
A New Approach for Evaluation Fault-Tolerant Mobile Agent
Execution in Distributed Systems

 Hojat allah Hamidi and K . Mohammadi

 Department of Electrical Engineering
 Iran University of Science & Technology

Iran-Tehran

Abstract: Mobile agents are no longer a theoretical issue since different architectures for their realization have
been proposed . With the increasing market of electronic commerce it becomes an interesting aspect to use
autonomous mobile agents for electronic business trans- actions. Being involved in money transactions,
supplementary security features for mobile agent systems have to he ensured. .In this paper, we present
FATOMAS , a java – based fault – tolerant mobile agent system based on an algorithm presented in an earlier
paper . In contrary to the standard "place – dependent" architectural approach , FATOMAS uses the novel ,,
agent – dependent ,, approach introduced in the paper . In this approach , the protocol that provides fault
tolerance travels with the agent . This has the important advantage to allow fault – tolerant mobile agent
execution with out the need to modify the underlying mobile agent plat form .
We derive the FATOMAS (Fault-Tolerant Mobile Agent System) design which offers a user transparent fault
tolerance that can be activated on request, according to the needs of the task, also discuss how transactional
agent with types of commitment constraints can commit.
Furthermore this paper proposes a solution for effective agent deployment using dynamic agent domains.

Key-Words: FATOMAS, Fault Tolerant, Mobile agent, Network Management, checkpointing , Redundant .

 1 Introduction
 A mobile agent is a software program which
migrates from a site to another site to perform tasks
assigned by a user. For the mobile agent system to
support the agents in various application areas, the
issues regarding the reliable agent execution, as well
as the compatibility between two different agent
systems or the secure agent migration, have been
considered. Some of the proposed schemes are either
replicating the agents [1,2] or checkpointing the
agents [3,4]. For a single agent environment without
considering inter-agent communication, the
performance of the replication scheme and the
checkpointing scheme is compared in [5] and [6].
 In the area of mobile agents, only few work can be
found relating to fault tolerance. Most of them refer to
special agent systems or cover only some special aspects
relating to mobile agents, e. g. the communication
subsystem. Nevertheless, most people working with
mobile agents consider fault tolerance to be an important
issue [7,8].Failures in a mobile agent system may lead to
a partial or complete loss of the agent .To achieve fault –
tolerance , the agent owner (i.e., the person or application
creating and configuring the agent) can try to detect the
failure of its agent, and upon such an event launch a new
agent. However , this requires the ability to correctly
detect the crash of the agent ,i.e., to distinguish
between a failed agent and an agent that is delayed

by slow processors or slow communication links.
Unfortunately this can not be achieved in systems
such as the Internet. An agent owner who tries to
detect the failure of his agent thus cannot prevent the
case where he mistakenly thinks that the agent has
crashed. In this case , launching a new agent leads to
multiple executions of the agent, i.e., to the violation
of the desired exactly-once property of agent
execution. Even though this may be acceptable for
certain applications (e.g., applications whose
operations do not have side-effects ,i.e., are
idempotent),others clearly forbid it. Fortunately
,multi-ple agent executions can be prevented in
environments with unreliable failure detection by
replicating agents with an adequate protocol. Indeed,
if failure detection is unreliable, replication by itself
dose not ensure the exactly-once execution property
.for example, exactly- once execution is not ensured
by the protocol of [9], which assumes a perfect
failure–detection mechanism. Some systems have
tried to address the exactly –once issue in the
context of unreliable failure detection , and have
proposed complex solution based on transactions
and leader election [2,10]. Other approaches address
the exactly- once execution problem by detecting

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp182-187)

duplicate agents at the end of the agent execution ,
and undoing at that moment the effects of multiple
executions [11 ,12] . However , undoing the effects
of duplicate agents at the end of the execution is not
simple , and often limits dramatically the overall
system throughput . In contrast to these different
approaches , we have presented in an earlier paper
[13] an approach that ensures the exactly- once
execution property using a very simple principle:
The mobile agent execution is modeled as a
sequence of agreement problems . In the current
paper , we present FATOMAS , a java- based Fault
– Tolerant Mobile Agent System , that implements
this approach .
In order to characterize the architecture of
FATOMAS , we start by introducing two
approaches called place dependent and agent –
dependent .Place–dependent is the standard
approach that integrates fault tolerance into the
mobile agent platform (the plat form , that provides
the support for mobile agents). Agent dependent is
the new approach introduced by FATOMAS . In this
approach , the protocol that provides fault tolerance
travels with the agent .
This has the important advantage to allow fault –
tolerant agent execution without having to modify
the underlying mobile agent platform . Currently,
FATOMAS supports object space's Voyager mobile
agent platform [14] . However our design enables to
easily port FATOMAS to other mobile agent
platforms .

