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Abstract- An algorithm of simulated annealing for the job shop scheduling problem is presented. The proposed algorithm restarts with a 
new value every time the previous algorithm finishes. To begin the process of annealing, the starting point is a randomly generated sched-
ule with the condition that the initial value of the makespan of the schedule does not surpass a previously established upper bound. The ex-
perimental results show the importance of using upper bounds in simulated annealing in order to more quickly approach good solutions.  
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Introduction 

The job shop scheduling problem (JSSP) is considered to 
be one of the most difficult to solve in combinatorial opti-
mization. It is also one of the most difficult problems in the 
NP-hard class [7]. For this reason, Muth and Thompson [9] 
took over 20 years to solve the problem of ten machines 
and ten jobs [5]. 

The job shop scheduling problem consists of a set of 
machines that each carry out the execution of a set of jobs. 
Each job consists of a certain number of operations, which 
must be carried out in a specific order. Each operation is 
carried out by a specific machine and has a specific time of 
execution. Each machine can execute a maximum of one 
operation at any given point in time. A single machine is 
unable to carry out more than one operation of the same 
job. The objective of the problem is to find the makespan. 
The makespan is defined as the time it takes to complete 
the last operation in the system. In a solution to the JSSP, 
the sequence of operations for each machine as well as 
start times for each operation are obtained. 

An immense number of models exist that represent the 
JSSP, but the two most important and influential models 
are those of disjunctive formulation [6] and disjunctive 
graph [6]. From these two models many others have 
emerged. 

The disjunctive formulation model considers several 
sets: a set J of n jobs, where J { }nJJJ ,..., 21= ; a set M  

of m machines where M { }mMMM ,...,, 21= ; and a set 

O of operations where O { },...3,2,1= . These operations 

form k subsets of operations for each one of the jobs 
( ⊆kJ O) and machines ( ⊆kM O). 

Each operation j has a processing time of pj. In a job Jk, 
each pair of operations i, j possess a relationship of prece-
dence represented )( ji p . Only one operation performed 
by a machine Mk, can be executed at any given point in 
time.  Given the previously mentioned problem restric-
tions, the function of the starting time, s of each operation 
can be represented in the following manner: 

∀ ∈j O         0≥js  (1)

∀ ∈ji, O, 

kJji ∈)( p  
jii sps ≤+  (2)

∀ ∈ji, O, 
( )kMji ∈,  

ijjjii spssps ≤+∨≤+
 

(3)

The constraint in (1) indicates that the starting time of 
the operation j must be greater than or equal to zero; mean-
ing only positive values are accepted. The constraint in (2) 
is a precedence constraint. It indicates that within one job 
which contains operations i and j, in order for j to begin, i 
must be completed. The constraints in (3) are disjunctive. 
These constraints ensure that two operations, i and j, which 
are performed by the same machine are not carried out si-
multaneously. The objective is to minimize the makespan, 
which is defined based on starting times, and can be ex-
pressed as (4): 
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The disjunctive graph model is shown in Figure 1 for a 
JSSP of 3x3. From Figure 1, it can be seen that the nodes 
of the graph represent the operations performed in the 
problem. In each operation (node) of the graph, the first 
number represents which job the operation pertains to, and 
the second number represents the machine that performs 
that operation. It can be observed that the group of opera-
tions that form a job are united with a conjunctive arc, 
which represents the precedence constraints for each pair 
of operations (e.g., operations 1,1 and 1,2). In the group of 
operations that a machine executes, each pair of operations 
is united with a disjunctive arc (e.g., operations 1,1 and 
2,1). These arcs represent the resource capacity constraints 
and correspond to the constraints of the equations in (3) of 
the disjunctive formulation model. In addition, there are 
two operations, I and *, which represent the beginning and 
end of the problem respectively. These operations are actu-
ally fictitious and have a processing time of zero. The 
processing time of each other operation is written beside 
the node and corresponds to the times pi of the disjunctive 
formulation model (equations 2 and 3). For example, the 
operation 1,1 has a processing time of P1,1. 

 
Fig. 1. Disjunctive graph for a JSSP of 3x3 

In order to find a solution using the disjunctive graph 
model, it is necessary to arrange the arrows of the disjunc-
tive arcs in such a way that the obtained sequence does not 
contain any cycles [1]. Once the sequence is established, it 
is common to obtain the scheduling of the operations, 
which is expressed as starting times for each operation. 
The model of the disjunctive graph was used to develop the 
SAR algorithm presented here.  

