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Abstract — This paper presents about the feedforward neural 
networks for various waveform processing and delayless 
filtering that are applicable to power electronics. Neural-
network-based processing of waves gives considerable 
simplification of hardware and/or software that are 
traditionally used for such applications. The voltage or current 
waveforms which have constant frequency but variable 
magnitudes case is investigated. The above case is mainly 
important for power electronics that operate on a utility system 
and general-purpose constant-frequency converter power 
supplies. In this case, the performance of neural-network-based 
waveform processing and delayless filtering with offline training 
was found to be excellent for a single phase square wave 
inverter operated at 50Hz. 
 
Index Terms — Neural network, delayless filtering, waveform 
processing. 
 

I. INTRODUCTION 

Power electronics and variable-frequency drive systems 
often deal with complex voltage and current waves that are 
rich in harmonics. Neural-Network based waveform 
processing and delayless filtering has been studied for 60 Hz 
frequency operated inverters [1]. One of the important 
processing functions is predictive or delayless filtering in 
order to retrieve the fundamental (sine wave) component of 
the wave. For example, a diode or thyristor phase-controlled 
bridge converter, operating on a 60-Hz utility line, can 
generate square or six-stepped line current wave, and this 
waveform becomes multistepped (more than six steps) with 
multiple phase-shifted bridge converters on a three-phase line 
[2]. Similar waveforms are also generated, respectively, in 
the output voltage of a square-wave voltage-fed inverter with 
single bridge or phase-shifted multibridge configuration. The 
harmonic-rich line current and output voltage waves can 
again cause distortion in the line voltage and load current 
waves, respectively. It is often necessary to retrieve the 
fundamental component of these waves in order to calculate, 
for example, the displacement power factor (DPF), 
fundamental frequency active (P) and reactive power (Q), 
and energy measured by a kilowatt-hour meter. In 
photovoltaic and wind generation systems coupled to the 
grid, the distorted line voltage (due to converter harmonics) 
waves require delayless filtering in order to generate inverter 
sine reference voltage waves for controlling the line DPF to 
unity [3], [4]. The distorted line voltage waves also create 
problems in the comparator (or zero-crossing detector) which 
is often essential for control of the converter (e.g., cosine-
wave-crossing control of a phase-controlled converter). 
Generally, an active or passive-type low-pass filter (LPF) 

with narrow bandwidth is used to filter out the harmonic 
components. However, an LPF causes phase lag and 
amplitude attenuation that vary with fundamental frequency. 
For a utility system, the fundamental frequency is essentially 
constant and, therefore, these phase and amplitude errors can 
be compensated without much difficulty [3]. However, for 
variable-frequency drive applications, the inverter usually 
operates in pulse width-modulation (PWM) mode with wide 
frequency variation generating machine voltage and current 
waves that is complex with harmonics. If a simple LPF with 
narrow bandwidth is used in these applications, the variable 
phase delay and amplitude attenuation for the fundamental 
may not be acceptable, particularly at higher fundamental 
frequency. The phase error is particularly harmful in a 
vector-controlled drive where it creates the coupling problem 
and, thus, deteriorates the drive performance. In the past, 
complex digital adaptive filters, such a finite-impulse 
response (FIR), infinite-impulse response (IIR), or a 
combination of both have been proposed [4]–[6] to obtain 
delayless filtering of the fundamental component. 

In this paper, we propose the neural network 
solution for delayless filtering problems occurred in the 50 
Hz operated inverters. The artificial neural network (ANN), 
or neural network, a generic form of artificial intelligence 
(AI), is recently offering a new frontier in solving many 
control, estimation, and diagnostic problems in power 
electronics and motor drives. Between the two classes of 
ANN, i.e., the feedforward and feedback or recurrent types, 
the former provides static nonlinear input–output mapping or 
pattern recognition property with precision interpolation 
capability. With appropriate training, this property permits a 
feedforward ANN to recognize a wave shape and retrieve the 
desired component of the wave. Since the shape or pattern of 
the wave remains constant or goes through deterministic 
variation, simple offline training of the network has been 
used in the project. The advantages of ANN processing of a 
wave compared to that of a digital signal processor (DSP) are 
obvious: it is simple and fast with a dedicated ASIC chip due 
to parallel processing, and the ANN has the properties of 
noise immunity and fault tolerance where the former is 
particularly important in the distorted waveform processing 
application. This noise immunity property also remains valid 
if the ANN operation is emulated by DSP. It should be 
mentioned here that application of an ANN for waveform 
processing and delayless filtering is not entirely new. The 
ANN, as well as fuzzy logic, have been used for estimation 
of rms and fundamental rms values, DPF, and PF of distorted 
50-Hz line current waves [7], [8]. It has also been used 
successfully in a variable-frequency vector-controlled drive 
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[9] for feedback signal estimation of rotor flux and torque 
from the machine voltage and current wave signals. Recently, 
the ANN has also been applied in delayless filtering to 
generate a 50-Hz reference current wave for active filters 
[10] and zero-crossing detection of distorted line voltage [11] 
and current waves in a phase-controlled cycloconverter [12]. 
In this paper, ANN-based waveform processing and delayless 
filtering has been studied systematically for voltage waves 
that have constant frequency but variable magnitudes. 
Performance of the ANN for all the intermediate values was 
found to be excellent. Square-wave delayless filtering by 
neural network (va = 0.9 pu, and 0.2 pu. MSE = 9.9157e-6) is 
shown in the below figures. 
 