2 Model
 We assume an asynchronous distributed system,
i.e., there are no bounds on transmission delays of
messages or on relative process speeds. An example
of an asynchronous system is the Internet. Processes
communicate via message passing over a fully
connected network.

2.1 Mobile agent Model
 A mobile agent executes on a sequence of
machines, where a places)0(nip i ≤≤ provides the
logical execution environment for the agent. Each
place runs a set of services, which together compose
the state of the place. For simplicity, we say that the
agent" accesses the state of the place, " although
access occurs through a service running on the place.
Executing the agent at a place ip is called a stage iS
of the agent execution. We call the places where the
first and last stages of an agent execute (i.e.,

nandpp 0) the agent source and destination,
respectively. The sequence of places between the
agent source and destination respectively. The
sequence of places between the agent source and
destination(i.e., nppp ,..., 10) is called the itinerary

of a mobile agent. Whereas a static itinerary is
entirely defined at the agent source and does not
change during the agent execution , a dynamic
itinerary is subject to modifications by the agent
itself.
Logically , a mobile agent executes in a sequence of

stage actions (Fig. 1).Each stage actions ia consists
of potentially multiple operations ,..., 10 opop Agent

(ni ≤≤0) at the corresponding stage iS represents
the agent a that has executed the stage action on
places jp j <i) and is about to execute on place

ip .The execution of ia on place ip results in a new
internal state of the agent as well as potentially a
new state of the place (if the operations of an agent
have side effects, i.e., are non idempotent).We

denote the resulting agent 1+ia . Place ip forwards

to 1+ip (for i < n).

Fig 1.Model of mobile agent execution with 3
stages.

2.2 Fault Model
 Several types of faults can occur in agent
environments. Here, we first describe a general fault
model, and focus on those types, which are for one
important in agent environments due to high
occurrence probability, and for one have been
addressed in related work only insufficiently.
- Node failures: The complete failure of a compute
node implies the failure of all agent places and
agents located on it. Node failures can be temporary
or permanent.
- Failures of components of the agent system:
Failures of agent places, or components of agent
places become faulty, e. g. faulty communication
units or incomplete agent directory. These faults can
result in agent failures, or in reduced or wrong
functionality of agents.
- Failures of mobile agents: Mobile agents can
become faulty due to faulty computation, or other
faults (e. g. node or network failures).
- Network failures: Failures of the entire
communication network or of single links can lead
to isolation of single nodes, or to network partitions.
- Falsification or loss of messages: These are usually

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp182-187)

caused by failures in the network or in the
communication units of the agent systems, or the
underlying operating systems . Also ,faulty
transmission of agents during migration belongs to
this type.
 Especially in the intended scenario of parallel
applications, node failures and their consequences
are important. Such consequences are loss of agents,
and loss of node specific resources. In general, each
agent has to fulfill a specific task to contribute to the
parallel application, and thus, agent failures must be
treated. In contrast, in applications where a large
number of agents are sent out to search and process
information in a network, the loss of one or several
mobile agents might be acceptable.

2.3 Model Failures
Machines, places, or agents can fail and recover
later. A component that has failed but not yet
recovered is called down; otherwise, it is up. If it is
eventually permanently up, it is called good [15]. In
this paper, we focus on crash failures (i.e., processes
prematurely halt). Benign and malicious failures
(i.e., Byzantine failures) are not discussed. A failing
place causes the failure of all agent running on it.
Similarly, a failing machine causes all places and
agents on this machine to fail as well. We do not
consider deterministic, repetitive programming
errors(i.e., programming errors that occur on all
agent

Fig 2.The redundant places mask the place
failure.

replicas or places) in the code or the place as
relevant failures in this Context. Finally a link
failure causes the loss of the messages or agents
currently in transmission on this link and may lead
to network partitioning. We assume that link
failures (and network partitions) are not permanent.
The failure of a component (i.e., agent, place,
machine, or communication link) can lead to
blocking in the mobile agent execution. Assume, for
instance that place 2p fails while executing 2a
(fig. 1). While 2p is down, the execution of the
mobile agent cannot proceed, i.e., it is blocked.
Blocking occurs if a single failure prevents the

execution from proceeding . In contrast, and
execution is non blocking if it can proceed despite a
single failure ,the blocked mobile agent execution
can only continue when the failed component

recovers .this requires that recovery mechanism be
in place, which allows the failed component to be
recovered. If no recovery mechanism exists, then the
agents state and, potentially, even its code may be
lost. In the following, we assume that such a
recovery mechanism exists (e.g., based on logging
[13]. Replication prevents blocking. Instead of
sending the agent to one place at the next stage,
agent replicas are sent to a set iM of places

