages and empirical 
judgments on required project scales. The 
achievements in experimental and theoretical 
hydraulics since the 18th century, rational 
estimation of storm discharge in the mid 19th 
century and the emerging of early economic-
engineering analysis (Humphreys, 1861) made 
possible the “modern sense” designs of flood 
levees. In recent decades, several studies have 
addressed the economic aspects of flood levee 
design, usually with benefit-cost analysis and 
optimization techniques (Tung and Mays, 1981, 
Wurbs, 1983). 
GAs have so far had little applications in flood 
defense systems optimization. Excellent 
introductions to GAs are given by Goldberg (1989) 
and by Michalewicz (1992) and several recent 
papers give summaries of the essentials (e.g. 
Oliveira and Loucks, 1997 and Savic and Walters, 
1997 ). Shafiei et al. used genetic algorithms for 
optimization of levees setback along certain 
probability of crossover and mutation operators 
[11]. In this paper, several different probabilities of 
genetic operators in GA formulation are 
considered, along with a range of sensitivity 
analysis in the same problem of setback 
optimization. In this paper. The object has been to 
present GAs as a practical tool in levee design 
optimization and to examine the potential of 
different GA formulations for solving the problem. 
 

2 Economic Design of Flood Defense 
Systems 

Flood defense systems are designed and 
constructed to protect low-lying areas against 

flooding. The objective in economic design of a 
hydraulic structure is to minimize the sum of 
capital investment cost, the expected flood damage 
costs and operation and maintenance costs. 
Economic design of a levee system for flood 
protection involves balancing construction costs of 
levee, the losses of land value sacrificed for 
floodway expansion (Setback) and flood damages 
from inadequate channel capacity. The most 
common economic objective for floodplain 
management is minimization of expected annual 
damages and flood management expenses. Under 
static conditions, the flood frequency distribution is 
stationary and economic factors, such as the value 
of damage to properties, construction cost, and 
floodplain land values, are constant.  
 

2.1 Data Requirements in Economic 
Design of Flood Defense Systems 

The information needed for this process can be 
categorized into four types. 

• Hydrologic/Physiographical Data 
• Hydraulic Data 
• Structural Data 
• Economic Data 

 

2.2 Optimal Tradeoff of Levee Setback 
and Height 

A static model is formulated to minimize the sum 
of expected flood damage, considering levee 
construction cost and resultant land value loss due 
to floodway occupancy. This simple model allows 
preliminary quantitative examination of the tradeoff 
between optimal setback and optimal height in 
designing a new levee. The objective function is: 
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Where Xs and Xh are designed levee setback and 
height respectively. B and C also  identify the 
benefit and cost of levee system.  
The land value benefit function B( ) depends not 
only on levee setback but also on levee height 
because the bottom width of levee cross-section 
may change with levee height. Considering partial 
derivatives of B/C(Xs,Xh), with respect to Xs and 
Xh equal zero, 
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Given a levee overtopping flow Q(Xs,Xh), we have 
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Equation (4) holds for the optimal levee height and 
setback. The optimal levee height and setback can 
be found by numerically solving combined 
equations (2) and (3) and verifying that a minimum 
has been found, even though the expected total cost 
function in Equation (1) is not convex [13].  
 

3 Genetic Algorithms 
Evolutionary Algorithms can be divided into three 
main areas of research: Genetic Algorithms (GA), 
Evolution Strategies (ES) and Evolutionary 
Programming (EP). Genetic Programming began as 
a general model for adaptive process but has since 
become effective at optimization while Evolution 
Strategies was designed from the beginning for 
variable optimization. The schematic diagram of 
these algorithms which are made of the several 
iterations of basic Evolution Cycle is shown below: 

Present
Generation

Selected
Parents

New
Generation Variation, Mutation

Replacement Selection

 
Fig. 1: Schematic Diagram of Evolution Cycle  

 
A GA is a search algorithm based upon the 
mechanics of natural selection, derived from the 
theory of natural evolution. GAs simulate 
mechanisms of population genetics and natural 
rules of survival in pursuit of the ideas of 
adaptation, indeed this has led to a vocabulary 
borrowed from natural genetics [3]. 
Goldberg (1989) identifies the following as the 
significant differences between GA and more 
traditional optimization methods: 

 GAs work with a coding of the parameter 
set, not with the parameters themselves. 

