
Experimental Analysis in Simulated Annealing to Scheduling Problems
when Upper Bounds are used

Marco Antonio Cruz-Chávez1 and Juan Frausto-Solís2 and David Juárez-Romero1

1Center of Investigation in Engineering and Applied Science, UAEM

Av. Universidad 1001, Col. Chamilpa, 62270, Cuernavaca, Morelos, MÉXICO
2 Department of Computer Science, ITESM, Campus Cuernavaca
Paseo de la Reforma 182-A, 62589, Temixco, Morelos, MÉXICO

Abstract- An algorithm of simulated annealing for the job shop scheduling problem is presented. The proposed algorithm restarts with a
new value every time the previous algorithm finishes. To begin the process of annealing, the starting point is a randomly generated sched-
ule with the condition that the initial value of the makespan of the schedule does not surpass a previously established upper bound. The ex-
perimental results show the importance of using upper bounds in simulated annealing in order to more quickly approach good solutions.

Key-Words: - Job shop, upper bound, scheduling, makespan and simulated annealing.

Introduction

The job shop scheduling problem (JSSP) is considered to
be one of the most difficult to solve in combinatorial opti-
mization. It is also one of the most difficult problems in the
NP-hard class [7]. For this reason, Muth and Thompson [9]
took over 20 years to solve the problem of ten machines
and ten jobs [5].

The job shop scheduling problem consists of a set of
machines that each carry out the execution of a set of jobs.
Each job consists of a certain number of operations, which
must be carried out in a specific order. Each operation is
carried out by a specific machine and has a specific time of
execution. Each machine can execute a maximum of one
operation at any given point in time. A single machine is
unable to carry out more than one operation of the same
job. The objective of the problem is to find the makespan.
The makespan is defined as the time it takes to complete
the last operation in the system. In a solution to the JSSP,
the sequence of operations for each machine as well as
start times for each operation are obtained.

An immense number of models exist that represent the
JSSP, but the two most important and influential models
are those of disjunctive formulation [6] and disjunctive
graph [6]. From these two models many others have
emerged.

The disjunctive formulation model considers several
sets: a set J of n jobs, where J { }nJJJ ,..., 21= ; a set M

of m machines where M { }mMMM ,...,, 21= ; and a set

O of operations where O { },...3,2,1= . These operations

form k subsets of operations for each one of the jobs
(⊆kJ O) and machines (⊆kM O).

Each operation j has a processing time of pj. In a job Jk,
each pair of operations i, j possess a relationship of prece-
dence represented)(ji p . Only one operation performed
by a machine Mk, can be executed at any given point in
time. Given the previously mentioned problem restric-
tions, the function of the starting time, s of each operation
can be represented in the following manner:

∀ ∈j O 0≥js (1)

∀ ∈ji, O,

kJji ∈)(p
jii sps ≤+ (2)

∀ ∈ji, O,
()kMji ∈,

ijjjii spssps ≤+∨≤+

(3)

The constraint in (1) indicates that the starting time of
the operation j must be greater than or equal to zero; mean-
ing only positive values are accepted. The constraint in (2)
is a precedence constraint. It indicates that within one job
which contains operations i and j, in order for j to begin, i
must be completed. The constraints in (3) are disjunctive.
These constraints ensure that two operations, i and j, which
are performed by the same machine are not carried out si-
multaneously. The objective is to minimize the makespan,
which is defined based on starting times, and can be ex-
pressed as (4):

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp86-91)

 Min ()⎥
⎦

⎤
⎢
⎣

⎡
∈ + jjj psO

max (4)

The disjunctive graph model is shown in Figure 1 for a
JSSP of 3x3. From Figure 1, it can be seen that the nodes
of the graph represent the operations performed in the
problem. In each operation (node) of the graph, the first
number represents which job the operation pertains to, and
the second number represents the machine that performs
that operation. It can be observed that the group of opera-
tions that form a job are united with a conjunctive arc,
which represents the precedence constraints for each pair
of operations (e.g., operations 1,1 and 1,2). In the group of
operations that a machine executes, each pair of operations
is united with a disjunctive arc (e.g., operations 1,1 and
2,1). These arcs represent the resource capacity constraints
and correspond to the constraints of the equations in (3) of
the disjunctive formulation model. In addition, there are
two operations, I and *, which represent the beginning and
end of the problem respectively. These operations are actu-
ally fictitious and have a processing time of zero. The
processing time of each other operation is written beside
the node and corresponds to the times pi of the disjunctive
formulation model (equations 2 and 3). For example, the
operation 1,1 has a processing time of P1,1.