,..., 10
ii pp (Fig. 2). We denote by j

ia the agent
replica of ia executing on place j

ip ,but will omit
the superscripted index if the meaning is clear from
the context. Although a place may crash (i.e., stage1
in Fig. 2), the agent execution does not block.
Indeed, 1

2p can take over the execution of a1 and
thus prevent blocking. Note that the execution at
stages 0S and S2 is not replicated as the agent is
under the control of the user. Moreover, the agent is
only configured at the agent source and presents the
results to the agent owner at the agent destination.
Hence, replication is not needed at these stages.
Despite agent replication, network partitions can still
prevent the progress of the agent. Indeed, if the
network is partitioned such that all places currently
executing the agent at stage iS are in one partition
and the places of stage 1+iS are in another partition,
the agent cannot proceed with its execution .
Generally (especially in the Internet), multiple
routing paths are possible for a message to arrive at
its destination. Therefore, a link failure may not
always lead to network partitioning. In the
following, we assume that a single link failure
merely partitions one place from the rest of the
network .Clearly ,this is a simplification , but it
allows us to define blocking concisely. Indeed , in
the approach presented in this article, progress in the
agent execution is possible in a network partition
that contains a majority of places .If no such
partition exists , the execution is temporally
interrupted until a majority partition is established
again ,Moreover , catastrophic failures may still
cause the loss of the entire agent. A failure of all
places in M1 (Fig. 2), for instance ,is such a
catastrophic. Failure (assuming no recovery
mechanism is in place). As no copy of a1 is
available any more , the agent a1 is lost and
,obviously ,the agent execution can no longer

proceed .In other words ,replication does not solve
all problems .The definition of non blocking merely

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp182-187)

addresses single failures per stage as they cover
most of the failures that occur in a realistic
environment.
In the next section ,we classify the places in Mi into
iso-places and hetero –places according to their
properties [16].

3 Concept for a Fault Tolerance Approach
for Mobile Agents

For each user agent(UA) ,an additional logger
agent(LA) is created ,if and when fault tolerance is
needed for the UA(see fig.3) .When the UA migrates
, the LA follows it in a certain "distance" (e.g. on a
neighbour node) .To able to tolerate node failures
,the LA must never be on the same node as the UA.
As shown in the previous sections , despite the
generally agreed - upon necessity , existing agent
systems contain only limited provisions for fault
tolerance , if at all. Especially treatment of node
or agent failures with support for communicating
agents is covered only insufficiently. However, such
support is essential for distributed and/or parallel
applications. This section discusses possibilities and
approaches to augment an agent system to achieve
fault tolerance , with focus on these fault and
application types. First, the goals are described, then
the fault model for an agent system is explained ,
and the faults examined with respect to their
occurrence probability and treatment in existing
systems. From this, a set of faults is determined, for
which further treatment is still needed . After that
, an overview over fault tolerance approaches in
known environments is given, and examined, if and
how they are suited for mobile agents . From
these investigations, the Fault Tolerant Approach
for Mobile Agent concept is developed.
 From these considerations, we choose independent
checkpointing with receiver based logging as base
for our fault tolerance approach for mobile agents.
Adhering to the agent paradigm, and exploiting the
already available facilities of the mobile agent resp.
the agent environment, an agent is used as the stable
storage for the checkpointed state and the message
log. For each mobile agent (called user agent in the
following), for that fault tolerance is enabled, a
logger agent is created. A user agent and its logger
agent form an agent pair (figure 3). The logger agent
does not participate actively in the application's
computation, and thus needs only a small fraction of
the available CPU capacity. It follows the user agent
at a certain, non-zero, distance on its migration path
through the system. They must never reside on the
same node, so that not a single fault destroys both of
them. User and logger agent monitor each other, and
if a fault is detected by one of them, it can rebuild
the other one from its local information.

The creation of the agent pair is readily derived from
the already existing migration facilities. To create a
logger agent, the user agent serializes its state in the
same way as for a migration, and sends it to a
remote agent place. There, a new agent is
created from this data. Different from migration, the
new agent does not start the application module that
was sent with the state information, and the user
agent continues normal execution. Further, the
communication unit of the agent is exchanged
against a version that first forwards each incoming
message to the logger agent before delivering it
locally.