 GA search from a population of points, not 
a single point 

 GAs use objective function information, 
not derivatives or other uxillary knowledge 

 GAs use probabilistic transition rules not 
deterministic rules 

A GA is a robust method for searching the 
optimum, solution to a complex problem, although 
it may not necessarily lead to the best possible 
solution, A GA generally represents a solution 

using strings (also referred to as chromosomes) of 
variables that represent he problem. In early GAs 
(Goldberg and Kuo 1987, Wang 1991) these strings 
were comprised of binary bits. In binary 
representation. the bits may encode integers, real 
numbers, sets or whatever else is appropriate to the 
problem. Real-value coding is now proving more 
effective in many problems than binary coding 
(e.g.. Oliveira and Loucks 1997 ). 
Coding components of possible solutions into a 
chromosome is the first part of a GA formulation. 
Each chromosome is a potential solution and is 
comprised of a series of sub-strings or genes, 
representing components or variables that either 
form or can be used to evaluate the objective 
function of the problem. The fitness of a 
chromosome as a candidate solution to a problem is 
an expression of the value of the objective function 
represented by it. It is also a function of the 
problem constraints and may be modified through 
the introduction of penalties when constraints are 
not satisfied. 
A GA starts with a population of chromosomes, 
which are combined through genetic operators to 
produce successively better chromosomes, The 
genetic operators used in the reproductive process 
are selection, crossover and mutation. 
Chromosomes in the population with high fitness 
values have a high probability of being selected for 
combination of other chromosomes of high fitness. 
Combination is achieved through the crossover of 
pieces of genetic material between selected 
chromosomes. Mutation allows for the random 
mutations of bits of information in individual 
genes. Through successive generations fitness 
should progressively improve. Various schemes for 
selection, crossover, and mutation exist and will be 
discussed. 
 

3.1 Genetic Algorithm Process 
Canonical form of GA approach can be 
summarized  as: 
1. Define the objective function which is 
appropriate to conditions of problem.  
2. Present the possible solutions (phenotype) as real 
value (genotype or chromosome). 3. Generate a 
random population of specific size. The population 
size affects the efficiency and performance of GA.  
4. Evaluate the fitness of every solution over the 
objective function. There are many methods to 
evaluate fitness and assign a real number to each 
chromosome. 
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5. Select a population of chromosomes of the same 
size of initial population for mating, by a random 
selection method.  
6. Apply crossover operation on selected pairs if 
they have been chosen for crossover. 7. Replace the 
parent population with new generation. 
8. Applying mutation operator based on the 
probability of mutation. At this point the process of 
producing a pair of offspring from two selected 
parents is finished. 
9. Go through steps 4 to 8 until the termination 
criteria met. 
 

3.2 Representation Schemes 
Traditionally GAs have used binary coding, in 
which a chromosome is represented by a string of 
binary bits that can, encode integers, real numbers, 
or anything else appropriate to a problem. In a real-
value representation, individual genes of a 
chromosome are initially allocated values randomly 
within feasible limits of the variable represented, 
with a sufficiently large population of 
chromosomes adequate representation will be 
achieved. There is a significant advantage in not 
wasting computer time on decoding for objective 
function evaluation, although a more careful 
approach to mutation is required. In real-value 
coding there is no discretization of the decision 
variable space. This is another advantage of this 
approach. 
 

3.2.1 Selection Approaches 
Selection is the procedure by which chromosomes 
are chosen for participation in the reproduction 
process. A popular approach has been fitness 
proportionate selection (Goldberg 1989), in which 
the probability P of an individual k being selected 
is given by: 

∑
=

j

k
k f

fp                                                           (5) 

where f is fitness of individuals along the 
population. 
Various rank selection schemes are in use 
(Michalewict 1992) that tend to ensure that good 
chromosomes have higher chances of being 
selected for the next generation. Ranking schemes 
operate by sorting the population on the basis of 
fitness values and then assigning a probability of 
selection based upon the rank. The roulette wheel 
approach is one of ranking schemes of selection. 

