
Detection of TCP Attacks Using SOM with Fast Nearest-Neighbor
Search

Jun Zheng Mingzeng Hu

Department of Computer Science, Harbin Institute of Technology
P.O.Box 320, Harbin Institute of Technology, Harbin, 15001, CHINA

Abstract: - A new approach of anomaly intrusion detection (AID) is proposed in this paper. The Self-Organizing
Map (SOM) is used to construct the normal usage profiles of network traffic, and in the training phase and
detection phase, the Vector Elimination Nearest-Neighbor Search (VENNS) algorithm is designed and
implemented. The design procedure optimizes the performance of AID by jointly accounting for accurate usage
profile modeling by SOM codebook and fast vector similarity measure using the fast Nearest-Neighbor search.
In data processing, according to the characters of TCP attacks, a novel feature extraction approach of TCP flow
state is implemented. Using the DARPA Intrusion Detection Evaluation Data Set, we implement the
performance evaluation and comparison analysis. It is shown that the performance and efficiency of anomaly
intrusion detection are improved greatly: the training time cost can be shortened about by four times and seven
times for detection time cost.
Key-Words: - anomaly intrusion detection; Self-Organizing Map; fast Nearest-Neighbor search; normal usage
profile; codebook; quantization error

1 Introduction
With the ever fast development of Internet, the
network security becomes the main focus in
networking fields. In addition to intrusion defensive
techniques, such as firewall and encryption, Intrusion
Detection System (IDS) is used as an important
security-barrier against network-based computer
intrusions.
 There are two general approaches to intrusion
detection: Misuse Intrusion Detection (MID) and
Anomaly Intrusion Detection (AID). Similar to virus
detection, MID is based on the similar pattern
matching to hunt for the signatures extracted from the
known attacks. However, AID constructs the
historical or long-term usage profile, named the
normal usage profile. And then analysis model of
AID looks for deviations of the short-term usage
profile from the normal usage profiles. The Fig.1
describes the relation and contrast of main logical
procedures in MID and AID. Be compared to a
defined baseline of normal usage profiles, the
deviations can be treated as the suspicious anomalous
events related to the intrusions. So AID has the
advantage that it can detect new types of intrusions
that are currently unknown as deviations from normal
usage.

To date, many machine learning and data mining
algorithms have been used in Anomaly Intrusion
Detection (AID) [1-7] extensively, including the
Clustering [1,2], the Support Vector Machine [3,4],

the Self-Organizing Map [5,6] and the general Neural
Network [4,7] and so on. However, because of the

Fig.1. Logic procedures in Intrusion Detection.

complexities of algorithms, one of main universal
shortcomings of these methods is that these methods
are not enough efficient to detect by the real time
style, which inhibits AID can be implemented in
practice further, especially in the high-speed network
environment. In order to solve efficiency problems in
AID aforementioned, we propose a novel method of
AID in this paper based on Self-Organizing Map
(SOM) and the fast Nearest-Neighbor (NN) search
algorithm-VENNS. The design procedure
optimizes the performance of anomaly intrusion
detection by jointly accounting for accurate
usage profile modeling by SOM codebook and
fast vector similarity measure using the fast NN

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp176-182)

search. In data processing, according to the
characters of TCP attacks, a novel feature
extraction approach of TCP flow state is
implemented.

In this paper, we concentrate on the TCP attacks
through extracting the TCP header information.
Because of complexity and vulnerability, TCP acts as
two roles mainly: network attack carrier and network
attack target. In the IP traffic of Internet, TCP
accounts for 95% or more of the bytes, 85-95% of the
packets. [8] Moreover, according to the statistical
data from Moore [9], the majority of DoS attack
which is main threat to the whole Internet is deployed
by using TCP as 90~94%.

The paper is organized as follows: Section 2
explains the basic SOM algorithm and AID
framework based on SOM; Section 3 proposes the
new fast NN search algorithm -VENNS used in our
AID; Section 4 describes the details of experiments
over DARPA data set, including the data processing
and TCP flow sate quantization. Finally, Section 5
gives conclusions.

2 SOM for Anomaly Intrusion
Detection

In this paper, the Self-Organizing Map (SOM) [10] is
chosen as anomaly detection model to learn the
normal usage behavior for constructing the usage
profile.

