
 
 

 

  
Abstract—Feasibility of application of Ant Colony Optimization 
to two case studies of economic load dispatch and generation 
scheduling are presented. Ant Colony Optimization (ACO) is a 
meta-heuristic approach for solving hard combinatorial 
optimization problems. The inspiring source of ACO is the 
pheromone trail laying and following behavior of real ants which 
use pheromones as a communication medium. In analogy to the 
biological example, ACO is based on the indirect communication 
of a colony of simple agents, called (artificial) ants, mediated by 
(artificial) pheromone trails. The pheromone trails in ACO serve 
as distributed, numerical information which the ants use to 
probabilistically construct solutions to the problem being solved 
and which the ants adapt during the algorithm’s execution to 
reflect their search experience. The suitability of the ant colony 
optimization algorithm for economic dispatch was carried out 
for two systems consisting of 3 and 6 generating units. The 
method is further extended to generator scheduling for IEEE 14, 
30 and 57 bus systems respectively. 
 
Index Terms - Power Systems, Optimization, Meta-heuristic, Ant 
Colony Optimization, Economic Dispatch, Generation 
Scheduling. 

I. INTRODUCTION 

ower system optimization is an important field in the 
operation, planning and control of power systems. Many 
modern heuristic techniques to the solution of complex 

power system optimization problems have been proposed, 
each differing in their method of representation, 
implementation and solution procedure. This paper presents 
an new meta heuristic approach to power system optimization 
problems namely economic dispatch and generation unit 
commitment.  

II. ANT COLONY BEHAVIOR 
Real Ants 
In many ants the visual system is very simple. Some species 
are completely blind. Communication between ants and 
between ants and their environment is often based on the use 
of chemical signals. Pheromones are produced by ants and 
they deposit them on trials when walking in search of food. 
By sensing the pheromone, the following ants can find food. 
Inspirational source of ant colony algorithms is the double 
bridge experiment described below. 
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Double bridge experiment 
Fig 1. shows the double bridge experiment to illustrate the ant 
behaviour. Ant nest is connected to food source via two paths 
of differing length. Initially, ants move randomly and chose 
between shorter and longer path with equal probability. While 
walking, ants deposited pheromone. When choosing a path, 
ants chose with higher probability the path with the highest 
pheromone concentration. Ants choosing the short path will 
be first back with food. Therefore, trail on shorter path grows 
more quickly 

 
 
Auto Catalysis: 
Positive feedback. It is a Self-reinforcing process If no 
limiting mechanism is  in place, it leads to explosion. It is the 
central mechanism in ant algorithms. Probability of an ant 
choosing a path increases with the number of ants that chose 
the same path. 
 
It is interesting to understand how ants, which are almost 
blind animals with very simple individual capabilities, act 
together in a colony and find the shortest route between the 
ant’s nest and a source of food. They are also capable of 
adapting to changes in the environment, for example, finding 
a new shortest path once the old one is no longer feasible due 
to a new obstacle. The studies by ethnologists reveal that such 
capabilities that the ants have are essentially due to what is 
called “pheromone trails” that ants use to communicate 
information among individuals regarding path and decide 
where to go. Ants deposit a certain amount of pheromone 
while walking, and each ant probabilistically prefers to follow 
a direction rich in pheromone rather than a poorer one. In 
case of an obstacle in place, these ants that choose, by chance, 
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Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp167-175)



 
 

 

the shorter path around the obstacle will more rapidly 
reconstitute the interrupted pheromone trail compared to 
those that choose the longer path. Hence the shorter path will 
receive a higher amount of pheromone in the time unit and 
this will in turn cause a higher number of ants to choose the 
shorter path (auto catalytic) process, very soon all the ants 
will choose the shorter path. 
 