5%

10%

14%

19%

24%

28%

 
Fig. 2: Roulette Wheel Selection 

 
 A constant selection differential is thus maintained 
between the best and the worst individuals in the 
population. A drawback is that information on the 
relative fitness of the individuals is not used. 
Goldberg and Deb (1990) have compared various 
selection schemes, and indicated a preference for 
the tournament selection scheme. In tournament 
selection a group of individuals are chosen at 
random from the population, and the individual 
with the highest fitness is selected for inclusion in 
the next generation. The procedure is repeated until 
the appropriate number of individual are selected 
for the new generation. The approach had 
originally been developed with groups of two 
individuals and was called binary tournament 
selection, but larger groups lead to greater diversity 
and a smoother progression to a solution. 
Tournament selection was used by some authors in 
the ground-water monitoring problem.  
 

3.2.2 Crossover Approaches 
The general theory behind the crossover operation 
is that, by exchanging important building blocks 
between two strings that perform well, the GA 
attempts to create new strings that preserve the best 
material from two parent strings. The number of 
strings in which material is exchanged is controlled 
by the crossover probability forming part of the 
parametric data. Goldberg (1989) and Michalewicz 
(1992) describe the following methods of crossover 
(1) one-point crossover; (2) two- point crossover 
and (3) uniform crossover [3] , [6]. 
Crossover occurs between two selected 
chromosomes with some specified probability. In 
one-point crossover, a crossover point is selected at 
random at some point C in the chromosome length 
L and two new individuals are created by swapping 
all genes between positions C and L. In two-point 
crossover, genetic material between two positions 
chosen at random along the length of the 
chromosomes, C1 and C2, is exchanged. Uniform 
crossover operates on individual genes of the 
selected chromosomes, rather than on blocks of 
genetic maternal, and each gene is considered in 
turn for crossover or exchange. 
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              C L
Parent 1

+
Parent 2

Child 1
+

Child 2

            C 1               C 2 L
Parent 1

+
Parent 2

Child 1
+

Child 2

1-Point Cut Crossover

2-Point Cut Crossover  
            Fig. 3: Crossover Approaches 

 

3.2.3 Mutation Approaches 
Mutation is an important process that permits new 
genetic material to be introduced to a population. A 
mutation probability is specified that permits 
random mutations to be made to individual genes. 
The two basic approaches to mutation for teal-value 
representations are uniform ruination and non-
uniform mutation [6]. Uniform mutation permits 
the value of a gene to be mutated randomly within 
its feasible range of values; possibly resulting in 
significant modification of otherwise good 
solutions. Modified uniform mutation permits 
modification of a gene by a specified amount, 
which may be either positive or negative. In non-
uniform mutation, the amount by which genes are 
mutated can be reduced as a run progresses, and 
can therefore help in the later generations to fine 
tune the solutions. This operator is particularly 
suited to problems where high precision is required. 

L
Parent 1

+
Parent 2

+
Parent 3

+
Parent 4

L
Child 1

+
Child 2

Child 3
+

Child 4
 

          Fig. 4: Uniform Mutation   
 
  

4 Methodology 

4.1 Hydrologic Analysis 
In this paper, the HEC-HMS was applied to fulfill 
hydrologic analysis. The Corps’ HEC-HMS is a 
Windows-based program with significant 
improvements over its predecessor. The resulting 
peak flows of 25-year and 100-year hydrograph is 
to extract from the outputs of the model. 

 

4.2 Geometry Model 
In this paper, the digital topographic maps of study 
area were used to make the required DEM of study 
area and the cross-sections were defined and 
extracted to use in next steps.  
 

