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Abstract: Mobile agents are no longer a theoretical issue since different architectures for their realization have 
been proposed . With the increasing market of electronic commerce it becomes an interesting aspect to use 
autonomous mobile agents for electronic business trans- actions. Being involved in money transactions, 
supplementary security features for mobile agent systems have to he ensured.   .In this paper, we present 
FATOMAS , a java – based fault – tolerant mobile agent system based on an algorithm presented in an earlier 
paper . In contrary to the standard "place – dependent" architectural approach , FATOMAS uses the novel ,, 
agent – dependent ,, approach introduced in the paper . In this approach , the protocol that provides fault 
tolerance travels with the agent . This has the important advantage to allow fault – tolerant mobile agent 
execution with out the need to modify the underlying mobile agent plat form . 
We derive the FATOMAS (Fault-Tolerant Mobile Agent System) design which offers a user transparent fault 
tolerance that can be activated on request, according to the needs of the task, also discuss how transactional 
agent with types of commitment constraints can commit. 
Furthermore this paper proposes a solution for effective agent deployment using dynamic agent domains.  
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  1   Introduction 
   A mobile agent is a software program which 
migrates from a site to another site to perform tasks 
assigned by a user. For the mobile agent system to 
support the agents in various application areas, the 
issues regarding the reliable agent execution, as well 
as the compatibility between two different agent 
systems or the secure agent migration, have been 
considered. Some of the proposed schemes are either 
replicating the agents [1,2] or checkpointing the 
agents [3,4]. For a single agent environment without 
considering inter-agent communication, the 
performance of the replication scheme and the 
checkpointing scheme is compared in [5] and [6]. 
   In the area of mobile agents, only few work can be 
found relating to fault tolerance. Most of them refer to 
special agent systems or cover only some special aspects 
relating to mobile agents, e. g. the communication 
subsystem. Nevertheless, most people working with 
mobile agents consider fault tolerance to be an important 
issue [7,8].Failures in a mobile agent   system may lead to 
a partial or complete loss of the agent .To achieve fault – 
tolerance , the agent owner (i.e., the person or application 
creating and configuring the agent ) can try to detect the 
failure of its agent, and upon such an event launch a new  
agent. However , this requires the ability to correctly 
detect the crash of the agent  ,i.e., to distinguish 
between a failed agent and an agent that is delayed  
 

 
 
by slow processors or slow communication links. 
Unfortunately this can not be achieved in systems 
such as the Internet. An agent owner who tries to 
detect the failure of his agent thus cannot prevent the 
case where he mistakenly thinks that the agent has 
crashed. In this case , launching a new agent leads to 
multiple executions of the agent, i.e., to the violation 
of the desired exactly-once property of agent 
execution. Even though this may be acceptable for 
certain applications  (e.g., applications whose 
operations do not have side-effects ,i.e., are 
idempotent),others clearly forbid it. Fortunately 
,multi-ple agent executions can be prevented in 
environments with unreliable failure detection by 
replicating agents with an adequate protocol. Indeed, 
if failure detection is unreliable, replication by itself 
dose not ensure the exactly-once execution property 
.for example, exactly- once execution is not ensured 
by the protocol of [9], which assumes a perfect 
failure–detection mechanism. Some systems have 
tried to address the exactly –once issue in the  
context of unreliable failure detection , and have  
proposed complex solution based on transactions 
and leader election [2,10]. Other approaches address 
the exactly- once execution problem by detecting  
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duplicate agents at the end of the agent execution ,  
and undoing at that moment the effects of multiple 
executions [11 ,12] . However , undoing the effects  
of duplicate agents at the end of the execution is not 
simple , and often limits dramatically the overall 
system throughput . In contrast to these different 
approaches , we have presented in an earlier paper 
[13] an approach that ensures the exactly- once 
execution property using a very simple principle: 
The mobile agent execution is modeled as a 
sequence of agreement problems . In the current 
paper , we present FATOMAS , a java- based Fault 
– Tolerant Mobile Agent System , that implements 
this approach . 
In order to characterize the architecture of 
FATOMAS , we start by introducing two 
approaches called place dependent and agent – 
dependent .Place–dependent is the standard 
approach that integrates fault tolerance into the 
mobile agent platform (the plat form , that provides 
the support for mobile agents). Agent dependent is 
the new approach introduced by FATOMAS . In this 
approach , the protocol that provides fault tolerance 
travels with the agent .  
This has the important advantage to allow fault – 
tolerant agent execution without having to modify 
the underlying mobile agent platform . Currently, 
FATOMAS supports object space's Voyager mobile 
agent platform [14] . However our design enables to 
easily port FATOMAS to other mobile agent 
platforms .  
 