 The Abstract Algorithm 
● Colony of artificial ants build solutions to a given problem 

by moving on the problem’s graph representation 
● Each feasible path represents a solution to the problem 
● They move by employing a probabilistic local decision rule 

that exploits pheromone trail values 
● Once an ant has built a solution (or while the solution is 

being built), the ant evaluates the quality of the solution, 
and deposits pheromone on the components it used 

● This directs the search of the ants in the future 
 
 
Other Algorithmic Components: 
● Evaporation and daemon actions 
● Evaporation – process by which pheromone concentrations 
decrease over time 
● Needed to avoid too-rapid convergence of the algorithm to 
a sub-optimal region 
● Implements a form of “forgetting”, favouring the 
exploration of new areas of the search space 
● Daemon actions used to implement centralised activities 
that are not undertaken by single ants 
● Example: deposit extra pheromone on the components used 
by the ant that built the best overall solution at the last 
iteration (“reward”) 
 
Formulation of the approach: 
● Explicitly formulated in terms of computational agents 
● Might, in principle, be possible to get rid of individual 
agents and concentrate on core mechanisms (reinforcement 
and evaporation) 
● However, the agent-based formulation may be more 
flexible, and provide a useful aid to designing problem 
solving systems 

III. A SIMPLE ANT COLONY ALGORITHM 
Figure 2 shows the simple ant colony algorithm. The working 
of the can be described by means of the following.  
1) Initialize A(t): The problem parameters are encoded as a 

real number. Before each run, the initial population (Nest) 
of the colony are generated randomly within the feasible 
region which will crawl to different directions at a radius 
not greater than R. 

2) Evaluate A(t): The fitness of all ants  are evaluated based 
on their objective function. 

3) Add_trail: The trail quantity is added to the particular 
directions the ants have selected in proportion to the ants’ 
fitness. 

4) Send_ants A(t):  According to the objective function, their 
performance will be weighted as a fitness value which 

directs influence to the level of trail quantity adding to the 
particular directions the ants have selected. Each ant 
chooses the next node to move taking into account two 
parameters: the visibility of the node and the trail intensity 
of the trail previously laid by other ants. The send_ants 
process sends ants by selecting directions using 
Tournament selection based on the two parameters. 

5) Evaporate: finally, the pheromone trail secreted by an ant 
eventually evaporates and the starting point(nest) is updates 
with the best tour found. 

 

 

IV. ANT COLONY OPTIMIZATION 
Ant Colony Optimization (ACO) is a recently proposed 
meta-heuristic approach for solving hard combinatorial 
optimization problems. The inspiring source of ACO is the 
pheromone trail laying and following behavior of real ants, 
which use pheromones as a communication medium. In 
analogy to the biological example, ACO is based on the 
indirect communication of a colony of simple agents, called 
(artificial) ants, mediated by (artificial) pheromone trails. The 
pheromone trails in ACO serve as distributed, numerical 
information, which the ants use to probabilistically construct 
solutions to the problem being solved, and which the ants 
adapt during the algorithm’s execution to reflect their search 
experience. The first example of such an algorithm is Ant 
System (AS), which was proposed using as example 
application the well-known Traveling Salesman Problem 
(TSP). Despite encouraging initial results, AS could not 
compete with state-of-the-art algorithms for the TSP. 
Nevertheless, it had the important role of stimulating further 
research on algorithmic variants, which obtain much better 
computational performance, as well as on applications to a 
large variety of different problems. In fact there exists now a 
considerable amount of applications obtaining world class 
performance on problems like the quadratic assignment, 
vehicle routing, sequential ordering, scheduling, routing in 
Internet-like networks, and so on. Motivated by this success, 
the ACO meta-heuristic has been proposed as a common 
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Fig 2. A Simple Ant Colony Algorithm 
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framework for the existing applications and algorithmic 
variants. 
 
 
 

 
 
 
 
 
 
 
 

AntBasedSolutionConstruction(): An ant constructively builds 
a solution to the problem by moving through nodes of the 
construction graph G. Ants move by applying a stochastic 
local decision policy that makes use of the pheromone values 
and the heuristic values on components and/or connections of 
the construction graph. While moving, the ant keeps in 
memory the partial solution it has built in terms of the path it 
was walking on the construction graph.  
 
PheromoneUpdate(): When adding a component ci to the 
current partial solution, an ant can update the values of the 
pheromone trails that where used for this construction step. 
This kind of pheromone update is called online step-by-step 
pheromone update. Once an ant has built a solution, it can (by 
using its memory) retrace the same path backward and update 
the pheromone trails of the used components and/or 
connections according to the quality of the solution it has 
built. This is called online delayed pheromone update. 
Another important concept in Ant Colony Optimization is 
pheromone evaporation. Pheromone evaporation is the 
process by means of which the pheromone trail intensity on 
the components decreases over time. From a practical point of 
view, pheromone evaporation is needed to avoid a too rapid 
convergence of the algorithm toward a sub-optimal region. It 
implements a useful form of forgetting, favoring the 
exploration of new areas in the search space. 
 
