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Abstract: - This paper presents a comparative study of two stochastic optimization methods: the electromagnetism-like 
algorithm (EMA) and the multilevel ant stigmergy algorithm (MASA) in computer-assisted design of universal electric 
motor rotor/stator geometry. The design goal was to minimize the power losses. The output of this study can be 
summarized in several important findings. Above all, both compared optimization methods were able to significantly 
improve the original engineering design. Comparing the tested methods, the MASA generated the minimum power loss 
designs. Its additional advantage shown on this problem was the capability of successfully performing the optimization 
from random starting points, which was not the case with the EMA. 
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1   Introduction 
The paper provides a comparative study of two 
stochastic optimization methods in designing optimal 
universal AC or DC motor rotor/stator geometries where 
the primary objective is to minimize the motor power 
losses to compare the performance of both methods on a 
high-dimensional nonlinear engineering optimization 
problem, and to check whether the engineering design 
already used in regular production can be improved 
through automated optimization. 

A conventional universal motor design procedure is 
as follows: First, an experienced engineer made the 
initial estimation of the rotor/stator geometry. Then the 
suitability of this geometry is usually analyzed by means 
of a numerical simulation of the electromagnetic field 
and the manual procedure is repeated until the 
satisfactory evaluation results are obtained. The 
important role of this approach is that with their 
experience the engineers can significantly influence the 
progress of the design process and react intelligently to 
any noticeable electromagnetic response with proper 
geometry redesign.  

However, this design approach has its own 
weaknesses, which reflects in non-optimal design and 
extremely large time consumption. Therefore, a 
conventional design approach can be upgraded with 
stochastic optimization techniques, which—in 
connection with reliable numerical simulators—allow 
for highly automated design process where the need for 
an experienced engineer to navigate the process is 
significantly reduced. 

The paper is organized as follows. In Section 2, the 
design of universal motors is outlined. Section 3 presents 
the applied optimization methods. Numerical 
experiments and the obtained results are presented in 
Section 4, where the applied methods are evaluated with 
respect to their performance. The paper concludes with 
the summary of the findings of this study and directions 
of future work.  
 
 
2   Universal Motor Design 
2.1 Power Losses and Motor Efficiency 
The efficiency η  of a universal motor is defined as the 
ratio of the output power Pout to the input power Pinp and 
depends on various power losses. They include copper 
losses PCu, iron losses PFe, and additional losses Padd 
(such as brush, ventilation and friction losses) [8]. 

When considering all the mentioned losses and the 
output power Pout, the overall efficiency η of an electric 
motor can be defined as follows: 
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2.2 Rotor/Stator Geometry 
In our case, ten mutually independent variable 
parameters defining the rotor and stator geometry are 
subject to optimization, which needs to find the 
geometry parameter values that would generate the rotor 
and stator geometry with minimum power losses. 
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2.3 Numerical Simulation 
To evaluate different settings of the rotor and stator 
geometry parameters with respect to the resulting power 
losses, we used the commercial ANSYS finite-element 
method simulation package [1]. 
 
 
3   Optimization Methods 
There are a variety of stochastic optimization methods 
and selecting an appropriate one is part of a challenge in 
solving real-world design optimization problems.  

In this section, we present two stochastic methods on 
optimizing the universal motor rotor/stator geometries to 
eventually draw conclusions on their suitability for this 
problem. Two recently proposed global optimization 
techniques were used, electromagnetism-like algorithm 
[2] and multilevel ant stigmergy algorithm [6].  

Both methods use real vector representation of 
candidate solutions where each vector component 
represents one geometry parameter of the electric motor 
rotor and stator. The parameter search space is 
discretized and the stopping criterion is given by the 
number of solutions to be evaluated.  

We had previously applied the genetic algorithm 
(GA) [4, 5] to the same optimization problem [7] and 
wanted to compare it with novel techniques in this study. 

The applied optimization methods, the EMA and the 
MASA, are described in the following subsections. 
 
3.1 Electromagnetism-like Algorithm 
The electromagnetism-like algorithm (EMA) [2] is 
optimization heuristic, which was proposed for 
unconstrained global optimization problems, i.e., the 
minimization of non-linear functions.  

Having a multi-dimensional solution space where 
each point represents a solution, a charge is associated 
with each point (calculated upon the objective function 
value of the solution). A population of solutions is 
created, in which each solution point exerts attraction or 
repulsion on other points, the magnitude of which is 
proportional to the product of the charges and inversely 
proportional to the distance between the points 
(Coulomb's Law). The overall move of a point depends 
on the influence of all other points of the population (i.e., 
the move is calculated by vectorially adding the forces of 
all the other points in each direction).  

The dimension of the vector is equal to the 
dimension of the problem, i.e., the number of parameters 
to be optimized.  