2  Model 
   We assume an asynchronous distributed system, 
i.e., there are no bounds on transmission delays of 
messages or on relative process speeds.  An example 
of an asynchronous system is the Internet. Processes 
communicate via message passing over a fully 
connected network. 
 
2.1  Mobile agent Model 
  A mobile agent executes on a sequence of 
machines, where a places )0( nip i ≤≤ provides the 
logical execution environment for the agent. Each 
place runs a set of services, which together compose 
the state of the place. For simplicity, we say that the 
agent" accesses the state of the place, " although 
access occurs through a service running on the place. 
Executing the agent at a place ip  is called a stage iS  
of the agent execution. We call the places where the 
first and last stages of an agent execute (i.e., 

nandpp 0  ) the agent source and destination,  
respectively. The sequence of places between the  
agent source and destination respectively. The 
sequence of places between the agent source and 
destination(i.e., nppp ,..., 10 ) is called the itinerary  
 
 

of a mobile agent. Whereas a static itinerary is 
entirely defined at the agent source and does not 
change   during  the   agent  execution  , a   dynamic  
itinerary is subject to modifications by the agent 
itself. 
Logically , a mobile agent executes in a sequence of 

stage actions (Fig. 1).Each stage actions ia  consists 
of potentially multiple operations ,..., 10 opop  Agent 

( ni ≤≤0 ) at the corresponding stage iS   represents 
the agent a that has executed the stage action on 
places jp j <i) and is about to execute on place 

ip .The execution of ia  on place ip results in a new 
internal state of the agent as well as potentially a 
new state of the place (if the operations of an agent 
have side effects, i.e., are non idempotent).We 

denote the resulting agent 1+ia . Place ip  forwards      

to 1+ip  (for i < n).  
 
                                          

 
 

Fig 1.Model  of   mobile agent execution with 3 
stages. 

 
2.2  Fault Model 
    Several types of faults can occur in agent 
environments. Here, we first describe a general fault 
model, and focus on those types, which are for one 
important in agent environments due to high 
occurrence probability, and for one have been 
addressed in related work only insufficiently. 
- Node failures: The complete failure of a compute 
node implies the failure of all agent places and 
agents located on it. Node failures can be temporary 
or permanent. 
- Failures of components of the agent system: 
Failures of agent places, or components of agent 
places become faulty, e. g. faulty communication 
units or incomplete agent directory. These faults can 
result in agent failures, or in reduced or wrong 
functionality of agents. 
- Failures of mobile agents: Mobile agents can 
become faulty due to faulty computation, or other 
faults (e. g. node or network failures). 
- Network failures: Failures of the entire 
communication network or of single links can lead 
to isolation of single nodes, or to network partitions. 
- Falsification or loss of messages: These are usually  
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caused by failures in the network or in the 
communication units of the agent systems, or the  
underlying operating systems . Also ,faulty 
transmission of   agents  during migration belongs to  
this type. 
     Especially in the intended scenario of parallel 
applications, node failures and their consequences 
are important. Such consequences are loss of agents, 
and loss of node specific resources. In general, each 
agent has to fulfill a specific task to contribute to the 
parallel application, and thus, agent failures must be 
treated. In contrast, in applications where a large 
number of agents are sent out to search and process 
information in a network, the loss of one or several 
mobile agents might be acceptable. 
 