Figure 3. Example for an application with three
user and logger agents with checkpoints (CP) and

messages (M) [17].

4 The functioning of an agent
 The lifecycle of an agent consists of three stages:
Normal operational phase, when agents roam their
domains performing the regular tasks; trading phase,
where domain corrections are initiated and
cloning/merging phase, where heavily loaded agents
can multiply, or two under loaded agents can merge.
First we have to define the idea of logical topology.
Logical network topology is a virtual set of
connections stored in the hosts. If the physical
topology of the managed network is rare in
connections the use of logical topology can facilitate
the correct functioning of the algorithm. The logical
topology should follow the physical topology as
setting up an arbitrary set of connections will
increase the migration time.
 As in most mobile agent applications the greatest
reason again using them is security. Some people
still look at mobile agents as a form of viruses and
mobile agent platforms as security holes allowing
foreign programs run on the system. Concerning the
general threats of mobile agents is out of scope of
this paper. Instead we would like to outline the
security issues concerning network management.
The main difference between general mobile agents
and network management agents that the latter ones
cannot be closed in a separate running environment
because network management agents must have the

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp182-187)

privilege to modify the configuration of the host to
perform its tasks. Misusing these privileges can
severely harm the nodes.
If the agent domains are not separated into distinct
partitions we call the domains coherent. By keeping
the coherence the migrating times can be much
smaller comparing to the case when the agent
domains can be partitioned into remote parts. On the
other hand keeping domain coherence places limit to
the trading process as the agent must know its
"cutting" nodes that cannot be traded without
splitting its area into distinct pieces.

5 Simulation Results and Influence of the size
of the Agent

A simulator was designed to evaluate the algorithm.
The system was tested in several simulated network
conditions and numerous parameters were
introduced to control the behavior of the agents. We
also investigated the dynamic functioning of the
algorithm. Comparing to the previous case the
parameter configuration has a larger effect on the
behavior of the system. The most vital parameter
was the frequency of the trading process and the pre-
defined critical workload values.

Agent population

0

5

10

15

20

25

30

35

40

45

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201

Time

Po
pu

la
tio

n

Actual population Optimal Population

Figure 4: The size of the agent population under

changing network conditions

 Figure 4 shows the number of agents on the
network. In a dynamic network situation. The
optimal agent population is calculated by dividing
the workload on the whole network with the optimal
workload of the agent. Simulation results show that
choosing correct agent parameters the workload of
the agents is within a ten percent environment of the
predefined visiting frequency on a stable network. In
a simulated network overload the population
dynamically grows to meet the increased
requirements and smoothly returns back to normal
when the congestion is over.
 To measure the performance of FATOMAS our
test consists of sequentially sending a number
of agents that increment the value of the counter
at each stage of the execution. Each agent starts at

the agent source and returns to the agent source,
which allows us to measure its round–trip time.
Between two agents , the places are not restarted.
Consequently , the first agent needs considerably
longer for its execution , as all classes need to be
loaded into the cache of the virtual machines.
Consecutive agents benefit from already cached
classes and thus execute much faster . We do not
consider the first agent execution in our
measurement results. For a fair comparison, we used
the same approach for the single agent case (no
replication). Moreover , we assume that the Java
class files are locally available on each place.
Clearly, this is a simplification , as the class files do
not need to be transported with the agent . Remote
class loading adds additional costs because the
classes have to be transported with the agent and
then loaded into the virtual machine.
However, once the classes are loaded in the class
loader, other agents can take advantage of them and
do not need to load these classes again.
 The size of the agent has a considerable impact on
the performance of the fault-tolerant mobile agent
execution .To measure this impact, the agent carries
a Byte array of variable length used to increase the
size of the agent. As the results in fig. 5 show , the
execution time of the agent . increases linearly with
increasing size of the agent . Compared to the single
agent, the slope of the curve for the replicated agent
is steeper.

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40 45 50 55 60

Agent Size [K Bytes]

Ti
m

e
[S

]

Single Agent
Replicated Agent

Figure5: Costs of single and replicated agent
execution increasing agent size .