DaemonActions(): Daemon actions can be used to implement 
centralized actions which cannot be performed by single ants. 
Examples are the use of a local search procedure applied to 
the solutions built by the ants, or the collection of global 
information that can be used to decide whether it is useful or 
not to deposit additional pheromone to bias the search process 
from a non-local perspective. As a practical example, the 
daemon can observe the path found by each ant in the colony 
and choose to deposit extra pheromone on the components 
used by the ant that built the best solution. Pheromone 
updates performed by the daemon are called offline 
pheromone updates. 
 
 

V. ECONOMIC DISPATCH 
Economic dispatch in power system operation consists of 
minimizing the operation costs depending on demand and 
subject to certain constraints. It can be formulated as follows: 
 
1) Objective function: 

Minimize Cost =    ( )
N g

i
F i P i∑                 (1) 

where Cost is the operating cost of the power system.  N g   
is the number of units. 

( )Fi Pi  is the cost function and P i  is the power output of 

the unit i. ( )Fi Pi  is usually approximated by a quadratic 

function of its power output P i  as: 
2( )i i i i i i iF P a P b P c= + +                         (2) 

where ia , ib and ic  are the cost coefficients of the unit i. 
 
Wire drawing effect occurs when each steam admission valve 
in a turbine starts to open, and at the same time a rippling 
effect on the unit curve is produced. To model the effects of 
valve points a recurring rectified sinusoid contribution is 
added to the cost function. 
 
The result is: 

( ){ }2 min( ) sini i i i i i i i i i iF P aP bP c g h P P−= + + +    (3) 

where ig and ih are valve-point coefficients.
min

iP  is the 

lower generation limit of unit i. id  is the incremental cost 
curve value. Ignoring the valve point effects some inaccuracy 
would result in dispatch. 
 
2) Constraints:  
 

a. Unit operation constraints: 
 

min max
i i iP P P≤ ≤                

                               1,2,......, gi N=                           (4) 

where min
iP , max

iP are the lower and upper generation limit of 
unit i. 
 
b. Power Balance:  

1

N g

i

i

P
=

∑ = L DP P+      (5) 

where DP  is the demand and LP  is transmission loss. The 
transmission loss can be calculated by the B coefficients 
method or power flow analysis. 
 
 
B coefficients used in the power system is: 

T T
L o o oP P B P P B B= + +   (6) 

WHILE termination conditions not meet 
DO  
 ScheduleActivities  
   AntBasedSolutionConstruction()  
   PheromoneUpdate()  
   DaemonActions() {optional}  
 END ScheduleActivities  
ENDWHILE  
 
Fig 3 Pseudo Code for ACO
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where P is an Ng dimensional column vector of the power 
output of the units.  

TP is an associate matrix of P. B is an Ng X Ng coefficient 
matrix.  

oB is an Ng dimensional coefficient column vector. ooB is a 
coefficient. We can also get the transmission loss by power 
flow analysis. Line flow constraints and system stability 
constraints can be expressed as follows: 
 
c. Line Flow Constraints: 
 

max| |i iL f Lf≤      1,2...... Li N=                 (7) 
 

where 
iLf  is the MW line flow , max

iLf is the allowable 

maximum flow of line i (line capacity), and LN is the 
number of transmission lines subject to line capacity 
constraints. 
 

d. System Stability Constraints: 
 

max| |i j ij∂ − ∂ ≤ ∂         , 1,2,.... Di j N andi j= ≠      (8) 

where  ,i j∂ ∂  are voltage angle of bus i  and j .
max
ij∂ is 

the allowable maximum voltage angle. 
DN is the number of 

buses subject to system stability constraints. 
 