2.3  Model Failures 
Machines, places, or agents can fail and recover 
later. A component that has failed but not yet 
recovered is called down; otherwise, it is up. If it is 
eventually permanently up, it is called good [15]. In 
this paper, we focus on crash failures (i.e., processes 
prematurely halt). Benign and malicious failures 
(i.e., Byzantine failures) are not discussed. A failing 
place causes the failure of all agent running on it. 
Similarly, a failing machine causes all places and 
agents on this machine to fail as well. We  do not 
consider deterministic, repetitive  programming 
errors(i.e., programming errors that occur on all 
agent  
 

   
 

Fig 2.The redundant  places mask the place 
failure. 

 
replicas or places) in the code or the place as 
relevant failures in this Context. Finally a link 
failure causes the loss of the messages or agents 
currently in transmission on this link and may lead 
to network partitioning. We assume that link  
failures (and network partitions) are not permanent. 
The failure of a component (i.e., agent, place, 
machine, or communication link ) can lead to 
blocking in the mobile agent execution. Assume, for 
instance that place 2p  fails while executing 2a   
(fig. 1). While 2p  is down, the execution of the 
mobile agent cannot proceed, i.e., it is blocked. 
Blocking occurs if a single failure prevents the  
 

execution from proceeding . In contrast, and 
execution is non blocking if it can proceed despite a 
single failure ,the blocked mobile agent execution 
can only continue when  the failed component  
 
recovers .this requires that recovery mechanism be 
in place, which allows the failed component to be 
recovered. If no recovery mechanism exists, then the 
agents state and, potentially, even its code may be 
lost. In the following, we assume that such a 
recovery mechanism exists (e.g., based on logging 
[13]. Replication prevents blocking. Instead of 
sending the agent to one place at the next stage, 
agent replicas are sent to a set iM    of places 

,..., 10
ii pp   (Fig. 2 ). We denote by j

ia  the agent 
replica of  ia  executing on place j

ip  ,but will omit 
the superscripted index if the meaning is clear from 
the context. Although a place may crash (i.e., stage1 
in Fig. 2), the agent execution does not block. 
Indeed,  1

2p  can take over the execution of a1 and 
thus prevent blocking. Note that the execution at 
stages 0S    and  S2 is not replicated as the agent is 
under the control of the user. Moreover, the agent is 
only configured at the agent source and presents the 
results to the agent owner at the agent destination. 
Hence, replication is not needed at these stages. 
Despite agent replication, network partitions can still 
prevent the progress of the agent. Indeed, if the 
network is partitioned such that all places currently 
executing the agent at stage  iS  are in one partition 
and the places of stage 1+iS  are in another partition, 
the agent cannot proceed with its execution . 
Generally ( especially in the Internet ), multiple 
routing paths are possible for a message to arrive at 
its destination. Therefore, a link failure may not 
always lead to network partitioning. In the 
following, we assume that a single link failure 
merely partitions one place from the rest of the 
network .Clearly ,this is a simplification , but it 
allows us to define blocking concisely. Indeed , in 
the approach presented in this article, progress in the 
agent execution is possible in a network partition 
that contains a majority of places .If no such 
partition exists , the execution is temporally 
interrupted until a majority partition is established 
again ,Moreover , catastrophic failures may still 
cause the loss of the entire agent. A failure of all 
places in M1 (Fig. 2 ), for instance ,is such a 
catastrophic. Failure (assuming no recovery 
mechanism is in place ). As no copy of a1 is 
available any more , the agent a1 is lost and 
,obviously ,the agent execution can no longer  
 
proceed .In other words ,replication does not solve 
all problems .The definition of non blocking merely  
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addresses single failures per stage as they cover 
most of the failures that occur in a realistic 
environment. 
In the next section ,we classify the places in Mi into 
iso-places and hetero –places according to their 
properties [16]. 