Fig. 1. Disjunctive graph for a JSSP of 3x3

In order to find a solution using the disjunctive graph
model, it is necessary to arrange the arrows of the disjunc-
tive arcs in such a way that the obtained sequence does not
contain any cycles [1]. Once the sequence is established, it
is common to obtain the scheduling of the operations,
which is expressed as starting times for each operation.
The model of the disjunctive graph was used to develop the
SAR algorithm presented here.

The simulated annealing algorithm introduced by
Kirkpatrick et al. [8] is an analogy between the annealing
process of solids and the problem of solving combinatorial
optimization problems. This algorithm has been used with
high rates of success for JSSP by several researchers
[1],[2],[10],[12],[13], and [14]. This simulated annealing
algorithm is shown in Figure 2.

1. Given an initial configuration S = S0 and an
initial temperature T = T0

2. While the final temperature Tf is not reached,
3. While equilibrium is not reached,

• generate a state S´ by means of a perturba-
tion in S

• if f(S’)-F(S)<=0, the state is accepted as the
current state, S =S’

• if f(S’)-F(S)>0, the state is accepted with
the probability:

⎟
⎠
⎞

⎜
⎝
⎛ −

−
−= T

SfSf

accept eP
)()'(

 (5)

• with a randomly generated number α evenly
distributed between (0,1)

• if α < Paccept the state is accepted like the
current, S = S’

 If the equilibrium does not exist, return to 3
 T=T*β

 If T >= Tf, return to 2
4. The best obtained configuration is the solution

Fig. 2. Simulated annealing algorithm

In Figure 2 for the JSSP, S is a schedule obtained by us-
ing a randomly generated initial point. S´ is in the
neighborhood of S, which is obtained by a small perturba-
tion of S. To and Tf are the intial and final temperatures of
the process. β is the coefficient of temperature that controls
the cooling of the system. f(S) is the energy of the configu-
ration S, which is generally the makespan. The equation (5)
is the Boltzmann distribution function [11].

The simulated annealing algorithm, represented in the
Figure 2, allows for a search for the global optimum when
the temperature is high because it accepts good and bad
configurations in a similar percentage. As the temperature
begins to diminish, the algorithm accepts more good
configurations than bad. Due to this behavior, if in each
cycle equilibrium is reached, there is a high probability that
the optimal, or very close to the optimal, solution will be
reached.

One of the ways of perturbing the neighborhood of S is
proposed by Balas [3], and involves exchanging a pair of
adjacent operations that are within critical blocks of opera-
tions. This form of altering the neighborhood is known as
N1. The critical blocks of operations are the operations that
form the longest path of the schedule. Each critical block
of operations that form this path are performed by a com-
mon machine. According to Balas, the first operation of the
path becomes the last, and the last becomes the fictitious
first operation. Changes in the neighborhood of this type,
N1, have been used previously in simulated annealing with
good results by [1], [2], [10], [12], and [14]. This type of
change is what is used in this work due to ease of imple-
mentation.

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp86-91)

 3

Other researchers have developed variations of N1. The
algorithm of Matsuo et al. 1[0] is a derivation of N1, called
N1a. This type of change to the neighborhood involves
changing the placement of three pairs of adjacent opera-
tions simultaneously, where each operation is performed
by a different machine. The algorithm of Aart et al. [1],
also a derivation of N1, called N1b, involves reversing three
adjacent pairs of operations that are all performed by the
same machine, and with the condition that one of the pairs
does not form the longest path.

Another type of derivation of N1 is the neighborhood of
critical block (CB), which is called N2. In this type of
neighborhood, one operation in the block is changed for ei-
ther the initial or final operation of the block. It is not re-
quired that the operations that change places be adjacent.
The algorithms that use N2 are the CBSA of Yamada et al.
[14] and the CSBA+CB of Yamada and Nakano [13]. This
last algorithm uses a deterministic local search called shift-
ing bottleneck [15]. It uses shifting bottleneck when the
schedule S´, which is a perturbation of S, is rejected in the
simulated annealing. When the rejection occurs, the shift-
ing bottleneck is applied to S´ in order to improve it. Once
S´ is improved, if f(S´) greater than f(S), the solution is ac-
cepted. In this type of neighborhood, the shifting bottle-
neck must be used whenever S´ is rejected in the algorithm.
The implementation of the shifting bottleneck is not easy
because it requires that the release time and due dates are
calculated. Here, an algorithm is proposed which is easy to
implement and produces high quality solutions; it is a
simulated annealing algorithm with restart [16].