Generalized Ant Colony Optimization (GACO) 
It has the characteristics of positive feedback, distributed 
computation, and the use of constructive greedy heuristic, the 
GACO can be used to solve the non-convex, nonlinear 
constrained optimization problems. 
When an objective function ( )f X  is minimized in a compact 
set, it must be subject to linear/nonlinear, inequality/equality 
constraints. We can transform those constraints, which is 
difficult to be dealt with in feasible region by using the 
penalty function. 

{ }
0 0 2

2
1 2

1 1

0

0

min ( ) ( ) ( ( )) max 0, ( )

( ) 0, 1,2,....,
( ) 0, 1,2,...,

l u

i j

i j

i

j

F X f X h X g X

h X i l l
g X j u u

σ σ
= =

= + + −  

= = −
≥ = −

∑ ∑
  (9) 

where ( )f X  is the original objective 

function. 1, 2, .......,( )T
nX x x x= is a  

n-dimensional vector. l , u are the numbers of equality 
and inequality  
constraints of original problem. 1σ and 2σ are the penalty 
factors. 

02( ) 1
1 exp ( )

i
i K aK

T

σ σ

 
 

= − 
 + −
 

 1, 2i =             (10) 

where ( )i Kσ  is the penalty factor made on iteration K. a is 
a positive parameter. 
T  is the upper limit of iterative times. 0

iσ is the upper limit of  
( )i Kσ  

VI. ECONOMIC DISPATCH USING ANT COLONY 
OPTIMIZATION 

Solution Coding: 
Let 1 2( , ,......, )NgXi x x x=  be a vector denoting the i th 
individual of the ant colony, where Ng is the number of units 

and ix is the generated power output of unit i. At 
initialization phrase, iX is selected randomly from the 
selected region S.  
 
Objective function and Feasible region: 
In order to minimize the objective function of ED the 
constraints have to be obeyed. We can use penalty function to 
transform those constraints difficult to deal with in the 
feasible region including power balance, etc. the feasible 
region S is determined by the unit operation constraints. 
 
Parameter Setting: 
The parameters used here are N=10-50, 0 1.0τ = , 

1 2 1γ λ= = ,T=400-1000, a=10-50, r=0.08-0.5, 0.9ρ = , 
NI=10. Upper limit of visibility is 500 and penalty factor is 
150. 
 

VII. ACO ALGORITHM FOR ECONOMIC DISPATCH 
The Ant Colony Optimization Algorithm for economic 
dispatch consists of the following steps. 
 
Step 1: Initialization: An initial population of ant colony 
individuals is selected randomly from the feasible region S. 
Typically; the distribution of initial trails is uniform. 
Visibility is defined and this quantity is modified during the 
run of the program. At the beginning, the ants can search on a 
large scale. With the running of the program the visibility 
decreases and the exactitude of the search increases gradually. 
 
Step 2: Ai set is defined. If Ai is not equal to phi, which is an 
empty set, then go to Step 3, else go to Step 4. 
 
Step 3: Let m be the quantity of elements in Ai and 
transitional probability is defined. Po is the probability of the 
neighborhood search. If the selection result is Pij then update 
rule 1 is carried out. 
 
Update rule 1: Moving an ant from point i to j . Go to Step 5 
If the selection result is Po then update rule 2 is carried out. 
 
Update rule 2: Carrying out a search in the neighborhood of 
X. Go to Step 5. 
 
Step 4: Searching in neighborhood. Let the result be Y. 
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Step 5: Updating the trail intensity matrix. 
 
Step 6: After iteration all the ants have completed one move, 
calculate the results. 
 
1) If convergence is not achieved, cancel the result from step 
2 to step 4 and go to step 2. 
2) If the results are not changed after NI iterations, disturb the 
ant colony by increasing the visibility and neighborhood 
search. NI is a coefficient. 

VIII. SIMULATION RESULTS FOR ANT COLONY OPTIMIZATION 
Case Study I: 3 Generator System. 
A computer program implementing the proposed algorithm 
was first prepared and run for a 3 generator system. A 
comparison with Lambda method and Genetic Algorithm 
(GA) is provided in table 2. In ACO the following parameters 
are chosen heuristically. No of ants=50, No of cycles=10, 
Alpha=0.5, Beta=0.05, Forget factor=0.9, Q=50 Cost 
coefficients and power range for calculating the operation 
cost is given in table 1. 
 