 
3 Concept for a Fault Tolerance Approach 
for Mobile Agents 
 
For each user agent(UA) ,an additional logger 
agent(LA) is created ,if and when fault tolerance is 
needed for the UA(see fig.3) .When the UA migrates 
, the LA follows it in a certain "distance" (e.g. on a 
neighbour node) .To able to tolerate node failures 
,the LA must never  be on the  same node as the UA. 
As    shown   in  the   previous  sections  , despite the   
generally  agreed - upon   necessity ,  existing  agent 
systems  contain  only  limited  provisions   for  fault  
tolerance , if  at  all. Especially treatment   of   node   
or agent  failures   with   support  for communicating 
agents is covered only insufficiently. However, such   
support   is   essential  for distributed and/or  parallel 
applications. This section discusses possibilities and 
approaches to  augment an  agent system to   achieve   
fault   tolerance ,  with  focus  on   these  fault  and 
application types. First, the goals are described, then 
the fault  model  for an  agent  system  is explained ,  
and   the   faults  examined   with  respect  to   their 
occurrence  probability and  treatment  in  existing 
systems. From this, a set of faults is determined, for 
which further treatment is  still  needed .  After  that 
,  an  overview  over  fault  tolerance approaches in 
known environments is given, and examined, if and  
how they  are  suited    for  mobile  agents   .  From  
these  investigations,  the Fault Tolerant Approach 
for Mobile Agent concept is developed. 
   From these considerations, we choose independent 
checkpointing with receiver based logging as base 
for our fault tolerance approach for mobile agents. 
Adhering to the agent paradigm, and exploiting the 
already available facilities of the mobile agent resp. 
the agent environment, an agent is used as the stable 
storage for the checkpointed state and the message 
log. For each mobile agent (called user agent in the 
following), for that fault tolerance is enabled, a 
logger agent is created. A user agent and its logger 
agent form an agent pair (figure 3). The logger agent 
does not participate actively in the application's 
computation, and thus needs only a small fraction of 
the available CPU capacity. It follows the user agent 
at a certain, non-zero, distance on its migration path 
through the system. They must never reside on the 
same node, so that not a single fault destroys both of 
them. User and logger agent monitor each other, and  
if a fault is detected by one of them, it can rebuild 
the other one from its local information. 
    
 

The creation of the agent pair is readily derived from 
the already existing migration facilities. To create a 
logger agent, the user agent serializes its state in the 
same way as for a migration, and sends it to a 
remote agent place. There, a new agent is  
created from this data. Different from migration, the  
new agent does not start the application module that 
was sent with the state information, and the user 
agent continues normal execution. Further, the 
communication unit of the agent is exchanged 
against a version that first forwards each incoming 
message to the logger agent before delivering it 
locally. 
                                                           

   
 
 

Figure 3. Example for an application with three 
user and logger agents with checkpoints (CP) and 

messages (M) [17]. 

4  The functioning of an agent 
    The lifecycle of an agent consists of three stages: 
Normal operational phase, when agents roam their 
domains performing the regular tasks; trading phase, 
where domain corrections are initiated and 
cloning/merging phase, where heavily loaded agents 
can multiply, or two under loaded agents can merge. 
First we have to define the idea of logical topology. 
Logical network topology is a virtual set of 
connections stored in the hosts. If the physical 
topology of the managed network is rare in 
connections the use of logical topology can facilitate 
the correct functioning of the algorithm. The logical 
topology should follow the physical topology as 
setting up an arbitrary set of connections will 
increase the migration time. 
   As in most mobile agent applications the greatest 
reason again using them is security. Some people 
still look at mobile agents as a form of viruses and 
mobile agent platforms as security holes allowing 
foreign programs run on the system. Concerning the 
general threats of mobile agents is out of scope of 
this paper. Instead we would like to outline the 
security issues concerning network management. 
The main difference between general mobile agents 
and network management agents that the latter ones  
cannot be closed in a separate running environment 
because network  management agents must have the  
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privilege to modify the configuration of the host to 
perform its tasks. Misusing these privileges can 
severely harm the nodes. 
If the agent domains are not separated into distinct 
partitions we call the domains coherent. By keeping  
the coherence the migrating times can be much 
smaller comparing to the case when the agent 
domains can be partitioned into remote parts. On the 
other hand keeping domain coherence places limit to 
the trading process as the agent must know its 
"cutting" nodes that cannot be traded without 
splitting its area into distinct pieces.  
 