Simulated Annealing using Upper Bounds

The proposed algorithm of simulated annealing with restart
(SAR) consists of executing a set of simulated annealing
algorithms, as can be seen in Figure 2. Each simulated an-
nealing that is executed involves the iteration of the SAR
algorithm. Each repetition begins using a different sched-
ule. The idea of beginning with different schedules for
each repetition of SAR came about because of experimen-
tal tests that were carried out. In the experimental tests, it
was detected that even though simulated annealing allows
the search for a global optimum, at some point low tem-
peratures eliminate this possibility and the search finds a
local optimum. By beginning with different schedules,
more variability of solutions is obtained than by beginning
with only a single schedule. It is seen that the restart of the
simulated annealing algorithm leaves a different point in
the solution space each time it is repeated.

The restarting of the algorithm allows for the search of
global optimums by using a new schedule in each repeti-
tion of SAR. This allows for a different part of the solution
space to be explored when SAR is at a local optimum. This

not only increases the probability of finding a global opti-
mum, but also increases the time of the search.

In the SAR algorithm, at the beginning of each simu-
lated annealing, an UB (upper bound) is established in or-
der to randomly obtain the schedule with which to start the
process. The value of the makespan of this schedule may
not be greater than the UB, or the schedule is not accepted
as the initial configuration of the annealing. An UB is used
due to the fact that in SAR, a great number of simulated
annealings are executed. The UB is used to limit the solu-
tion space of the problem in order to decrease the time it
takes for the SAR to arrive at a good solution. Based on the
tests carried out, it was found that by using an UB, the al-
gorithm improved the quality of the solution it was able to
attain. For the SAR algorithm, the UB was established by
trial and error, so that the algorithm took no longer than 15
seconds to find an I-SCHED (initial schedule) that could be
used to begin the repetitions of the SAR algorithm. In order
to obtain an I-SCHED that did not surpass the UB, a ran-
dom procedure was used. First, a random sequence of op-
erations was formed for each machine. Next, a scheduling
algorithm [17] was used to eliminate global cycles. Finally,
this schedule is improved by using the Giffler and Thomp-
son algorithm [18] that obtains active schedules [19]. With
the proposed procedure, obtaining good initial solutions
that they don't surpass an UB in a short period of time
could be assured.

In each iteration of the SAR algorithm, simulated an-
nealing is fully completed. The best configuration after all
the repetitions are completed is the final solution. The
number of annealings carried out, that is, the number of
repetitions of the algorithm, is a function of time of execu-
tion and depends on the problem. The simulated annealing
algorithm with restart using upper bound can be seen in
Figure 3.

Other forms of choosing new schedules have been
proven that also permit escape from the local optimum in
simulated annealing. One of them is proposed by Yamada
and Nakano [13] and involves carrying out a procedure
called re-intensification. In this procedure, when the an-
nealing checks the whole neighborhood and will not accept
a new schedule because of a low temperature, a function of
probability is used. Yamada and Nakano use the probabil-
ity obtained from the function of Boltzmann, where each
neighbor S´ of the schedule S is evaluated. Based on the
probabilities of the neighbors of S, one is chosen and the
process of annealing is continued. In this way it is possible
to look more broadly than the local optimum to find the
global optimum.

Another type of selection of new schedules is proposed
by Yamada et al. [14]. In this procedure, if the simulated
annealing has not improved the solution after a great num-
ber of accepted configurations, it is assumed that one is in
a local optimum. In this case, the best solution found up to
the current point in time replaces the current solution, and
the temperature is calculated in an adaptive form. As long

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp86-91)

as the calculated temperature is greater than the current
temperature, the algorithm is restarted with the new values.
In this way, it is possible to continue searching for the
global optimum.

Aydin and Fogarty [2] use an initial population of indi-
viduals (schedules) in their simulated annealing logarithm
parallel. In each population, the individuals are taken one
by one randomly in order to improve the population. Each
one goes through the process of simulated annealing. Each
population is improved until a maximum number of repeti-
tions are reached. With time, the initial populations are
substituted with the better obtained individuals.