The principle behind the algorithm is that worse 
solutions prevent a move in their direction by repelling 
other solutions in the population, while better solutions 
facilitate moves in their direction. 

The EMA pseudo code is shown in Fig. 1. 

1: Evaluate the initial population S of random solutions 
2: while stopping criterion not met do 
3:   Optionally perform local search on some solutions 
4:   Calculate the force of solutions sj (j ≠ i) on solution si 
5:   Move each solution si according to the forces 
6:   Evaluate each new solution 
7: endwhile 

 
Figure 1: Electromagnetism-like algorithm. 

 
If the local search procedure (line 3) is enabled, it 

explores the immediate (Euclidean) neighborhood of 
individual points (either all points or only the best one). 
Then the total force exerted on each point by all other 
points is calculated (line 4). It depends on the charge of 
the point under consideration as well as of the points 
exerting the force, and the Euclidean distance between 
them. The charge of each point si is determined by its 
objective function value f(si) in relation to the objection 
function value of the current best point sbest in the 
population, with better objective function values 
resulting in higher charges. For a minimization problem, 
the charge qi of the point si is determined according to 
equation: 
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The parameter m represents the population size, d is the 
dimension of the solution space. A set of force vectors 
Fi, i = 1, ..., m, that are exerted on the point si, is 
determined: 
 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≥
−

−

<
−

−

=

∑

∑

≠=

≠=

m
ijj ij

ij

ji
ji

m
ijj ij

ij

ji
ij

i

ffif
qq

ffif
qq

,1 2

,1 2

)()()(

)()()(

ss
ss

ss

ss
ss

ss

F  (3) 

 
In this way, a point with a relatively good objective 

function value attracts the other points, while the point 
with an inferior objective value repels them. The forces 
exerted on si by each of the other points are combined by 
means of vector summation. 

The movement according to the resulting forces is 
then performed (line 5), which generates a new 
population. The imposed force is normalized by division 
with its norm and therefore only identifies the direction 
of the move, not the magnitude. The magnitude of each 
move is determined for each dimension separately 
according to the charges ratio of the involved solutions. 

The EMA is a population-based algorithm, since it 
operates on a population of solutions rather than on a 
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single solution at a time. The convergence properties of 
this algorithm are analyzed in [2]. 
 
3.2 Multilevel Ant Stigmergy Algorithm 
The multilevel ant stigmergy algorithm (MASA)  [6] is a 
new approach to solving multi-parameter optimization 
problems. It is based on stigmergy, a type of collective 
work that can be observed in ant colonies. The MASA 
operates as follows (see pseudo code in Fig. 2). 

First, the problem parameters are transformed into a 
search tree where vertices represent discretized values of 
parameters (line 1). A vertex representing a parameter 
value is connected to all vertices representing the values 
of the next parameter. In this way, the multi-parameter 
optimization problem is transformed into a problem of 
finding the cheapest path. 

Second, the tree is coarsened to a predetermined size 
(line 2). Coarsening is merging two or more vertices that 
represent discretized values of the same parameter into 
one vertex; this is achieved in L iterations (we call them 
levels). In the coarsened tree the initial amount of 
pheromone is deployed in all vertices (line 3). 

 
1:   Construct the search tree from all parameters 
2:   Coarsen the tree in L levels 
3:   Initialize vertices with initial amount of pheromone 
4:   for l = L downto 1 do 
5:     while current level l stopping criterion not met do 
6:       for all ants do 
7:         Find the cheapest path 
8:       endfor 
9:       Update pheromone amounts in all visited vertices 
10:     Increase the pheromone amounts on best path 
11:     Evaporate pheromone in all vertices 
12:   endwhile 
13:   Refine the tree by one level 
14: endfor 
15: Optionally perform local optimization  
 

Figure 2: Multilevel ant stigmergy algorithm. 
 
Next, the optimization procedure based on ant colony 

optimization [3] is applied (lines 5–12). All ants 
simultaneously start from the starting vertex. The 
probability of choosing the next vertex depends on the 
amount of pheromone in the vertices. Ants repeat this 
action until they reach the ending vertex. The parameter 
values gathered on each ant's path represent a candidate 
solution, which is then evaluated according to the given 
objective function. Afterwards, each ant returns to the 
starting vertex, on its way depositing pheromone in the 
vertices according to the evaluation result: the better the 
result, the more pheromone is deposited. If the gathered 
parameter values form an infeasible solution, the amount 
of pheromone in the parameter vertices is slightly 

decreased. When the ants return to the starting vertex, 
two additional actions are performed. First, following ant 
colony optimization, “daemon action” is applied as a 
type of elitism, i.e., additional increase of the pheromone 
amount on the currently best path. Second, the 
pheromone in all vertices evaporate, therefore, in each 
vertex the amount of pheromones is decreased by some 
predetermined percentage.  