4.3 Hydraulic modeling 
In this paper, the steady uniform current is applied 
along the river. The design discharge for 
optimizing the setback of levees of study area was 
selected as the peak flow of hydrograph with return 
period of 100 year. 
For accomplishing hydraulic modeling and analysis 
in this study, HEC-RAS model, HEC-RAS version 
3.0.1, as developed by the Hydrologic Engineering 
Center, U.S. Army Corps of Engineers, was used as 
a basis model to verify water surface profiles based 
on the flood discharges which are excluded from a 
visual basic code determining water level of each 
section. This code make the calculations having the 
characteristics of the cross-sections such as ground 
points elevations and maning value and also 
discharge of current with unit of cubic meter per 
second. This part of analysis is done to make the 
hydraulic simulator able to participate in the 
iterative process of optimization. 
 

4.4 Economic Analysis And 
Optimization 

In this stage, we continue to use a visual basic code 
written to analyze the cost and benefit of flood 
defense system and determine the optimum levees 
setback with the maximum economic benefits. 
Genetic algorithm is applied to achieve best 
solution. Substituting the hydrologic and hydraulic 
study outputs in the optimization analysis and 
refining the construction cost estimate based on 
developing knowledge of cost-sensitive features 
such as water level, we make it possible to 
determine the optimum design. 
 

4.4.1 Genetic Algorithm Formulation 
Since the objective function is based on 
maximizing ratio between benefit and cost of flood 
levees, levee height in each section should be the 
decision variable on which the GA is based. 
Construction cost is calculated by using volume of 
constructed levee and unit cost of it. Benefit is 
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calculated from the value of protected land due to 
constructed hydraulic structure (Levee). With 10 
sections and one levee height, there are thus 10 
discrete variables to be represented in the GA. Each 
of these may be considered to be a gene. Elevation 
values are to be considered as non-integer 
quantities with precision of 0.1 meter. This is 
toward defining the problem and is not a limitation 
for GAs.  
An alternative approach to formulation of the GA is 
to use a representation appropriate to the 
components of the problem. Here, Real-value 
chromosomes have been used with success where 
individual genes of a chromosome are initiated by 
randomly within feasible zone. With a sufficiently 
large population good representation will be 
achieved.  
The schematic diagram of steps accomplished 
during the optimization process using genetic 
algorithm is shown below: 

 
Population of Random
Levee Base Elevation

Simulation and
Fitness Calculation

Selection

Crossover

Mutation

Termination Check

Done

 
Fig. 4: Schematic Diagram of GA Formulation 

 
For generating a random population, the population 
size is 80 chromosomes for making the sensitivity 
analysis and 400 chromosomes for final 
optimization analysis. 
Proportional selection method is used here to 
evaluate the fitness of every solution over the 
objective function. In selection step, roulette wheel 
approach is applied to select population of 
chromosomes of the same size of initial population. 
In the crossover step, 1-point cut crossover is 
applied on selected pairs based on probability of 
crossover. The probabilities of 0.2, 0.4 and 0.6 
were applied. In this approach, after replacing the 
parent population with new generation, these 
changed chromosomes have not to be selected 
again for further crossover. Having finished 
crossover along the population, it is necessary to 
apply mutation operator based on the probability of 
mutation. The probabilities of 0.005, 0.01 and 0.02 
were used in this step. This process is repeated until 
the termination criteria met. 

 

5 Study Area 
The Ajichai Watershed is located in Tabriz. It flows 
from the southern part of the Sabalan Mountain in a 
westerly direction across the urbanized Herris and 
Sarab County and through the city of Tabriz to its 
confluence with the Uroumieh Lake.  
The Ajichai River natural valley flood plain 
averages about 600 meters wide while the main 
channel averages about 50 meters wide through the 
study reach.  
The Ajichai catchment elevation ranges from 1458 
m to 3883 m above sea level and the annual 
average precipitation is approximately 300 mm. 
 