The reasons that SOM is selected are:
u SOM is one of the unsupervised classification

techniques and it is not model-based. We don't
need to build the data distribution model. It is
important to anomaly detection.

u SOM is a nonlinear projection of
high-dimension data to a lower dimensional
space, typically the two-dimension plane. It can
be effectively utilized to visualize and explore
properties of the data. So by SOM, we can
observe the distributions of the network traffic
usage profiles.

u The topology preserving capability and the
automatic generation of probabilities for a
dataset can make us to explore the relationships
among the multivariate traffic flows in the lower
dimensional space straightway.
In this paper, we first need to define the network

traffic data, i.e. TCP flow, in form of feature vector:
Definition1: Every TCP Flow is a data point in

the n-dimension Euclidian space Rn and Rn is feature

space: { }TCP.Flow kX RX= ∈ , Every TCP Flow is

expressed by the form of feature

vector: ()0 2 1, , , kX x x x −=  .

2.1 SOM Algorithm

Definition 2 SOM can be defined as a mapping
function from Euclidean space into a certain finite
subset C，that is

: kQ R C→ and 0 1 1{ , ,..... | }k
m iC Y Y Y Y R−= ∈ is codebook of

SOM. m is the dimension of codebook. The map

function satisfies (| }k
pQ X X R Y∈ = and

(),0 ,1 , 1, , ,p p p kpY y y y −=  is called the codeword or the

weight vector.
The following are the main training steps

involved in SOM to get the codebook:

Fig.2. Flowchart of SOM

2.2 Detection Phase
Using the SOM codebook, we can get the normal
network traffic profiles. Further in succession, in
order to find TCP network intrusions that exhibit as
deviations from normal usage profiles, we measure
the similarity between current usage behaviors and
usage profiles using the Quantization Errors (QEs).
The intrusion detection can be treated as the process

Input: input vector: ()0 1 1, , , kX x x x −= 

Output: codebook 0 1 1{ , ,..... | }k
m iC Y Y Y Y R−= ∈

Step1 Initialize codeword with random values:
(0)jY

Step2 To compute the distance between the
input vector

i
X and the codeword ()jY t ,

designate the winner neuron node
*j with the smallest distance. *j is also

called the Best Matching Unit (BMU).
*

1
arg min ()i j

j m
j X Y t

≤ ≤
= − (1)

The Euclidean distance is chosen as
Quantization Errors (QEs):

2 1/2

1

() [(())]
n

i j ik jk
k

D X Y t x y t
=

= − = −∑ (2)

Step3 To update the winner vectors of the
winner node and its neighborhood:

(1) () ()[()]jk jk ik jky t y t t x y tα= + −＋ , ()j Nt∈ (3)

()N t :Non-increasing neighborhood
function; ()tα : Learning rate function,
0 () 1tα< < .

Step4 To repeat Step2 and Step3 until SOM
stabilizes

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp176-182)

of the Nearest-Neighbors search of input TCP Flow
feature vectors just described in definition 3.
Definition 3 The intrusion detection can be defined
as the following: Given a collection of k-dimensional
points, C, codebook of SOM, a query point p, find a
codeword q, the closest to p than any other
codewords in C,

{ , }q q C and r C r p q p∈ ⋅ ⋅∀ ∈ − > − , QEq p− = .

Given the distance deviation threshold ε , p is an
intrusion data point when and only

when q p ε− ≥ .

3 Fast NN Search Algorithm

As aforementioned in Section 2, the computing
complexity of system is mainly concentrated on the
Euclidian distance computing of the similarity
measure between the k-dimension feature vectors in
both training phrase and detection phrase. The
computational cost of measuring squared Euclidean
distance is very high because a prohibitive number of
mathematical operations are required especially
when the input feature vector number and the
dimension are large.

In our method, we implement the faster NN
search algorithm to accelerate similarity measures in
order to implement the high efficient AID. The
elimination-based fast search exploits some
properties of the distance measure used in the nearest
neighbor definition. Here, fast NN search algorithm
-"Vector Elimination NN Search" is designed and
implemented, where the codewords which cannot be
nearer to the given test vector than the current
nearest-neighbor are eliminated without incurring the
cost of a distance computation.

To suppose input feature vector is

()0 1 1, , , kX x x x −=  and the codeword

is ()0 1 1, , , kY y y y−=  . For X and Y:

1

k

x l
l

S x
=

= ∑ ,

,
1

k

j j l
l

S y
=

= ∑ (4)

It is easy to prove that:
2

2 2
2

1 1

(,)

() ()
()

j

k k
l jl x j

l jl
l l

D X Y

x y S S
x y k

k k= =

=

− − 
− ≥ • = 

 
∑ ∑ (5)

To take the current minimum Euclidean distance

D as minD in equation (2), we can get the elimination

rule. If Y satisfies inequation (6), then the Euclidean
distance between codeword Y and input feature
vector can be avoided so that computing cost can be
reduced.