 1. Given initial iteration k = 0, initial values of Sf , Tf, β
 2. Beginning of annealing k=k+1:
 3. S=So<=upper bound, T=To, initial Sc.
 4. While the final temperature Tf is not reached,

 5. While equilibrium is not reached:
• generate a state S´ by means of a perturbation

in S
• if f(S’)-F(S)<=0 the state is accepted as the

current state, S= S’
• if f(S’)-F(S)>0 the state is accepted with the

probability

•
⎟
⎠
⎞

⎜
⎝
⎛ −

−
−= T

SfSf

accept eP
)()'(

• with a randomly generated number β evenly
distributed between (0,1)

• if β < Paccept the state is accepted like the cur-
rent, S = S’

• if S < Sc then Sc = S
• If the equilibrium does not exist, return to 5

 T = T* β.
 The best configuration is stored, if Sc < Sf then Sf = Sc
 If T >= Tf, return to 4
 If k < maxiter, return to 2 to begin a new annealing
 The solution is Sf

Fig. 3. The simulated annealing algorithm with restart to

JSSP using an upper bound

Computational Results

The proposed algorithm was proven with two problems
registered in the OR library [4] and for which the optimum
solution is known. The first benchmark is the FT10 of
Muth and Thompson, which is the 10x10 they proposed in
1963. The second is the benchmark LA40 of S. Lawrence
that is a 15x15, proposed in 1984. For the problem FT10,
ten trials were done with an UB = 1570 (Makespan), gen-
erating the initial schedules with the procedure I-SCHED,
and ten trials were done without an UB, but also using the
procedure of I-SCHED. The parameters of T0 =

32*(Makespan of the initial solution), Tf = 1.0, � = 0.98,
and N1 as the type of neighborhood were equal in each test
performed, whether there was an UB or not. Table 1 shows
the results obtained by using an UB of 1570 in the
makespan. In the same table, the results are shown when an
UB was not used. In both cases, a maximum time of four
hours was used to obtain the results. As demonstrated by
the data in the table, when the UB is used, the optimum is
obtained in 80% of trials, the quickest being obtained in 44
minutes, 55 seconds. The standard deviation is 2.95 with
an average makespan of 931.4.

We compared the results obtained in Table 1 with the
algorithms of re-intensification ASSA (Adjacent Swap-
ping) and CBSA, of Yamada et al. [14] because they have
obtained some of the best results for the problem FT10.
They also carried out ten trials. ASSA found solutions us-
ing the neighborhood N1 and CBSA using the neighbor-
hood N2. It can be seen that ASSA presents a greater stan-
dard deviation of 5.10 and a higher average makespan of
939.5. The worst result obtained by the SAR algorithm for
the makespan was 937 and by ASSA 951. Through this
comparison, it is obvious that the SAR algorithm is more
effective than ASSA in obtaining the optimum for the
problem FT10. For the CBSA algorithm, in ten trials, and
average makespan of 930.8 was obtained and a standard
deviation of 2.4. Only in one trial was CBSA unable to ob-
tain the optimum result, this trial gave a makespan of 938.
These results indicate that CBSA, by a small margin, is
better able to find accurate solutions than SAR. It is be-
lieved that the CBSA obtains better results due to the
neighborhood it uses, because the only difference between
ASSA and CBSA is the type of neighborhood used.

The average time it took for the SAR algorithm to arrive
at the solution was 2 hours, 15 minutes, and 13 seconds,
for ASSA it was 35 minutes, 43 seconds, and for CBSA it
was 44 minutes, 36 seconds. The great difference in times
can be explained by the fact that the SAR algorithm re-
starts with a new annealing in each repetition which causes
it to need a great deal of time to be executed. It is impor-
tant to emphasize that a great number of tests were gener-
ated, with sequences of slower cooling in both cases, with
and without upper bounds. Tests were also generated with
the basic algorithm, as seen in Figure 2. The results of all
the performed tests slower cooling (with β of 0.981 to
0.999) were farther from the global optimum. In addition,
there was a considerable increase in the time of execution
of the algorithm in order to find these solutions. In the re-
sults reported in the table 1, the values of β was fixed at β =
0.98, because it is the value at which the best results were
obtained. Other parameters were also fixed with the values
mentioned previously, because they were the values found
to improve the quality of results in the performed tests.

From Table 1, for the problem of FT10, it can be ob-
served that if an upper bound is not used, the obtained re-
sults are of poor quality, with a standard deviation of 4.97
and an average makespan of 941.9. This is because when

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp86-91)

 5

an upper bound is used, SAR uses better schedules, which
allow it to reach better solutions through the changes in the
neighborhood. This indicates higher probability that the so-
lution space is nearer the global optimum, and a greater
number of good schedules exist, while only a small number
of bad schedules are present.