6 Conclusion

 In this paper ,we have identified two important
properties for fault-tolerant mobile agent execution:
non-blocking and exactly-once. Non-blocking
ensures that the agent execution proceeds despite a
single failure of either agent ,place ,or machine
.Blocking is prevented by the use of replication.
This paper discussed a mobile agent model for
processing transactions which manipulate object
servers . An agent first moves to an object server and

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp182-187)

then manipulates objects.
 General possibilities for achieving fault tolerance in
such cases were regarded, and their respective
advantages and disadvantages for mobile agent
environments, and the intended parallel and
distributed application scenarios shown. This leads
to an approach based on warm standby and receiver
side message logging.
 In the paper dynamically changing agent domains
were used to provide flexible, adaptive and robust
operation. The performance measurement of
FATOMAS show the overhead introduced by the
replication mechanisms with respect to a non-
replicated agent .Not surprisingly ,They also show
that this overhead increases with the number of
stages and the size of the agent.

References
[1] H.Hamidi and K.Mohammadi, "Modeling and
Evaluation of Fault Tolerant Mobile Agents in
Distributed Systems ," Proc. Of the 2th IEEE Conf .
on Wireless & Optical Communications Networks
(WOCN2005),pp.91-95, March 2005.
[2] S. Pleisch and A. Schiper, "Modeling Fault-
Tolerant Mobile Agent Execution as a Sequence of
Agree Problems," Proc. of the 19th IEEE Symp. on
Reliable Distributed Systems, pp. 11-20,2000.
[3] S. Pleisch and A. Schiper, "FATOMAS - A
Fault-Tolerant Mobile Agent System Based on the
Agent-Dependent Approach," Proc. 2001 Int'l Conf
on Dependable Systems and networks,pp.215-
224,luI.2001
[4] M. Strasser and K. Rothermel, "System
Mechanism for Partial Rollback of Mobile Agent
Execution," Proc. 20th In!'l Conf on Distributed
Computing Systems, 2000.
[5] T. Park, I. Byun, H. Kim and H.Y. Yeom, "The
Performance of Checkpointing and Replication
Schemes for Fault Tolerant Mobile Agent Systemss
," Proc. 21th IEEE Symp. on Reliable Distributed
Systems, 2002.
[6] L. Silva, V. Batista and 1.G. Silva, "Fault-
Tolerant Execution of Mobile Agents," Proc.In!'1
Conf on Dependable Systems and lIIenvorks, 2000.
[7] M. Izatt, P. Chan, and T. Brecht. Ajents:
Towards an Environment for Parallel, Distributed
and Mobile Java Applications. In Proc. ACM 1999
Conference on Java Grande, pages 1524, June 1999.
[8] D. Wong, N. Paciorek, and D. Moore. Java-
based mobile agents. Communications of the ACM,
42(3):92-102, March 1999.
[9] N. Budhirja, k. Marzullo, F.B. Schneider, and s.
Toueg “The primary-Backup Approach,”
Distributed systems, s. Mullender,ed., second ed.,
pp. 199-216, Reading, Mass.: Addison-wesley ,
1993.
[10] X.Defago,A. schiper,and N. sergent, “semi-
passive Replication,”proc. 17th IEEE symp.
Reliable Distributed system (SRDS ' 98),pp. 43-50,
oct. 1998.

[11] MJ. Fischer,N.A. Lynch and M.S. paterson,
“Impossibility of Distributed consensus with one
Faulty process,”Proc.second ACM SIGACT-
SIGMOD symp. Principles of Database system,pp.
17, Mar.1983.
[12] T.D. chandra and s. Toueg, “unreliable Failure
Detectors for Reliable Distributed system ,” J .ACM,
VOL.43,NO.2,PP.225-267,MAR. 1996.
[13] D.chess, C.G. Harrison, and A. kershenbaum,
“Mobile Agents:Are They a Good Idea?”Mobile
Agents and security, G. Vigna,ed., pp. 25-
47,springer verlag, 1998.
[14] D. Chess, B. Grosof, C. Harrison, d. Levine, C.
parris, and G.Tsudik, “Itinerant Agents for Mobile
computing,” IEEE personal comm..Systems,vol. 2,
no. 5,pp.34-49. oct.1995.
[15] M.K. Aguilera, w. chen, and s. Toueg,
“Failure Detection and consensus in the crash-
Recovery Model,” Distributed computing,vol. 13,no.
2,pp. 99-125,2000.
[16] S. Pleisch and A. Schiper, " Fault-Tolerant
Mobile Agent Execution," IEEE TRANSACTIONS
ON COMPUTERS, VOL. 52 ,NO .2 ,Feb 2003.
[17] S. Petri and C. Grewe. A Fault-Tolerant
Approach for Mobile Agents. In Dependable
Computing - EDCC-3, Third European Dependable
Computing Conference, Fast Abstracts. Czech
Technical University in Prague, September 1999.

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp182-187)