Then the coarsened tree is refined by one level (line 
13). All vertices created from one vertex have the same 
amount of pheromone as the original one. When 
refinement is done, the optimization phase continues. 
These two phases are repeated until the graph is 
expanded to its original size and the optimization 
performed on every level of the expansion (lines 4–14).  

Finally, local optimization can be applied. Local 
optimization has become a mandatory addition to any 
ant-based algorithm. With the use of local optimization 
one usually improves the convergence or improves the 
best solution found so far. In our case, we use it because 
our basic search technique is oriented more towards 
finding the best area of the solution space. We can say 
that the search is more of a broader type, so we use local 
optimization to improve the best solution.  
 
 
4   Experimental Results 
As explained in Subsection 2.2, we optimize ten 
parameters of the electric motor rotor/stator geometry. 
Predefined search intervals for their values are used and 
the discretization step for all parameters is 0.1 mm. 
Therefore, the size of the search space can be obtained as 
a product of the numbers of possible settings over all 
parameters. It turns out to be approximately 1020 points. 

The first optimization method—the EMA—is 
population-based. Therefore, it starts with an initial 
population of solutions. To assist the population-based 
method in finding feasible solutions, it was modified to 
start not with a population of random solutions, but 
rather a population of solutions that are random 
perturbations of a predefined solution. For this purpose 
the engineering solution was used, specifying the 
universal motor rotor/stator geometry used in practice. 

Unlike the population-based methods that gradually 
improve the solutions, the MASA is a solution-
construction method. Initial experiments with the MASA 
on the electric motor geometry optimization problem 
have shown this algorithm is capable of successfully 
navigate the search from infeasible to feasible regions. 
The multilevel approach significantly reduces the search 
space in the early stages of exploration. This reduction 
enables the MASA to perform well without any 
background information on the feasibility of solutions. 
Through stigmergy, infeasible regions in the search 
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space are found less attractive by the ants, and 
consequently the search focuses on feasible ones. 

The stopping criterion for both optimization methods 
was given by the number of solutions to be evaluated. It 
was set to 1400 and this value vas chosen considering 
the computational complexity of the optimization 
procedure. 

 
Table 2: Result statistics for the optimization 

methods (universal motor power losses in watts). 
Method Best Average Worst St. dev.
eng. design 177.9 -- -- -- 
GA 147.0 N/A N/A N/A 
EMA 134.9 141.9 148.0 3.7 
MASA 114.2 128.9 135.9 7.8 
 
 
The optimization methods were run 20 times. The 

obtained results in terms of the electric motor power 
losses are presented statistically in Table 2. The method 
performance diagrams are shown in Fig. 3; also 
compared with power losses of the original engineering 
solution that amounted to 177.9 W. 
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Figure 3: Performance of the applied methods in 
optimizing universal motor rotor/stator geometry 

parameters (average over 20 runs). 
 
The results first of all show that applied methods 

significantly improve the engineering design of the 
electric motor rotor and stator. While the EMA starts 
with the engineering solution originally used in motor 
production and evolve rather slowly, the MASA starts 
with randomly created solutions that results in high 
power losses, but rapidly improve during the course of 
run. 

By applying stochastic optimization methods we 
found various electric motor rotor/stator geometry 
parameter settings to minimize the power losses. The 
optimization procedures were however driven according 

to the results of computer simulation. To provide a more 
realistic evaluation, we have submitted the resulting 
designs to an expert designer to analyze them from the 
technical and production points of view. The expert 
confirmed the usefulness of the presented results. 

 

 
Figure 5: Laminations of the original engineering rotor 

and stator design with power losses of 177.9 W. 
 

 
Figure 6: Laminations of the rotor and stator design with 

minimum power losses (111.1 W) as found in the 
optimization experiments by the MASA. 

 
 

5   Conclusion 
In this paper, we have performed a comparative study of 
two stochastic optimization methods in computer-
assisted design of universal AC or DC motor rotor/stator 
geometry. The primary design goal was to minimize the 
power losses, however, the resulting designs were also 
evaluated by an expert designer from the point of view 
of feasibility for use in regular production. The applied 
methods were the electromagnetism-like algorithm and 
the multilevel ant stigmergy algorithm. They were 
applied to optimizing the geometry parameters of a 
universal motor already in regular production. The 
optimization procedures were navigated by numerical 
evaluation of the candidate solutions. 
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The output of this study can be summarized in 
several important findings. Above all, both compared 
optimization methods were able to significantly improve 
the original engineering design. Comparing the tested 
methods, a recently proposed optimization technique the 
MASA generated the minimum power loss designs. Its 
additional advantage shown on this problem was the 
capability of successfully performing the optimization 
from random starting points, which was not the case 
with the other methods. In our opinion, the superiority of 
the MASA arises from its multilevel search feature. On 
the methodological side, the multilevel approach found 
beneficial with the MASA, is worth of exploration in 
combination with other optimization methods. 
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