Table 1. Results of the simulated annealing algorithm with
restart, with and without upper bound for the problem FT10

FT10 , 10 x 10, optimum = 930
UB = 1570 without UB

Makespan t = sec Makespan t = sec
930 4584.18 943 14400
937 14250.25 944 14400
930 3185.29 944 14400
930 14137.15 938 14400
930 6472.21 937 14400
937 14000.00 949 14400
930 5070.34 949 14400
930 6876.12 943 14400
930 9310.64 935 14400
930 2695.30 937 14400

Table 2 shows the results of several algorithms of simu-

lated annealing for the problem FT10. In the table, the type
of neighborhood each author used is specified. The
makespan presented by Aart et al. [1], using N1 and N1b, is
an average of five trials. The makespan presented by Van
Laarhoven [12], N1, is the best of five trials. The makespan
presented by Matsuo et al. [10], N1a, was obtained in one
trial. From Table 2 it can be observed that it was not possi-
ble for any algorithm to find the global optimum. None of
these algorithms involve restarting the annealing so their
time of execution is small. It can also be observed that
most of the results are poorer than those obtained by the
SAR when an upper bound is not applied (Table 1). This
shows that a simulated annealing with restart and without
upper bounds could improve the solution obtained for
FT10.

Table 2. Results of several simulated annealing algorithms for the
problem FT10

FT10 , 10 x 10, optimum = 930
Authors t = seg. Makespan

Aart et al. (N1) 99 969
Aart et al. (N1b) 99 977

Van Laarhoven (N1) 3895 951
Matsuo et al. (N1a) 987 946

Table 3 shows the best performance of several algo-

rithms of simulated annealing, including the SAR algo-
rithm, for the benchmark LA40 of JSSP. The parameters
in SAR were fixed to: UB = 2300, T0 = 25, Tf = 5.0 and � =
0.99. The table presents the type of neighborhood that each
author used in their algorithm. The neighborhoods are the
following: algorithm of Van Laarhoven et al. [12], N1,
which represents the best of five trials; algorithm of Aart et

al [1], N1, which represents the average of five trials; algo-
rithm of Aart et al [1], N1b, which represents the average of
five trials; algorithm of Matsuo et al. [10], N1a, which
represents a single trial; CBSA algorithm, N2, of Yamada
et al. [14] which represents the best of five trials,
CBSA+SB algorithm, N2, of Yamada and Nakano, which
represents the best result of ten trials; and SAR, N1, which
represents the best of five trials.

Table 3. Results of several simulated annealing algorithm for the
problem LA40

LA40, 15 X 15, optimum = 1222
Algorithm Makespan %ER

CBSA+SB (N2) 1228 0.49
SAR (N1) 1233 0.90

Van Laarhoven (N1) 1234 0.98
Matsuo et al. (N1a) 1235 1.06

CBSA (N2) 1235 1.06
Aart et al. (N1b) 1254 2.62
Aart et al. (N1) 1256 2.78

In Table 3 it can be observed that the result obtained by

SAR with a 0.90% relative error is better than all of the
other algorithms that use N1 and derivatives of N1. SAR
also surpasses the CBSA, which uses the N2 type of
neighborhood. SAR is surpassed only by CBSA+SB. The
CBSA+SB algorithm uses the neighborhood N2 and im-
plements the procedure of deterministic local search, called
shifting bottleneck, for the re-optimization of schedules ob-
tained in each repetition of the algorithm.

Conclusion

The use of upper bounds in the algorithm allows the solu-
tion of the problem FT10 to be found in almost all trials.
This indicates that for this problem, in the simulated an-
nealing algorithm with restart, starting with the good
schedules that do not surpass an upper bound, improves the
solution considerably. Also, it is recommended that the
simulated annealing be restarted in several points with
good schedules. By doing this, better solutions are obtained
which are nearer to the global optimum. This could help
avoid the situation where a local optimum is found which
is far from the global optimum.

Although the algorithm for simulated annealing pre-
sented here is powerful, it is not perfect. For example, if
another type of more powerful neighborhood were used
(e.g., N2), it is possible that the performance of SAR could
be improved.

When a large numbers of annealing are executed, the al-
gorithm takes a great deal of time to arrive at a solution.
These aspects are currently being improved.

