
Platform Independent Neural Semi-Inverse Controller

PETR PIVOŇKA, MICHAL SCHMIDT
Department of Control and Instrumentation

Faculty of Electrical Engineering and Communication, Brno University of Technology
Kolejní 4, 61200 Brno
CZECH REPUBLIC

http://www.uamt.feec.vutbr.cz/rizeni/

Abstract: – The neural network based semi-inverse controller is similar to an inverse controller. An inverse
controller uses an inverse model of the controlled plant. On the other hand, the semi-inverse controller is based
on a forward model of the plant. This avoids some of the problems of inversion. The algorithm is suitable for
implementation in a PLC. For maximum portability of the algorithm between the development environment and
its final implementation in the PLC, the algorithm is implemented on top of an abstract object-oriented layer,
which provides platform independency.

Key–Words:– Neural network, Semi-inverse controller, Portable implementation, Real time

1 Introduction

Ever since neural networks began to be used in con-
troller algorithms, the designs of the algorithms were
often based on the ability of a neural network to ap-
proximate the inverse dynamics of the controlled plant.
Serial connection of this inverse model with the plant
then theoretically suffices to respond well to the desired
value.

Unfortunately the inversion approach has several
problems. The inverse model can be hard or even im-
possible to obtain. Other problems arise from the fact
that the inverse controller is a dead-beat controller.
This leads to high sensitivity to the precise learning of
the model. When working with short sampling periods,
it also produces extreme control actions. These prob-
lems are highlighted when noise is present. They can
be mitigated with filtration, but it worsens the dynamics
of the control system.

The semi-inverse controller [1] attempts to avoid
the problem of the inverse model learning by basing it-
self on a forward model instead.

The control algorithm is first developed in a simula-
tion environment. However, the goal is to implement it
in a PLC. In order to simplify the final porting, the im-
plementation of the algorithm uses a portability layer.

2 The semi-inverse controller

2.1 The inverse controller in a closed loop

Let’s suppose the plant is approximated by an ARMA
model:

FM(z) =
b0 + b1z

−1 + b2z
−2 + ... + bmz−m

1 + a1z−1 + a2z−2 + ... + anz−n
(1)

An inverse controller would have a transfer function:

FC(z) =
1 + a1z

−1 + a2z
−2 + ... + anz−n

b0 + b1z−1 + b2z−2 + ... + bmz−m
(2)

The inverse controller is normally used in an open
loop, without a real feedback. This is undesirable be-
cause it doesn’t eliminate disturbance. Therefore when
used in a closed control loop, it computes the action as:

uk =
1
b0

(ek + a1ek−1 + a2ek−2... + anek−n −

−b1uk−1 − b2uk−2 − ... − bmuk−m) (3)

where: k discrete time step
uk control action in stepk
ek control error in stepk

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp5-9)

The big sensitivity of the controller on the model ac-
curacy comes mainly from the parameterb0, especially
when its value is close to zero.

After the finish of a transient response, the control
action will be:

uS =
1
b0

[eS(1 + a1 + a2 + ... + an) −

−uS(b1 + b2 + ... + bm)] (4)

It is clear that in the steady state (indicated by the in-
dex S) the control erroreS would be non-zero. Let’s
introduce a modified control error:

eM,k = wk + ek = 2wk − yk (5)

where: eM,k modified control error in stepk
wk desired value in stepk
yk system output in stepk

This is implemented by a filterFk(z). If the con-
troller operates on the modified control error, it will re-
main non-zero in the steady state but the real error will
be able to reach zero. In order for this to work as ex-
pected, the gain of the open loop must be1.

2.2 Modification for a semi-inverse controller

Let’s start from the inverse controller operating on
the modified error. In a steady state, its action will be:

uS =
1
b0

[eM,S(1 + a1 + a2 + ... + an) −

−uS(b1 + b2 + ... + bm)] (6)

In order to simplify the situation, let’s assume that
the gain of the plant model isAM = 1. We’ll generalize
this assumption away later. For now let’s also assume
that the desired value iswk = 1. Under these simplify-
ing conditions we can write:

uS = yS = eM,S = wS = 1 (7)

Therefore some of the members in the equation (6)
can be cancelled, resulting in:

1 =
(1 + a1 + a2 + ... + an) − (b1 + b2 + ... + bm)

b0

(8)

Thus it holds that:

1 = b0 − a1 − a2 − ... − an + b1 + b2 + ... + bm (9)

At this point we’ll modify the inverse controller
and rewrite the action of the semi-inverse controller in
the steady state as:

1 = uS = eM,S(b0 − a1 − a2 − ... − an) +
+uS(b1 + b2 + ... + bm) =

= 1 · (b0 − a1 − a2 − ... − an) +
+1 · (b1 + b2 + ... + bm) (10)

The idea behind this modification is that the parameter
b0 is transferred instead of constant1 in the inverse con-
troller. In the non-steady case the action is computed as:

uk = b0eM,k − a1eM,k−1 − a2eM,k−2 − ...