TABLE  1: GENERATOR COST COEFFICIENTS FOR A 3 UNIT SYSTEM 
Uni

t 
Pmax 
(MW) 

Pmin 
(MW) 

ai bi ci di gi hi 

1 600 100 .001562 7.92 561 .003124 300 .0315 
2 400 100 .00194 7.85 310 .00388 200 .042 
3 200 50 .00482 7.97 78 .00964 150 .063 

The load demand here is 850MW w/o losses. 
 

TABLE  2: RESULTS FOR 850MW LOAD FOR A 3UNIT SYSTEM 
Case Study Unit1 (MW) Unit2 (MW) Unit3 (MW) Cost ($/h) 

Lambda 
Method 

393.1698 334.6038 122.2264 8194.37 

ACO 394.11 333.12 122.3 8195.1 

GA 300 400 150 8237.6 
The B-Loss coefficients for computing the losses are given 
below 

[ ]

0

0 0

0 .0 6 7 6 0 .0 0 9 5 3 0 .0 0 5 0 7
0 .0 0 9 5 3 0 .0 5 2 1 0 0 .0 0 9 0 1
0 .0 0 5 0 7 0 .0 0 9 0 1 0 .2 9 4 0 0

0 .0 7 6 6 0
0 .0 0 3 4 2

0 .0 1 8 9 0
0 .0 4 0 3 5 7

B

B

B

− 
 =  
 − 
− 

 = − 
  

=

 

 
Table 3 shows the comparison of the ACO for 3 
generating unit system with other methods  like Genetic 
Algorithm, and constrained optimization. 

 
 
TABLE 3: COMPARISON OF RESULTS FOR 500MW LOAD FOR A 3 UNIT SYSTEM 

CONSIDERING LOSSES. 
Case 
Study 

Unit1 
(MW) 

Unit2 
(MW) 

Unit3 
(MW) 

Losses(MW) Cost 
($/h) 

GA 300.01 170.2 100.1 70.99 5745.11 

ACO 299.46 171.93 99.84 71.22 5735.74 
CO 299.46 172 98.84 70.24 5735.93 
 
Case Study II: 6 Generator System. 
Table 4 shows the Generator cost coefficients for a 6 unit 
system. Load demand is 1800MW. Transmission Losses are 
ignored. 

Table 4: Data for 6 generator system 
Unit Pmax 

(MW) 
Pmin 
(MW) 

ai bi ci di gi hi 

1 600 100 .00156
2 

7.9
2 

56
1 

.00312
4 

30
0 

.031
5 

2 400 100 .00194 7.8
5 

31
0 

.00388 20
0 

.042 

3 200 50 .00482 7.9
7 

78 .00964 15
0 

.063 

4 590 140 .00139 7.0
6 

50
0 

.00278 20
0 

.054 

5 440 110 .00184 7.4
6 

29
5 

.00368 25
0 

.062 

6 440 110 .00184 7.4
6 

29
5 

.00368 25
0 

.062 

The following parameters are chosen heuristically for the 
ACO. No of ants=50; No of cycles=20; Alpha=0.5; 
Beta=0.05; Forget factor=0.9; Q=50. Table 5 and figure 5 
show the result and the cost optimization for the 6 generator 
unit system 

TABLE  5: RESULTS FOR 6 GENERATOR SYSTEM 

 

Case 
Study 

UNIT1 
(MW) 

UNIT2 
(MW) 

UNIT3 
(MW) 

UNIT4 
(MW) 

UNIT5 
(MW) 

UNIT6 
(MW) 

Fuel Cost 
($/h) 

NEWTON 184 166.2 54.4 590 402.7 402.7 16609.57 

ACO 248.2
7 

217.3
6 

74.94 588.3
7 

335.7
8 

335.2
8 

16579.33 

GA 250.4
9 

215.4
3 

109.9 572.8
4 

325.6
6 

325.6
6 

16585.85 

Fig. 4. Cost optimization for 3 generator system

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp167-175)



 
 

 

 
The ACO approach to economic dispatch ahs been further 
tested for the IEEE 14, 30 and 57 bus systems respectively. 
The comparisons of the results are shown in table 6.   