5 Simulation Results and Influence of the size 
of the Agent 

A simulator was designed to evaluate the algorithm. 
The system was tested in several simulated network 
conditions  and    numerous     parameters    were 
introduced to control the behavior of the agents. We 
also investigated the dynamic functioning of the 
algorithm. Comparing to the previous case the 
parameter configuration has a larger effect on the 
behavior of the system. The most vital parameter 
was the frequency of the trading process and the pre-
defined critical workload values.  
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Figure 4: The size of the agent population under 

changing network conditions 

 

    Figure 4 shows the number of agents on the 
network. In a dynamic network situation. The 
optimal agent population is calculated by dividing 
the workload on the whole network with the optimal 
workload of the agent.   Simulation results show that 
choosing correct agent parameters the workload of 
the agents is within a ten percent environment of the 
predefined visiting frequency on a stable network. In 
a simulated network overload the population 
dynamically grows to meet the increased 
requirements and smoothly returns back to normal 
when the congestion is over. 
  To  measure the performance of  FATOMAS   our  
test consists  of    sequentially    sending   a number 
of  agents that  increment  the  value  of the  counter  
at each stage of  the  execution. Each agent  starts  at    
 
 

the   agent   source  and returns  to  the  agent source,  
which allows us to measure its round–trip time. 
Between  two agents , the places  are  not  restarted. 
Consequently , the  first  agent  needs considerably  
longer for its execution , as all classes  need  to  be  
loaded into the cache of the virtual machines. 
Consecutive agents benefit from  already  cached  
classes and thus execute much faster . We  do  not  
consider   the   first   agent    execution  in   our 
measurement results. For a fair comparison, we used 
the  same  approach for  the  single  agent  case (no 
replication). Moreover  ,  we assume  that  the  Java  
class  files  are  locally available on each place. 
Clearly, this is a simplification , as the class files do 
not need to be transported with the agent . Remote 
class   loading  adds  additional  costs  because   the 
classes  have  to  be  transported  with  the agent and 
then loaded into  the  virtual machine.  
However, once the classes are loaded in the class 
loader, other agents can take advantage of them and 
do not need to load these classes again.  
  The size of the agent has a considerable impact on 
the performance of the fault-tolerant mobile agent 
execution .To measure this impact, the agent carries 
a Byte array of variable length used to increase the 
size of the agent. As the results in  fig. 5 show , the 
execution time of the agent . increases linearly with 
increasing size of the agent . Compared to the single 
agent, the slope of the curve for  the replicated agent 
is steeper.  
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6 Conclusion 
 
   In this paper ,we have identified two important 
properties for fault-tolerant mobile agent execution: 
non-blocking and exactly-once. Non-blocking  
ensures that the agent execution proceeds despite a 
single failure of either agent ,place ,or machine 
.Blocking is prevented by the use of replication. 
This paper discussed a mobile agent model for 
processing transactions which manipulate object 
servers . An agent first moves to an object server and  
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then manipulates objects.  
 General possibilities for achieving fault tolerance in 
such cases were regarded, and their respective  
advantages and disadvantages for mobile agent 
environments, and the intended parallel and 
distributed application scenarios shown. This leads 
to an approach based on warm standby and receiver 
side message logging.  
  In the paper dynamically changing agent domains 
were used to provide flexible, adaptive and robust 
operation. The performance measurement of  
FATOMAS show the overhead introduced by the 
replication  mechanisms with respect to a non-
replicated agent .Not surprisingly ,They also show 
that this overhead increases with the number of 
stages and the size of the agent. 
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