The simulated annealing algorithm introduced by 
Kirkpatrick et al. [8] is an analogy between the annealing 
process of solids and the problem of solving combinatorial 
optimization problems. This algorithm has been used with 
high rates of success for JSSP by several researchers 
[1],[2],[10],[12],[13], and [14]. This simulated annealing 
algorithm is shown in Figure 2. 

 

1. Given an initial configuration  S = S0 and an 
initial temperature T = T0 

2. While the final temperature Tf is not reached, 
3. While equilibrium is not reached, 

• generate a state S´ by means of a perturba-
tion in S 

• if f(S’)-F(S)<=0, the state is accepted as the 
current state, S =S’ 

• if  f(S’)-F(S)>0, the state is accepted with 
the probability: 

     
⎟
⎠
⎞

⎜
⎝
⎛ −

−
−= T

SfSf

accept eP
)()'(

            (5) 

• with a randomly generated number α evenly 
distributed between (0,1) 

• if α < Paccept  the state is accepted like the 
current, S = S’ 

   If the equilibrium does not exist,  return to 3 
   T=T*β 

       If T >= Tf, return to 2 
4. The best obtained configuration is the solution  

Fig. 2. Simulated annealing algorithm 

In Figure 2 for the JSSP, S is a schedule obtained by us-
ing a randomly generated initial point. S´ is in the 
neighborhood of S, which is obtained by a small perturba-
tion of S.  To and Tf are the intial and final temperatures of 
the process. β is the coefficient of temperature that controls 
the cooling of the system. f(S) is the energy of the configu-
ration S, which is generally the makespan. The equation (5) 
is the Boltzmann distribution function [11]. 

The simulated annealing algorithm, represented in the 
Figure 2, allows for a search for the global optimum when 
the temperature is high because it accepts good and bad 
configurations in a similar percentage. As the temperature 
begins to diminish, the algorithm accepts more good 
configurations than bad. Due to this behavior, if in each 
cycle equilibrium is reached, there is a high probability that 
the optimal, or very close to the optimal, solution will be 
reached. 

One of the ways of perturbing the neighborhood of S is 
proposed by Balas [3], and involves exchanging a pair of 
adjacent operations that are within critical blocks of opera-
tions. This form of altering the neighborhood is known as 
N1. The critical blocks of operations are the operations that 
form the longest path of the schedule. Each critical block 
of operations that form this path are performed by a com-
mon machine. According to Balas, the first operation of the 
path becomes the last, and the last becomes the fictitious 
first operation. Changes in the neighborhood of this type, 
N1, have been used previously in simulated annealing with 
good results by [1], [2], [10], [12], and [14]. This type of 
change is what is used in this work due to ease of imple-
mentation. 
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Other researchers have developed variations of N1. The 
algorithm of Matsuo et al. 1[0] is a derivation of N1, called 
N1a. This type of change to the neighborhood involves 
changing the placement of three pairs of adjacent opera-
tions simultaneously, where each operation is performed 
by a different machine. The algorithm of Aart et al. [1], 
also a derivation of N1, called N1b, involves reversing three 
adjacent pairs of operations that are all performed by the 
same machine, and with the condition that one of the pairs 
does not form the longest path.  

Another type of derivation of N1 is the neighborhood of 
critical block (CB), which is called N2. In this type of 
neighborhood, one operation in the block is changed for ei-
ther the initial or final operation of the block. It is not re-
quired that the operations that change places be adjacent. 
The algorithms that use N2 are the CBSA of Yamada et al. 
[14] and the CSBA+CB of Yamada and Nakano [13]. This 
last algorithm uses a deterministic local search called shift-
ing bottleneck [15]. It uses shifting bottleneck when the 
schedule S´, which is a perturbation of S, is rejected in the 
simulated annealing. When the rejection occurs, the shift-
ing bottleneck is applied to S´ in order to improve it. Once 
S´ is improved, if f(S´) greater than f(S), the solution is ac-
cepted. In this type of neighborhood, the shifting bottle-
neck must be used whenever S´ is rejected in the algorithm. 
The implementation of the shifting bottleneck is not easy 
because it requires that the release time and due dates are 
calculated. Here, an algorithm is proposed which is easy to 
implement and produces high quality solutions; it is a 
simulated annealing algorithm with restart [16]. 

Simulated Annealing using Upper Bounds 

The proposed algorithm of simulated annealing with restart 
(SAR) consists of executing a set of simulated annealing 
algorithms, as can be seen in Figure 2. Each simulated an-
nealing that is executed involves the iteration of the SAR 
algorithm. Each repetition begins using a different sched-
ule. The idea of beginning with different schedules for 
each repetition of SAR came about because of experimen-
tal tests that were carried out. In the experimental tests, it 
was detected that even though simulated annealing allows 
the search for a global optimum, at some point low tem-
peratures eliminate this possibility and the search finds a 
local optimum. By beginning with different schedules, 
more variability of solutions is obtained than by beginning 
with only a single schedule. It is seen that the restart of the 
simulated annealing algorithm leaves a different point in 
the solution space each time it is repeated.  