The quality of the solution of the SAR algorithm pre-
sented here for the problem LA40 is comparable to the
CBSA+SB algorithm with N2. One advantage that the SAR

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp86-91)

algorithm has over the CBSA+SB is that for the
CBSA+SB, it is necessary to find the machines with the
shifting bottleneck in each repetition. To find all of this in-
formation, it is necessary to calculate the release times and
due dates of each operation that is involved in the problem.
Thus, because of the similar quality and simpler implemen-
tation, SAR appears to be of more interest from a scientific
point of view. It is thought that SAR would have better
performance with large problems than CBSA+SB due to
the fact that SAR does not use deterministic local search
procedures. Better performance would be possible if SAR
were improved so it would not take so long. This work is
currently being done.

References

1. Aarts, E.H.L., Van Laarhoven, P.J.M., Lenstra,
J.K., and Ulder, N.L.J., A computational study of
local search algorithms for job shop scheduling,
ORSA Journal on Computing 6, 118-125, 1994.

2. Aydin, M. E., and Fogarty, T. C., Modular Simu-
lated annealing algorithm for job shop scheduling
running on distributed resource machin (DRM),
South Bank University, SCISM, 103 Borough
Road, London, SE1 0AA, UK, 2002.

3. Balas, E., Machine sequencing via disjunctive
graphs: an implicit enumeration algorithm, Oper.
Res., 17:941-957, 1969.

4. Beasley, J.E., OR Library, Imperial College,
Management School,
http://mscmga.ms.ic.ac.uk/info.html, 1990.

5. Carlier, J., and Pinson, E., An algorithm for solv-
ing the job-shop problem. Manage. Sci., 35(2):
164-176, 1989.

6. Conway, R. W., Maxwell, W.L., and Miller, L.
W., Theory of Scheduling, Addison-Wesley,
Reading, Massachusetts, 1967.

7. Garey, M.R., Johnson, D.S. and Sethi, R., The
complexity of Flow shop and Job shop Schedul-
ing. Mathematics of Operations Research, Vol. I,
No 2, USA, 117-129, May, 1976.

8. Kirkpatrick, S., Gelatt S. D. Jr., and Vecchi, M.
P., Optimization by simulated annealing. Science,
220(4598), 13 May, 671-680, 1983.

9. Muth, J. F., and Thompson, G. L., Industrial
Scheduling, Prentice Hall, Englewood Cliffs, New
Jersey, Ch 15, pp. 225-251, 1963.

10. Matsuo, H. Suii, C.J. and Sullivan, R.S., A con-
trolled search simulated annealing method for the
general job shop scheduling problem, Working
paper 03-04-88, Graduate School of Business,
University of Texas, Austin, 1988.

11. Metrópolis, N., Rosenbluth, A. W., Rosenbluth,
M. N. Teller, A. H. and Teller, E., Equation of

state calculations by fast computing machines,
The Journal of Chemical Physics, 21(6), 1087-
1092, June 1953.

12. Van Laarhoven, P.J.M., Aarts E.H.L., and Len-
stra, J.K., Job shop scheduling by simulated an-
nealing. Oper. Res., 40(1):113-125, 1992.

13. Yamada T., and Nakano, R. Job-shop scheduling
by simulated annealing combined with determi-
nistic local search, Meta-heuristics: theory and
applications, Kluwer academic publishers MA,
USA, pp. 237-248, 1996.

14. Yamada, T., Rosen B. E., and Nakano, R., A
simulated annealing approach to job shop sched-
uling using critical block transition operators,
IEEE, 0-7803-1901-X/94, 1994.

15. Adams, J., Balas E., and Zawack, D., The shifting
bottleneck procedure for job shop scheduling,
Mgmt. Sci., 34, 1988.

16. Ingber, L., Simulated annealing: Practice versus
theory, Mathematical Computer Modelling,
18(11), 29-57, 1993.

17. Nakano R. and Yamada, T., Conventional Genetic
Algorithm for Job-Shop. Problems, in Kenneth,
M. K. and Booker, L. B. (eds) Proceedings of the
4th International Conference on Genetic Algo-
rithms and their Applications, San Diego, USA,
pp. 474-479, 1991.

18. Zalzala, P. J., and Flemming., Zalsala, A.M.S.
(Ali M.S.), ed., Genetic algorithms in engineering
systems /Edited by A.M.S. Institution of Electrical
Engineers, London, 1997.

19. Pinedo, M., Scheduling Theory, Algorithms, and
Systems, Prentice Hall, U.S.A., 1995.

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp86-91)