 
TABLE  6: RESULTS FOR IEEE 14, 30, 57 BUS SYSTEMS 

Case 
study 

Base case 
generation 
(MW) 

Optimum 
generation 

Load 
(MW) 

Optimum Cost 
(in $/h) 

IEEE 14 
Bus 
System 

P1=210.660 
P2=40 
P6=20 
Losses=11.66 

P1=159.44 
P2=67.89 
P6=39.96 
Losses=8.6 

 
259.0 

1134.98 

IEEE 30 
Bus 
System 

P1=238.48 
P2=40 
P11=20 
Losses=15.08 

P1=164.233 
P2=73.98 
P11=54.234 
Losses=9.9 

 
283.4 

1244.76 

IEEE 57 
Bus 
System 

P1=478.6570 
P3=40 
P8=450 
P12=310 
Losses=27.857 

P1=411.125 
P3=99.56 
P8=405.678 
P12=358.45 
Losses=20.8 

 
1250.8 

6517.876 

Tables 7 8 and 9 show the comparison of the ACO with 
conventional methods for the standard IEEE 14, 30 and 57 
bus systems.        
                                        
TABLE 7: COST OF GENERATION OBTAINED BY DIFFERENT TECHNIQUES FOR 
IEEE 14 BUS SYSTEM: 

S. no Techniques 
 used 

Total cost of 
 generation (in $/h) 

1 QP method 1134.277 
2 GA 1136.64 
3 ACO 1134.98 

 
TABLE 8: COST OF GENERATION OBTAINED BY DIFFERENT TECHNIQUES FOR 
IEEE 30 BUS SYSTEM: 
S. no Techniques used Total cost of 

generation (in $/h) 
1 QP method 1244.426 
2 GA 1245.81 
3 ACO 1244.76 
TABLE 9: COST OF GENERATION OBTAINED BY DIFFERENT TECHNIQUES FOR 
IEEE 57 BUS SYSTEM: 
S. no Techniques used Total cost of 

generation (in $/h) 
1 QP 6523.47 
2 ACO 6517.876 
Figures 6, 7 and 8 show the Fuel cost optimization of the 
ACO for the standard IEEE 14, 30 and 57 bus systems.        

 

 

 
 

IX. SHORT TERM GENERATION SCHEDULING  USING ANT 
COLONY SEARCH ALGORITHM (ACSA) 

To supply a high quality of electric energy to the consumer in 
a secure and economic manner, electric utilities face many 
economical and technical problems in operation, planning and 
control of electric energy systems. One of the most important 
problems is to determine the most economic and secure way 
of short-term generation scheduling and dispatch such that the 
constraints are satisfied simultaneously. 
 
Here a novel co-operating agents approach, ant colony search 
algorithm(ACSA)- based scheme, for solving a short-term 
generation scheduling problem of thermal power systems. In 
the ACSA, the state transition rule, global and local updating 
rules are also introduced to ensure an optimal solution. Once 

Fig. 8. Fuel Cost Optimization for IEEE 57 Bus system 

Fig. 7. Fuel Cost Optimization for IEEE 30 Bus system 

Fig. 6. Fuel Cost Optimization for IEEE 14 Bus system 
Fig. 5. Cost optimization for 6 generator system 
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all the ants have completed their tours, a global pheromone 
updating rule is then applied and the process is iterated until 
the stop condition is satisfied. The effectiveness of the 
proposed scheme has been demonstrated on the daily 
generation scheduling problem of model power systems. 
 
Constraints Considered 
Spinning reserve constraints:  

m ax

1
/ 0 .1,

G

ij D j D ji
i

u P P P j T
=

 − ≥ ∈ 
 
∑         (11) 

where, iju is the status index of the i unit at the j stage( 1 for 
up and 0 for down)  
Minimum up time of units: 

( )( )1 1 0, ,ij ij ij iu u w h i G j Tτ− −− − ≤ ∈ ∈    (12) 

where, ihτ is the minimum up time of the i unit and 

1( 1)i ij ijw u w= − +  
Minimum down time of units: 

 (13) 

where, ilτ is the minimum down time of the i unit and 

( )( )11 1ij ij ijq u q −= − +  

Maximum operating time of units: 
  ( ), 1 0, ,ij ij iu v u i G j Tτ− − ≤ ∈ ∈                  (14) 

where iuτ is the maximum operating time of i th unit and  
( )1 1ij ij ijv u v −= +  

The objective function to be minimized is given as 

( ) ( ) ( )( )1

1

n

i i

i

f tc s sπ ππ +

=

= ∑                                 (15) 

where ( ),i jtc s s is the total transition cost between state i and 

state j that is given and  
( )iπ  for i=1, n defines a permutation. Let m be the number 

of ants, then 

( )
1

n

i

i

m b t
=

= ∑                           (16) 

where ( )ib t is the number of ants in state i at time t. 