The restarting of the algorithm allows for the search of 
global optimums by using a new schedule in each repeti-
tion of SAR. This allows for a different part of the solution 
space to be explored when SAR is at a local optimum. This 

not only increases the probability of finding a global opti-
mum, but also increases the time of the search. 

In the SAR algorithm, at the beginning of each simu-
lated annealing, an UB (upper bound) is established in or-
der to randomly obtain the schedule with which to start the 
process. The value of the makespan of this schedule may 
not be greater than the UB, or the schedule is not accepted 
as the initial configuration of the annealing. An UB is used 
due to the fact that in SAR, a great number of simulated 
annealings are executed. The UB is used to limit the solu-
tion space of the problem in order to decrease the time it 
takes for the SAR to arrive at a good solution. Based on the 
tests carried out, it was found that by using an UB, the al-
gorithm improved the quality of the solution it was able to 
attain. For the SAR algorithm, the UB was established by 
trial and error, so that the algorithm took no longer than 15 
seconds to find an I-SCHED (initial schedule) that could be 
used to begin the repetitions of the SAR algorithm. In order 
to obtain an I-SCHED that did not surpass the UB, a ran-
dom procedure was used. First, a random sequence of op-
erations was formed for each machine. Next, a scheduling 
algorithm [17] was used to eliminate global cycles. Finally, 
this schedule is improved by using the Giffler and Thomp-
son algorithm [18] that obtains active schedules [19].  With 
the proposed procedure, obtaining good initial solutions 
that they don't surpass an UB in a short period of time 
could be assured. 

In each iteration of the SAR algorithm, simulated an-
nealing is fully completed. The best configuration after all 
the repetitions are completed is the final solution. The 
number of annealings carried out, that is, the number of 
repetitions of the algorithm, is a function of time of execu-
tion and depends on the problem. The simulated annealing 
algorithm with restart using upper bound can be seen in 
Figure 3. 

Other forms of choosing new schedules have been 
proven that also permit escape from the local optimum in 
simulated annealing. One of them is proposed by Yamada 
and Nakano [13] and involves carrying out a procedure 
called re-intensification. In this procedure, when the an-
nealing checks the whole neighborhood and will not accept 
a new schedule because of a low temperature, a function of 
probability is used. Yamada and Nakano use the probabil-
ity obtained from the function of Boltzmann, where each 
neighbor S´ of the schedule S is evaluated. Based on the 
probabilities of the neighbors of S, one is chosen and the 
process of annealing is continued. In this way it is possible 
to look more broadly than the local optimum to find the 
global optimum. 

Another type of selection of new schedules is proposed 
by Yamada et al. [14]. In this procedure, if the simulated 
annealing has not improved the solution after a great num-
ber of accepted configurations, it is assumed that one is in 
a local optimum. In this case, the best solution found up to 
the current point in time replaces the current solution, and 
the temperature is calculated in an adaptive form. As long 

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp86-91)



as the calculated temperature is greater than the current 
temperature, the algorithm is restarted with the new values. 
In this way, it is possible to continue searching for the 
global optimum. 

Aydin and Fogarty [2] use an initial population of indi-
viduals (schedules) in their simulated annealing logarithm 
parallel. In each population, the individuals are taken one 
by one randomly in order to improve the population. Each 
one goes through the process of simulated annealing. Each 
population is improved until a maximum number of repeti-
tions are reached. With time, the initial populations are 
substituted with the better obtained individuals. 

 
   1. Given initial iteration k = 0, initial values of Sf , Tf, β 
   2. Beginning of annealing k=k+1: 
   3.  S=So<=upper bound, T=To, initial Sc. 
   4. While the final temperature Tf is not reached, 

     5. While equilibrium is not reached: 
• generate a state S´ by means of a perturbation 

in S 
• if f(S’)-F(S)<=0 the state is accepted as the 

current state,  S= S’ 
• if  f(S’)-F(S)>0 the state is accepted with the 

probability 

• 
⎟
⎠
⎞

⎜
⎝
⎛ −

−
−= T

SfSf

accept eP
)()'(

 

• with a randomly generated number β evenly 
distributed between (0,1) 

• if β < Paccept  the state is accepted like the cur-
rent, S = S’ 