2 2()x j minS S k D− ≥ • (6)

So, the fast NN search algorithm we implement in
our AID system is described as following.

Fig.3. Flowchart of VENNS

0Y

1Y

3pY −

4pY −

2pY −

1pY −

pY

1pY +

2pY +

3pY +

4pY +

1mY −

mY

•• •

• • •

,
1

n

j j l
l

S y
=

= ∑

Fig.4. The binary search in VENNS

Input: codeword ()0 2 1, , , kY y y y −=  , input

vector: ()0 2 1
, , ,

k
X x x x

−
= 

Output: jY that is the nearest to the input

vector X and their distance minD ;

Step1 Compute ,
1

k

j j l
l

S y
=

= ∑ and
1

k

x l
l

S x
=

= ∑ ,

array
,

1

k

j j l
l

S y
=

= ∑ in ascending order

and store them in the temporary
codebook C’;

Step2 According to input X, to search pY by

the binary search:
1

*
x j

j m

argminS Sp j
≤ ≤

−= = ,

and then set (,)pD X Y as the minimal

distance (,)min pD D X Y= ;

Step3 Search codeword p iY ± (1,2, ,i m p= ⋅⋅⋅ −)

around pY (Fig.4.), if p iY ± satisfies

inequation (6) then it will eliminate the
Euclidean distance computing between

p iY ± and X. For else, to compute the

Euclidean distance D between p iY ± and

X, and then to compute minD anew:

{ , }min minD min D D= . Continue searching

next codeword;
Step4 Return

minD and its related codeword

jY (
min jD X Y= −).

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp176-182)

4 Evaluation Methods and Results
4.1 Data Processing
It is necessary to do data processing to extract the
feature attributes from TCP flows, and then, the date
normalization will be processed to project whole
feature attributes to a unit range no matter the
continue attributes or quantitative attributes. In the
paper, data processing is focused on TCP traffic. The
program of data process in the paper is based on our
amend edition of Libnids [11]. The aim of feature
extraction is to achieve the maximum difference
degree between usual usage behaviors and intrusion
behaviors. A feature vector of the TCP traffic flow is
shown in Table 1. The FlowState attribute is the most
important among all feature attributes and we
introduce the new method to present it in the
following section. In order to get the correlation and
statistical information in a certain time interval, the
time window is used in the paper (120 seconds).

Table1. Feature attributes of TCP Flow feature vector

4.2 Quantization of TCP Flow state

There are nine flags involved in the connection
establishment of TCP 3-way handshake protocol and
the connection close of TCP 4-way handshake
protocol (Fig.5.). We devised a 9-bit number to
identify the connection state. The flag will be set to 1
if that corresponding flag is observed during the
establishment-close process. Otherwise, it will set to
0. The decimal function

0 1, 8(,)Sum Flag Flag Flag……，
with

the non-repeating value is used to quantitate the
whole connection process：

8

0 1, 8
0

(,) 2i
i

i

Sum Flag Flag Flag Flag
=

= •∑……，
 (4)

0 1 2 3 4

5 6 7 8

2 2 2 2 2

2 2 ' 2 ' 2

active passive syn

fin fin

RST RST SYN ACK ACK

FIN ACK FIN ACK

= • + • + • + • + • +

+ • + + • + •

According to Eq.(10), the TCP connection with
the normal close can be described as follows:

Sum=（111111100）2=（508）10

Consider the situation that, with TCP protocol,
the certain flag repeat in a TCP Flow, we substituted
the 32-bit number (4 bytes) for the 9-bit number, as in
Fig. 5. So, if the occurrence time of one certain flag is
less than 15, the sum will not be repeated. The
number of occurrence time will take value of 15 if it
exceeds 15. (RST passive/ RST active occurrence time is
less than 3).

 Fig.5. Quantization of TCP Flow state

Most attacks can result in the abnormal state of
connection according to the TCP protocol. Generally,
14 connection-closing states are summarized in [12].
We find that method is clumsy relatively in data
preprocess program. What is more important, these
14 states cannot include all the complicated instances
of TCP connection state. By state quantization, every
state of connection can be easy mapped to an int data
range affording the state synopsis attribute directly
leading to the whole improvement of feature vector.