 
Fig. 5: Ajichai River and Basin 

 
Bank-full discharge corresponding to an event with 
the 4-percent chance of exceedance (25-year) is 
about 400 cubic meters per second and the 1-
percent chance of exceedance (100-year) event is 
about 700 cubic meters per second. The average 
bed slope through the project reach is on the order 
of 20 centimeters per 100 meters.  
A subset area was selected along the river with a 
length of 2 kilometers and used as study area 
during the hydraulic and optimization process. 
Such a subset is just large enough to represent the 
river and the surrounding surfaces so that the 
computing time is reduced to minimum in the 
optimization algorithm. 
 

6 Results 
As discussed above, consideration of GA 
formulation has been given to real-value coding 
with some probabilities of crossover and mutation. 
Performance of each different operator probabilities 
is discussed below. 
 

6.1 Sensitivity analysis 
A series of sensitivity analyses were carried out to 
establish appropriate parameter settings under real-
value coding and alternative operators. In many 
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practical problems, GA results are found to be 
sensitive to crossover and mutation probabilities. 
This is because genetic material lost at the stag of a 
run, through either crossover or mutation, may be 
needed to improve fitness. Sensitivity to crossover 
and mutation probability is discussed below for 
real-value coding scheme in GA formulation 

6.1.1 Sensitivity to Crossover and Mutation 
Approaches 

 
In this study, sensitivity to crossover and mutation 
probability was carried out using a population size 
of 80. The roulette wheel selection approach was 
adopted with 1-point cut crossover with 
probabilities from 0.2 to 0.6, and a uniform 
mutation operator with probability of 0.005 to 0.02 
were considered through runs with a fixed length of 
500 generation. Fig. 6 and 7 show the sensitivity of 
the achieved fitness to crossover probability for 
each of the schemes considered. Fitness is 
expressed as maximum and average values of 
objective function, as the ratio between benefit and 
cost of levee problem. 
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Fig. 6: sensitivity to crossover and mutation probability, maximum of 

objective function values (Standard GA) 
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Fig. 7: sensitivity to crossover and mutation probability, average of 

objective function values (Standard GA) 
 
Table 1 include the information such as minimum, 
average and maximum of obtained results through 
different operators of crossover and mutation.  

 
Table 1: sensitivity analysis information in standard GA 

Crossover
Prob.

Mutation
Prob. Minimum Average Maximum Standard 

Deviation
Coefficient Of 

Variation
0.2 0.005 1.077 1.148 1.188 0.035 0.030
0.2 0.01 1.146 1.169 1.192 0.015 0.013
0.2 0.02 1.109 1.127 1.153 0.019 0.017
0.4 0.005 1.103 1.146 1.188 0.032 0.028
0.4 0.01 1.057 1.126 1.163 0.032 0.028
0.4 0.02 1.097 1.130 1.158 0.019 0.017
0.6 0.005 1.081 1.136 1.185 0.032 0.028
0.6 0.01 1.125 1.154 1.175 0.015 0.013
0.6 0.02 1.072 1.125 1.173 0.025 0.022

 
The results demonstrate clearly that GAs are 
robust, with reasonable results being obtained by 1-
point cut crossover with probability of 0.2 and 
mutation probability of 0.01. As it is seen, by this 
structure, it would be possible to obtain better 
results than previous works (Shafiei et al., 2005).  
 

7 Conclusion 
It has been demonstrated that GAs provide robust 
and acceptable solutions to the levees setback 
optimization problem. Several possible 
formulations have been considered, along with their 
sensitivity to various parameters. It is included that 
in real-value representation scheme, incorporating 
roulette wheel selection, elitism, 1-point cut 
crossover and uniform mutation with low 
probability will operate most efficiently and 
produce the best results. 
Developing formulation of GA having different 
probabilities of operators, crossover probability of 
0.2 and mutation probability of 0.01 are appropriate 
for the problem presented here. For the levee 
problem, a more precise solution can be achieved 
within 4000 generations with a population of 400. 
The results achieved indicate that there is potential 
for the application of GAs to large rivers levees 
optimization problems, where the objective 
function is complex and other techniques are 
difficult to apply. 
The approach is easily applied to complex systems. 
A GA will generate several solutions that are very 
close to the optimum, and this gives added 
flexibility to an operator of a complex flood 
defense system. 
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