• if S < Sc then Sc = S 
• If the equilibrium does not exist,  return to 5 

  T = T* β. 
 The best configuration is stored,  if  Sc < Sf   then  Sf = Sc 
  If T >= Tf, return to 4 
 If k <  maxiter, return to 2 to begin a new annealing 
 The solution is Sf 

 
Fig. 3. The simulated annealing algorithm with restart to 

JSSP using an upper bound 

Computational Results 

The proposed algorithm was proven with two problems 
registered in the OR library [4] and for which the optimum 
solution is known. The first benchmark is the FT10 of 
Muth and Thompson, which is the 10x10 they proposed in 
1963. The second is the benchmark LA40 of S. Lawrence 
that is a 15x15, proposed in 1984. For the problem FT10, 
ten trials were done with an UB = 1570 (Makespan), gen-
erating the initial schedules with the procedure I-SCHED, 
and ten trials were done without an UB, but also using the 
procedure of I-SCHED. The parameters of T0 = 

32*(Makespan of the initial solution), Tf = 1.0, � = 0.98, 
and N1 as the type of neighborhood were equal in each test 
performed, whether there was an UB or not. Table 1 shows 
the results obtained by using an UB of 1570 in the 
makespan. In the same table, the results are shown when an 
UB was not used. In both cases, a maximum time of four 
hours was used to obtain the results. As demonstrated by 
the data in the table, when the UB is used, the optimum is 
obtained in 80% of trials, the quickest being obtained in 44 
minutes, 55 seconds. The standard deviation is 2.95 with 
an average makespan of 931.4. 

We compared the results obtained in Table 1 with the 
algorithms of re-intensification ASSA (Adjacent Swap-
ping) and CBSA, of Yamada et al. [14] because they have 
obtained some of the best results for the problem FT10. 
They also carried out ten trials. ASSA found solutions us-
ing the neighborhood N1 and CBSA using the neighbor-
hood N2. It can be seen that ASSA presents a greater stan-
dard deviation of 5.10 and a higher average makespan of 
939.5. The worst result obtained by the SAR algorithm for 
the makespan was 937 and by ASSA 951. Through this 
comparison, it is obvious that the SAR algorithm is more 
effective than ASSA in obtaining the optimum for the 
problem FT10. For the CBSA algorithm, in ten trials, and 
average makespan of 930.8 was obtained and a standard 
deviation of 2.4. Only in one trial was CBSA unable to ob-
tain the optimum result, this trial gave a makespan of 938. 
These results indicate that CBSA, by a small margin, is 
better able to find accurate solutions than SAR. It is be-
lieved that the CBSA obtains better results due to the 
neighborhood it uses, because the only difference between 
ASSA and CBSA is the type of neighborhood used. 

The average time it took for the SAR algorithm to arrive 
at the solution was 2 hours, 15 minutes, and 13 seconds, 
for ASSA it was 35 minutes, 43 seconds, and for CBSA it 
was 44 minutes, 36 seconds. The great difference in times 
can be explained by the fact that the SAR algorithm re-
starts with a new annealing in each repetition which causes 
it to need a great deal of time to be executed. It is impor-
tant to emphasize that a great number of tests were gener-
ated, with sequences of slower cooling in both cases, with 
and without upper bounds. Tests were also generated with 
the basic algorithm, as seen in Figure 2. The results of all 
the performed tests slower cooling (with β of 0.981 to 
0.999) were farther from the global optimum. In addition, 
there was a considerable increase in the time of execution 
of the algorithm in order to find these solutions. In the re-
sults reported in the table 1, the values of β was fixed at β = 
0.98, because it is the value at which the best results were 
obtained. Other parameters were also fixed with the values 
mentioned previously, because they were the values found 
to improve the quality of results in the performed tests. 

From Table 1, for the problem of FT10, it can be ob-
served that if an upper bound is not used, the obtained re-
sults are of poor quality, with a standard deviation of 4.97 
and an average makespan of 941.9. This is because when 
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an upper bound is used, SAR uses better schedules, which 
allow it to reach better solutions through the changes in the 
neighborhood. This indicates higher probability that the so-
lution space is nearer the global optimum, and a greater 
number of good schedules exist, while only a small number 
of bad schedules are present. 