There is also a global structure that represents the nest 
neighborhood. In terms of GSP it represents the transition 
cost between each pair of states and the trail left by the ants in 
the course of the algorithm execution. When the ant system, is 
applied to symmetric instances of he traveling salesman 
problem, each ant generates a complete tour by choosing the 
cities according to a probabilistic state transition rule to build 
a solution and a local pheromone updating rule will be 
followed. Once all the ants have completed their tours a 
global pheromone updating rule is then applied and the 
process is iterated until the end condition is satisfied. 
 
The state transition rule used by the ant system is called 
random proportional rule given by 

( ) ( ) ( )
( ) ( )

( )

( )
, ,

, ,
, ,

k

k k

u J i

i j i j
p i j j J i

i u i u

β

β

τ η

τ η
∈

      = ∈
      ∑

       (17)                          

              = 0                         otherwise 
which gives the probability with which ant k in city, i chooses 
to move to the state j.  Here τ is the pheromone , =1/ ∂  is 
the inverse of the distance. While constructing its tour, an ant 
also modifies the amount of pheromone on the visited edges 
by applying the local updating rule given by 

( ) ( ) ( ) ( ), 1 , ,i j i j i jτ ρ τ ρ τ← − + ∆        (18) 

where 0< ρ <1 is a parameter. The global updating rule is 
finally implemented as follows. Once all the ants have built 
their tours, the pheromone is updated on all the edges 
according to 

( ) ( ) ( ) ( )
1

, 1 , ,
m

k
k

i j i j i jτ α τ τ
=

← − + ∆∑                   (19) 

where 0<α  <1 is a pheromone decay parameter. m is 
number of ants.  
 
ACSA ALGORITHM: 
The ACSA algorithm shown in figure 9 consists of the 
following important steps. 
1) Form the search space. 
2) m ants are initially positioned in n states. 
3) Each ant builds a tour by repeatedly applying the state 
transition rule 
4) By applying the local updating rule, amount of pheromone 
is changed. Once all    ants have terminated their tour, the 
amount of pheromone is modified again by applying global 
rule. 
5) Seek the best tour using the solution process. 
6) Pheromone updating rules are so designed so that they give 
more pheromone to edges which should be visited by ants. 
7) The overall flow of the ACSA based technique is given in 
the algorithm below. 
 
Generator Scheduling Data: 
The method discussed in the previous section deals with 24h 
generation scheduling or allocation problem. The general and 
fuel characteristics of units of the model system (6UNITS) 
are given below in table 10 below. 

TABLE 10:  FUEL CHARACTERISTICS OF 6 UNIT SYSTEM 
No Name Pmax Pmin a b c Cost PF minλ maxλ
1 UT01 15 60 .00510 2.2034 15 11 1 25.92 30.97 
2 UT02 20 70 .00396 1.9161 25 11 1 22.82 27.18 
3 UT03 23 60 .00482 1.6966 12 11 1 21.102 25.03 
4 UT04 25 90 .00261 1.5354 72 11 1 18.325 22.06 
5 UT05 50 190 .00193 1.0818 10 9 1 11.473 16.36 

6 UT06 60 200 .00171 1.0543 16 9 1 11.335 15.65 
The numeric parameters are set to the following 

values. 0
10.1, 2,
nnL

α ρ β τ= = = = , where nnL is the 

tour length produced by the nearest neighbor heuristic and n 
is the number of states, and the number of ant is heuristically 
chosen to be 50. 