4.3 Experiments and Results
4.3.1 Data Set

The Intrusion Detection Evaluation Data Set of
1999 DARPA [13, 14] has been widely used in the
community of intrusion detection. The data set of
DARPA 1999 includes data of five weeks. The data
sets of Week1, Week2 and Week3 are train data set.
But Week1 and Week3 data sets have entirety normal
network traffic logs attack free. Week2 data set has
labeled attack data in order to train the supervised
learning classifiers based anomaly intrusion
detection, so the Week2 is not suit in our experiments.
The data sets of Week4 and Week5 data sets are the
test data sets including attacks for detection. Table 3
gives the statistic information about the DARPA
1999 data set after the data processing that we extract

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp176-182)

the TCP Flow feature vectors from the original
outside.tcpdump log files in the data set.

We examined only the outside.tcpdump logs to
reduce the complexity of our experiments. The
codebook is designed by the data set attack free in
week1 and week3. Consider the fact that the target of
this paper is limited in the scope of TCP Flows and
not general, we test for 35 instance TCP attacks in the
Week 4 and Week 5 presented in Table 2 [13]. The
experiment computer is Dawning Sever
(Linux7.2/PIII800/RAM1G).

 Table2. Attacks in experiments

Attack Name Num.
Back (DoS) 3
Selfping (Probing) 3
Portsweep (Probing) 12
Satan (Probing) 2
Mscan (Probing) 1
Ntinfoscan (Probing) 3
Apache2 (DoS) 3
Queso (Probing) 3
Neptune/SYN-flood
(DoS)

3

Processtable (DoS) 2
Total 35

4.3.2 Parameter Selection in SOM
The parameters of SOM used to train codebooks are
selected by experience in the Table5. Particularly,
two dimension sizes of codebook (30×30 and 40×40)
are selected to creating the network traffic usage
profile in order to do some comparisons.

Table 3 Parameters in SOM

Parameter Value
Topology Hexa
Neighborhood function Bubble
Dimension

30×30
40×40

Learning rate function Linear
Training rate of first phase 0.5
Radius in first phase 20
Training length of first phase 50000
Training length of second
phase

500000

Training rate of second phase 0.02
Radius in second phase 10

4.3.3 Experiment Results
As we use QE to evaluate the on-detecting network
traffic feature vectors, Fig.6 (a-d) presents the QE
distributions (30×30 codebook) in outside traffic of

the training data of week1 Fri. and the testing data of
some week5 days. By QEs, these figures can give the
better explain to understand the data distribution in
the training or testing phrase. From the Fig.6 (a), we
can observe that QEs of the training data are well
regulated and don’t change with the large deviations.
However, the strong contrast in Fig.6 (b) (c) (d) of the
testing data including attacks are the sharp variations
of QEs due to the high values of attack traffic QEs.
Markedly, on 18:04, Neptune attack (a sort of
SYN-flood DoS attack) can be viewed with QEs
values ranging from 1.8038 to 2.3063 in Fig.6 (b).

(a)Week1 Fri. Out (b)Week5 Mon. Out

(c)Week5 Tue. Out (d)Week5 Wed. Out

Fig.6. QE distributions of training data and
testing data.

In Table 4 the whole detail detection rates (DRs)

and false positive rates (FPRs) are presented
according the different thresholds ε (QEs). By
varying detection thresholds, the Receiver Operating
Characteristic (ROC) curves of DR and FPR are
illustrated in Fig.7. for fair comparison of two
different sizes of codebook. Fig.7. shows that the DR
is trend to 100% fast by changing the threshold
smaller; but the FPR also rises too. In the ROC
curves, the eight points in inflexion areas suggest the
ideal situations with the higher DRs and the lower
PFRs. Table 4 just presents such situations where two
codebooks achieve the better performance with
DR-FPR- ε (98.034%,1.03%,0.76) and
(96.623%,1.12%,0.80). So, adjusting detection
thresholds is necessary to for the certain sizes of
codebook in order to achieve the tradeoff outcomes
with some parameters having been selected.