−aneM,k−n + b1uk−1 + b2uk−2 + ... + bmuk−m (11)

The corresponding transfer function of the semi-inverse
(SI) controller is:

FSI(z) =
b0 − a1z

−1 − ... − anz−n

1 − b1z−1 − ... − bmz−m
(12)

2.3 Normalization of gain

The total gain of the serial connection of the semi-
inverse controller and the plant is:

A = ASIAM =
b0 − a1 − a2... − an

1 − b1 − b2 − ... − bm
·

·b0 + b1 + b2 + ... + bm

1 + a1 + a2 + ... + an
(13)

To fulfil the requirement that the gain of the open loop
is equal to1, it’s necessary to add a multiplication by1A
to the open loop.

3 Implementation

The algorithm was originally implemented in ANSI C
as an S-function in Matlab Simulink. Thanks to
the availability of ANSI C development environment in
the B&R PLC the final porting was therefore simpli-
fied. To make porting completely seamless, an abstract
interface was developed for control algorithms. It al-
lows to transfer the source code of control algorithms
between Matlab S-functions and B&R PLCs without
changes (Fig. 4).

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp5-9)

��
�� r- - -Fk(z)- 1

A

6

FSI(z) - FM(z) -
+

-

w eM u y

Fig. 1: Control loop with a semi-inverse controller

��
��

b0

��
��

b1

��
��

b2

��
��

a1

��
��

a2

r
r

r
r

-

-

-

-

-

z−1

z−1

z−1

z−1

-

--

∑-

@
@R

@
@R

�
��

�
��

-

-

uk

yk

NN

Fig. 2: The model can be linear ARMA or non-linear neural network (NN) model

��
��

b0

��
��

b1

��
��

b2

��
��

a1

��
��

a2

r
r

r
r

-

-

-

-

-

z−1

z−1

z−1

-

--

∑-

@
@R

@
@R

�
��

�
��

-

-

z−1

eM,k

uk

NN

Fig. 3: The semi-inverse controller is based on the model, only its inputs are reconfigured

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp5-9)

interface
S-function

interface
B&R OS

interface
Controller

interface
Controller

Algorithm transfer

without changes

Matlab Simulink

S-function skeleton

B&R OS

Control algorithm Control algorithm

B&R process skeleton

Fig. 4: Transfer of the control algorithm using the abstract interface

Fig. 5: Test of the semi-inverse controller on a physical model with approximate transferFM(s) = 1
(5s+1)(s+1)2

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp5-9)

It also theoretically enables the transfer of compiled
binaries of control algorithms between these platforms,
because they are based on the same CPU architecture
(Intel x86). Only the skeleton parts of the interface had
to be implemented separately on both platforms. Not
having to change the source code of the algorithm de-
creases the probability of introducing new bugs during
porting.

The portability interface is object-oriented. Although
ANSI C is a classical procedural programming lan-
guage with no object-oriented elements, it is still pos-
sible to use an object-oriented design in it, including
properties such as inheritance and partially even encap-
sulation. An abstract base class is defined of which
classes of control algorithms are descended. It describes
virtual methods, which the control algorithm classes re-
define.

4 Testing the controller

The semi-inverse controller was implemented and
tested in simulations and on physical models. An ex-
ample of testing with a physical model can be seen on
Fig. 5.

5 Conclusion

The semi-inverse controller is computationally simple
and suitable for real-time control. It is highly adapt-
able. It also works with short sampling periods, which is
an advantage for disturbance cancellation. It performed
well in testing on simulations and on physical models.

The abstract object-oriented interface for control al-
gorithms proved useful in porting of the semi-inverse
controller to the PLC. Using this interface, the source
code of the algorithm is identical in the Matlab S-
function and in the PLC. The encapsulation of the con-
trol algorithm into an object class allows easy parallel
operation of multiple controllers in a single program.
Control algorithms providing this interface are modular
and interchangable to a large degree.

Acknowledgement:This paper has been prepared
with partial support of the project FRVŠ:F1/2902/2005.

References:

[1] Krupanský, P.,The Possibilities of Using Neu-
ral Networks in Control(in Czech), Ph.D. work,
ÚAMT, FEKT VUT, Brno, 2003.

[2] Švancara, K., Pivǒnka, P., The Real-Time Com-
munication Between MATLAB and the Real Pro-
cess Controlled by PLC.In the 7th International
Research/Expert Conference "Trends in the Devel-
opment of Machinery and Associated Technology"
TMT 2003, Lloret de Mar, Barcelona, Spain, pp.
1077 - 1080.

[3] Cichocki, A., Unbehauen R.,Neural Networks for
Optimization and Signal Processing, John Wiley &
Sons, 1993

[4] Widrow, B., Walach, E.:Adaptive Inverse Control,
Prentice Hall, 1996

[5] Middleton, R., Goodwin, G.,Digital Control and
Estimation, Prentice Hall, 1990

[6] Šíma, J., Neruda R.,Theoretical Questions of Neu-
ral Networks(in Czech), Matfyzpress, 1996

[7] Gamma, E., Helm R., Johnson R., Vlissides J.,
Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp5-9)