( ) ( )1 1 0, ,ij ij ij iu u q l i G j Tτ− −− − ≥ ∈ ∈
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X. SCHEDULING RESULTS 
Table 11 shows the scheduling of units obtained by the ACO. 
In the generation scheduling we have decided depending on 
the cost of generation that which units should be switched on 
and which should be kept off in the 24 hr period according to 
the varying load. In ED the units were kept on all the time and 
the generation was decided to minimize the cost. Hence by 
using this technique we should see a difference in the cost 
incurred in generation. Figure 10 shows the generation 
scheduling obtained by the ACO. 
 
This method gives us $ 184840.3 whereas just ED gives us $ 
187125.9 for the same case. The study results indicate that, in 

terms of both economy and optimality, the proposed ACSA-
based optimization technique is applicable to the short term 
generation problem of thermal power systems. 
 
Further studies should be done to investigate the feasibility of 
the algorithm in large systems with more complicated 
constraints. 
 

TABLE 11: GENERATION SCHEDULING OVER 24 HRS FOR THE 6 
GENERATOR SYSTEM 

Time 1 2 3 4 5 6 7 8 9 10 11 12 
Unit1 0 0 0 0 0 0 15 16 15 15 15 16 
Unit2 0 0 0 0 0 0 0 28 52 22 21 31 
Unit3 0 0 0 0 25 25 34 46 60 26 38 50 
Unit4 26 26 0 0 0 0 0 0 0 80 89 90 
Unit5 166 155 160 153 157 167 189 188 190 191 190 190 
Unit6 198 187 185 176 183 198 200 202 200 201 200 200 

 

Time 13 14 15 16 17 18 19 20 21 22 23 24 

Unit1 15 14 15 15 16 16 16 16 15 0 0 0 

Unit2 21 28 20 21 54 38 20 33 45 31 20 0 

Unit3 35 45 38 27 58 54 31 51 60 47 26 23 

Unit4 89 90 82 0 0 0 0 0 0 0 0 0 

Unit5 190 190 190 190 190 190 190 190 190 190 190 186 

Unit6 200 200 200 200 200 200 200 200 200 200 200 200 

 

 
 

VII CONCLUSIONS 
The field of ACO algorithms is very lively, as testified for 
example by the successful biannual workshop, where 
researchers meet to discuss the properties of ACO and other 
ant algorithms, both theoretically and experimentally.  
 
From the theory side, researchers are trying either to extend 
the scope of existing theoretical results, or to find principled 
ways to set parameters values. 
 
From the experimental side, most of the current research is in 
the direction of increasing the number of problems that are 
successfully solved by ACO algorithms, including real-world, 
industrial applications. 
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Fig 9. Flow Chart of Generation Scheduling using ACSA
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Fig. 10. Generation  Scheduling obtained by ACO.
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Currently, the great majority of problems attacked by ACO 
are static and well-defined combinatorial optimization 
problems, that is, problems for which all the necessary 
information is available and does not change during problem 
solution.  
 
For this kind of problems ACO algorithms must compete with 
very well established algorithms, often specialized for the 
given problem.  Also, very often the role played by local 
search is extremely important to obtain good results. 
Although rather successful on these problems, it is believed 
that ACO algorithms will really prove their strength when 
they will be systematically applied to “ill-structured” 
problems for which it is not clear how to apply local search, 
or to highly dynamic domains with only local information 
available.  
 
A first step in this direction has already been done with the 
application to telecommunications networks routing, but more 
research is necessary. More refinement in infeasibility 
detection is required.  
 
The problem can be extended to further dispatch problems 
with prohibiting operating zones and environmental 
constraints. It can also be applied to other large scale power 
system optimization problems like Optimal Power Flow, etc. 
 
Important Contributions 
In the case of Economic dispatch, GACO is able to solve 

complicated, non convex, nonlinear problems.  
 
It achieves good convergence and provides accurate dispatch 

solutions in reasonable time.  
 
The results show that GACO is robust, accurate and efficient. 
 
 Further work is required for searching the neighborhood, and 

present more efficacious sufficient conditions for 
convergence.  

 
Various practical applications of new method wait for further 

development as well. 
 
The effectiveness of the ACSA has been demonstrated on the 

daily generation scheduling problems of model power 
systems and in terms of both economy and optimality, it is 
applicable.  

 
Further studies are being conducted to investigate the 

feasibility of the algorithm in large systems with more 
complicated constraints. 
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