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp176-182)

Table 4. Thresholds for codebook 40×40 and 30×
30

0 % 2 % 4 % 6 % 8 % 10% 12% 14% 16% 18% 20%
40%

50 %

60 %

70 %

80 %

90 %

100%

False Positive Rate

D
et

ec
tio

n
R

at
e

40×40 codebook
30×30 codebook

Fig.7. ROC curves of DR and FPR for

codebook of 40×40 and 30×30

In addition to the codebooks of 40×40 and 30
×30, we use additional the codebook 25×25 to test
efficiency differences between two different
approaches: Basic SOM and Fast SOM with our
VENNS implemented in our AID system. Fig.8.
shows the different system performances in the
codebook training time and detection time according
to various codebook sizes. The comparison outcome
is very impressive because of computing time cost
reducing greatly. Recall that the training data sets
have 450,019 TCP Flows and the test data sets have
621,111 TCP Flows, the results of detection and
training time cost of fast SOM with VENNS
algorithm are strongly impressed. The detection rate
reaches about 7575 units every second which
outperforms greatly the SVM classifier detection rate
3445 units every second in [3] even omitting the
effect of different data dimensions. The comparison
between our method and SVM validates the higher
performance of fast SOM used in our AID
framework. It is deserved to point that [5] used basic
SOM to implement the network based intrusion
detection which is similar with our method in some
meaning. Fig.8. can explain the advantage of our
method over [5].

 (a) Training

(b) Detection

Fig.8. Time cost comparisons between AID
based the basic SOM and AID based the SOM with
VENNS.

5 Conclusion
The intrusion detection researches are still focus

in the network and computer security fields. The
paper proposed anomaly intrusion detection
framework using the SOM. Further more, this paper
has focused on enhancing the overall performances
of AID to achieve more efficiency and usability for
the high speed network, which is usually neglected
by some researches. For reducing the computing cost,
the fast NN search-VENNS algorithm to accelerate
similarity measures has been implemented to satisfy
the need of real-time detection style. The evaluation
experiments have clearly confirmed that AID
framework in the paper could achieve the high
performance.

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp176-182)

References:

[1] Sang Hyun Oh, Won Suk Lee: An Anomaly

Intrusion Detection Method by Clustering
Normal User Behavior. Computers and Security,
22(7), 2003, pp. 156-169.

[2] L. Portnoy, E Eskin, S J Stolfo. Intrusion
Detection with Unlabeled Data Using Clustering,
In Proceedings of ACM CSS Workshop on Data
Mining Applied to Security (DMSA-2001),
Philadelphia, PA, 2001.

[3] S. Mukkamala, A. H. Sung, A. Abraham.:
Intrusion Detection Using an Ensemble of
Intelligent Paradigms. Computer Applications
28(1), 2005, pp. 167-182.

[4] Mukkamala S, Janowski G, Sung AH. Intrusion
detection Using Neural Networks and Support
Vector Machines. Proceedings of Hybrid
Information Systems Advances in Soft
Computing, Springer; 2001, pp.121–38.

[5] Depren, M.O.,Topallar, M., Anarim, E.; Ciliz, K.:
Network-based anomaly intrusion detection
system using SOMs. Signal Proceedings of the
IEEE 12th Communications Applications,
Turkish, 2004, pp 76-79.

[6] Hoglund A. J., Hatonen K., Sorvan A. S.: A
computer Host Based User Anomaly Detection
System Using the Self Organizing Map.
Proceedings of IEEE World Congress on
computational Intelligence, 2002, pp 411-416.

[7] J. M. Bonifaco, E. S. Moreira: An Adaptive
Intrusion Detection System Using Neural
Network, Research Report, UNESP, Brazil, 1997.

[8] G. J. Miller K. Thompson and R. Wilder.:
Wide-area Internet traffic patterns and
characteristics. IEEE Transactions on Network,
pp 10--23, 1997.

[9] D. Moore, G. Voelker, and S. Savage, :Inferring
Internet Denial-of-Service Activity, in Usenix
Security Symposium, Washington, D.C., Aug
2001.

[10]Kohonen, T.: Self-Organization Maps,
Springer-Verlag, Berlin, 1997.

[11] http://libnids.sourceforge.net/
[12] L Wenke, S J Stolfo, K W Mok: A data mining

framework for building intrusion detection
models. Proc. of the 1999 IEEE Symposium on
Security and Privacy, Oakland, 1999,
pp.296–304.

[13] http://www.ll.mit.edu/IST/ideval/index.html
[14] Richard Lippmann, Joshua W. Haines, David J.

Fried, Jonathan Korba, Kumar Das. :The 1999
DARPA Off-Line Intrusion Detection
Evaluation, Computer Networks, 34 (4), 2000,
pp. 579-595.

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp176-182)