Table 1. Results of the simulated annealing algorithm with 
restart, with and without upper bound for the problem FT10 

FT10 , 10 x 10, optimum = 930 
UB = 1570 without UB 

Makespan t = sec Makespan t = sec
930 4584.18 943 14400
937 14250.25 944 14400
930 3185.29 944 14400
930 14137.15 938 14400
930 6472.21 937 14400
937 14000.00 949 14400
930 5070.34 949 14400
930 6876.12 943 14400
930 9310.64 935 14400
930 2695.30 937 14400

 
Table 2 shows the results of several algorithms of simu-

lated annealing for the problem FT10. In the table, the type 
of neighborhood each author used is specified. The 
makespan presented by Aart et al. [1], using N1 and N1b, is 
an average of five trials. The makespan presented by Van 
Laarhoven [12], N1, is the best of five trials. The makespan 
presented by Matsuo et al. [10], N1a, was obtained in one 
trial. From Table 2 it can be observed that it was not possi-
ble for any algorithm to find the global optimum. None of 
these algorithms involve restarting the annealing so their 
time of execution is small. It can also be observed that 
most of the results are poorer than those obtained by the 
SAR when an upper bound is not applied (Table 1). This 
shows that a simulated annealing with restart and without 
upper bounds could improve the solution obtained for 
FT10. 

Table 2. Results of several simulated annealing algorithms for the 
problem FT10 

FT10 , 10 x 10, optimum = 930 
Authors t = seg. Makespan

Aart et al. (N1) 99 969 
Aart et al. (N1b) 99 977 

Van Laarhoven (N1) 3895 951 
Matsuo et al. (N1a) 987 946 

 
Table 3 shows the best performance of several algo-

rithms of simulated annealing, including the SAR algo-
rithm, for the benchmark LA40 of JSSP.  The parameters 
in SAR were fixed to: UB = 2300, T0 = 25, Tf = 5.0 and � = 
0.99. The table presents the type of neighborhood that each 
author used in their algorithm. The neighborhoods are the 
following: algorithm of Van Laarhoven et al. [12], N1, 
which represents the best of five trials; algorithm of Aart et 

al [1], N1, which represents the average of five trials; algo-
rithm of Aart et al [1], N1b, which represents the average of 
five trials; algorithm of Matsuo et al. [10], N1a, which 
represents a single trial; CBSA algorithm, N2, of Yamada 
et al. [14] which represents the best of five trials, 
CBSA+SB algorithm, N2, of Yamada and Nakano, which 
represents the best result of ten trials; and SAR, N1, which 
represents the best of five trials.  

Table 3. Results of several simulated annealing algorithm for the 
problem LA40 

LA40, 15 X 15, optimum = 1222
Algorithm Makespan %ER

CBSA+SB (N2) 1228 0.49
SAR (N1) 1233 0.90

Van Laarhoven (N1) 1234 0.98
Matsuo et al. (N1a) 1235 1.06

CBSA (N2) 1235 1.06
Aart et al. (N1b) 1254 2.62
Aart et al. (N1) 1256 2.78

 
In Table 3 it can be observed that the result obtained by 

SAR with a 0.90% relative error is better than all of the 
other algorithms that use N1 and derivatives of N1. SAR 
also surpasses the CBSA, which uses the N2 type of 
neighborhood. SAR is surpassed only by CBSA+SB. The 
CBSA+SB algorithm uses the neighborhood N2 and im-
plements the procedure of deterministic local search, called 
shifting bottleneck, for the re-optimization of schedules ob-
tained in each repetition of the algorithm. 

Conclusion 

The use of upper bounds in the algorithm allows the solu-
tion of the problem FT10 to be found in almost all trials. 
This indicates that for this problem, in the simulated an-
nealing algorithm with restart, starting with the good 
schedules that do not surpass an upper bound, improves the 
solution considerably. Also, it is recommended that the 
simulated annealing be restarted in several points with 
good schedules. By doing this, better solutions are obtained 
which are nearer to the global optimum. This could help 
avoid the situation where a local optimum is found which 
is far from the global optimum.  

Although the algorithm for simulated annealing pre-
sented here is powerful, it is not perfect. For example, if 
another type of more powerful neighborhood were used 
(e.g., N2), it is possible that the performance of SAR could 
be improved. 

When a large numbers of annealing are executed, the al-
gorithm takes a great deal of time to arrive at a solution. 
These aspects are currently being improved. 

The quality of the solution of the SAR algorithm pre-
sented here for the problem LA40 is comparable to the 
CBSA+SB algorithm with N2. One advantage that the SAR 
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algorithm has over the CBSA+SB is that for the 
CBSA+SB, it is necessary to find the machines with the 
shifting bottleneck in each repetition. To find all of this in-
formation, it is necessary to calculate the release times and 
due dates of each operation that is involved in the problem. 
Thus, because of the similar quality and simpler implemen-
tation, SAR appears to be of more interest from a scientific 
point of view. It is thought that SAR would have better 
performance with large problems than CBSA+SB due to 
the fact that SAR does not use deterministic local search 
procedures. Better performance would be possible if SAR 
were improved so it would not take so long. This work is 
currently being done. 
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