 
 

Fig. 1. (a) Input waves 
 
Where Va= Input square wave, Va’= Linear wave, τ = Time constant 
of a low pass filter and Vaf = output filtered wave 

 
       (2-21-1) 

Fig. 1. (b) Network with I/O signals 
 

 
 

Fig. 1 (c) Output waves 
 

II. CONSTANT-FREQUENCY VARIABLE-MAGNITUDE WAVES 
The study in this section includes constant-

frequency variable-magnitude single-phase wave. square 
waves has been studied thoroughly and discussed. 
 
 Single-Phase Square Wave 
 

In the beginning, let us consider a simple constant 
frequency (50 Hz) square wave with variable magnitude, and 
the problem here is retrieving its fundamental component 
without any phase delay (delayless) with the help of the 
ANN. Fig. 1 shows the ANN-based generation of in-phase 
fundamental component where the output magnitude varies 
linearly with the magnitude of input square-wave. Since the 
square-wave amplitude is constant in the half-cycle, the ANN 
cannot generate a continuously variable sine wave directly 
from the square wave.  For this reason, an auxiliary input 
wave is generated from the square wave through a first-order 
low-pass filter (LPF) shown in the figure. The LPF time 
constant should be large enough so that V a’ amplitude varies 
continuously in the half-cycle. Since the ANN requires the 
target or desired fundamental wave embedded in the input 
signal, it was retrieved by off-line FFT analysis of the input 
square wave. The training input data were generated from V a 
and V a’ waves in the magnitude range of 0–1.0 pu with the 
step size of 0.1 pu and 360 data points per cycle of 
fundamental frequency (1 degree interval), where 1.0 pu 
corresponds to 0.5 (actually, 0.5Vd where Vd =100V) shown 
in Fig. 1(a). The feedforward ANN was then trained with the 
example data sets so that the estimated sine wave is 
remaining locked at 0 degree with the input square wave as 
shown in the figure 1(c). The MATLAB-based Neural 
Network Toolbox was used with Levenburg–Marquardt (L–
M) based fast back propagation algorithm for the training. 
There is no fixed rule to determine the number of neurons in 
the hidden layer. In the beginning of the training, a small 
number of neurons are used. It is then gradually increased 
until satisfactory training with the desired MSE is obtained. 
Fig. 2(a) and 2(b) shows the Simulink blocks of the trained 
neural network. The network has 2, 21, and 1 neurons in the 
input layer; hidden layer and output layer, respectively [see 
Fig. 2(c)]. The training was followed by testing cycles with 
intermediate magnitudes of to verify the ANN training 
performance. The trained neural network gives excellent 
interpolation of magnitudes and angles. Fig. 2 summarizes 
the training steps of the neural network. For simplicity, only 
two values of (0.9 and 0.2 pu) and the corresponding outputs 
are shown in Fig. 1. Note that the signals may be voltage or 
current waves. Again, the input signals considered in the 
present study is square wave. Fig. 2(c) shows the ANN 
configuration after training with the square-wave input. Both 
the input signals and are normalized for ANN processing. 
The processed output is then converted to actual signal after 
denormalization. The network uses bipolar linear activation 
function in the input and output layers, whereas nonlinear 
tan-sig (or hyperbolic tan) function is used in the hidden 
layer. Fig. 3 shows the training MSE (mean-square error) 
curve which indicates that it converges to 9.9157e-006 at the 
end of 1224 epochs which is close to the desired goal of     
1e-005. 

 

Va’ 

Va 
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Fig. 2. (a) Simulink block of Neural network 

 
 
 
 

 
 

Fig. 2. (b) Simulink block of Neural network Layers 
 
 
 

 

 
Fig. 2(c) Neural network configuration (2-21-1) for Fig. 1. 

 

 
 
Fig. 3.  Neural network configuration (2-21-1) for Fig. 1. (b) Network 
training MSE curve. 

 
IV. CONCLUSION 

 
Delayless filtering capabilities of a feedforward 

neural network has been systematically investigated in this 
paper using offline training, and performance was found to 
be excellent. This general wave shaping property of a neural 
network is also important in other areas of electrical 
engineering. Constant-frequency (50 Hz) single phase square 
wave was considered, and it was demonstrated that neural 
network can convert them into filtered sine waves at the 
synchronized phase angles, and the output magnitude linearly 
tracks the input magnitude. The corresponding training time 
is about 1 h with a Pentium 4 (2.4 GHz)-based PC. A small 
drift in frequency and deviation in the waveform have only 
negligible effect on the network performance. As a general 
conclusion, it can be stated that neural network has the 
capability of converting -phase waves of arbitrary shape into 
-phase waves of arbitrary shape at the same frequency with 
magnitude tracking (linear or nonlinear) and locked phase 
angles. These properties are also valid for a variable-
frequency wave if the wave pattern at the network input 
remains the same.  
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