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Abstract: - A new approach of anomaly intrusion detection (AID) is proposed in this paper. The Self-Organizing 
Map (SOM) is used to construct the normal usage profiles of network traffic, and in the training phase and 
detection phase, the Vector Elimination Nearest-Neighbor Search (VENNS) algorithm is designed and 
implemented. The design procedure optimizes the performance of AID by jointly accounting for accurate usage 
profile modeling by SOM codebook and fast vector similarity measure using the fast Nearest-Neighbor search. 
In data processing, according to the characters of TCP attacks, a novel feature extraction approach of TCP flow 
state is implemented. Using the DARPA Intrusion Detection Evaluation Data Set, we implement the 
performance evaluation and comparison analysis. It is shown that the performance and efficiency of anomaly 
intrusion detection are improved greatly: the training time cost can be shortened about by four times and seven 
times for detection time cost. 
Key-Words: - anomaly intrusion detection; Self-Organizing Map; fast Nearest-Neighbor search; normal usage 
profile; codebook; quantization error 
 

1   Introduction 
With the ever fast development of Internet, the 
network security becomes the main focus in 
networking fields. In addition to intrusion defensive 
techniques, such as firewall and encryption, Intrusion 
Detection System (IDS) is used as an important 
security-barrier against network-based computer 
intrusions. 
    There are two general approaches to intrusion 
detection: Misuse Intrusion Detection (MID) and 
Anomaly Intrusion Detection (AID). Similar to virus 
detection, MID is based on the similar pattern 
matching to hunt for the signatures extracted from the 
known attacks. However, AID constructs the 
historical or long-term usage profile, named the 
normal usage profile. And then analysis model of 
AID looks for deviations of the short-term usage 
profile from the normal usage profiles. The Fig.1 
describes the relation and contrast of main logical 
procedures in MID and AID. Be compared to a 
defined baseline of normal usage profiles, the 
deviations can be treated as the suspicious anomalous 
events related to the intrusions. So AID has the 
advantage that it can detect new types of intrusions 
that are currently unknown as deviations from normal 
usage.  

To date, many machine learning and data mining 
algorithms have been used in Anomaly Intrusion 
Detection (AID) [1-7] extensively, including the 
Clustering [1,2], the Support Vector Machine [3,4], 

the Self-Organizing Map [5,6] and the general Neural 
Network [4,7] and so on. However, because of the  

 
Fig.1. Logic procedures in Intrusion Detection. 

 
complexities of algorithms, one of main universal 
shortcomings of these methods is that these methods 
are not enough efficient to detect by the real time 
style, which inhibits AID can be implemented in 
practice further, especially in the high-speed network 
environment. In order to solve efficiency problems in 
AID aforementioned, we propose a novel method of 
AID in this paper based on Self-Organizing Map 
(SOM) and the fast Nearest-Neighbor (NN) search 
algorithm-VENNS. The design procedure 
optimizes the performance of anomaly intrusion 
detection by jointly accounting for accurate 
usage profile modeling by SOM codebook and 
fast vector similarity measure using the fast NN 
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search. In data processing, according to the 
characters of TCP attacks, a novel feature 
extraction approach of TCP flow state is 
implemented. 

In this paper, we concentrate on the TCP attacks 
through extracting the TCP header information. 
Because of complexity and vulnerability, TCP acts as 
two roles mainly: network attack carrier and network 
attack target. In the IP traffic of Internet, TCP 
accounts for 95% or more of the bytes, 85-95% of the 
packets. [8] Moreover, according to the statistical 
data from Moore [9], the majority of DoS attack 
which is main threat to the whole Internet is deployed 
by using TCP as 90~94%. 

The paper is organized as follows: Section 2 
explains the basic SOM algorithm and AID 
framework based on SOM; Section 3 proposes  the 
new fast NN search algorithm -VENNS used in our 
AID; Section 4 describes the details of experiments 
over DARPA data set, including the data processing 
and TCP flow sate quantization. Finally, Section 5 
gives conclusions. 
 

2 SOM for Anomaly Intrusion 
Detection 

In this paper, the Self-Organizing Map (SOM) [10] is 
chosen as anomaly detection model to learn the 
normal usage behavior for constructing the usage 
profile. 

The reasons that SOM is selected are: 
u SOM is one of the unsupervised classification 

techniques and it is not model-based. We don't 
need to build the data distribution model. It is 
important to anomaly detection. 

u SOM is a nonlinear projection of 
high-dimension data to a lower dimensional 
space, typically the two-dimension plane. It can 
be effectively utilized to visualize and explore 
properties of the data. So by SOM, we can 
observe the distributions of the network traffic 
usage profiles. 

u The topology preserving capability and the 
automatic generation of probabilities for a 
dataset can make us to explore the relationships 
among the multivariate traffic flows in the lower 
dimensional space straightway. 
In this paper, we first need to define the network 

traffic data, i.e. TCP flow, in form of feature vector: 
Definition1: Every TCP Flow is a data point in 

the n-dimension Euclidian space Rn and Rn is feature 

space: { }TCP.Flow kX RX= ∈ , Every TCP Flow is 

expressed by the form of feature 

vector: ( )0 2 1, , , kX x x x −=  .    

 
2.1 SOM Algorithm 

Definition 2 SOM can be defined as a mapping 
function from Euclidean space into a certain finite 
subset C，that is 

: kQ R C→ and 0 1 1{ , ,..... | }k
m iC Y Y Y Y R−= ∈ is codebook of 

SOM. m is the dimension of codebook. The map 

function satisfies ( | }k
pQ X X R Y∈ =  and 

( ),0 ,1 , 1, , ,p p p kpY y y y −=   is called the codeword or the 

weight vector.  
The following are the main training steps 

involved in SOM to get the codebook: 

Fig.2. Flowchart of SOM 
 
2.2 Detection Phase  
Using the SOM codebook, we can get the normal 
network traffic profiles. Further in succession, in 
order to find TCP network intrusions that exhibit as 
deviations from normal usage profiles, we measure 
the similarity between current usage behaviors and 
usage profiles using the Quantization Errors (QEs). 
The intrusion detection can be treated as the process 

Input: input vector: ( )0 1 1, , , kX x x x −=    

Output: codebook  0 1 1{ , ,..... | }k
m iC Y Y Y Y R−= ∈  

Step1 Initialize codeword with random values: 
(0)jY  

Step2 To compute the distance between the 
input vector 

i
X  and the codeword ( )jY t , 

designate the winner neuron node 
*j with the smallest distance. *j is also 

called the Best Matching Unit (BMU).   
*

1
arg min ( )i j

j m
j X Y t

≤ ≤
= −        (1) 

The Euclidean distance is chosen as 
Quantization Errors (QEs): 

2 1/2

1

( ) [ ( ( )) ]
n

i j ik jk
k

D X Y t x y t
=

= − = −∑  (2) 

Step3 To update the winner vectors of the 
winner node and its neighborhood: 

( 1) ( ) ( )[ ( )]jk jk ik jky t y t t x y tα= + −＋ , ( )j Nt∈    (3)  

( )N t :Non-increasing neighborhood 
function; ( )tα : Learning rate function, 
0 ( ) 1tα< < .  

Step4 To repeat Step2 and Step3 until SOM 
stabilizes 
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of the Nearest-Neighbors search of input TCP Flow 
feature vectors just described in definition 3. 
Definition 3 The intrusion detection can be defined 
as the following: Given a collection of k-dimensional 
points, C, codebook of SOM, a query point p, find a 
codeword q, the closest to p than any other 
codewords in C, 

{ , }q q C and r C r p q p∈ ⋅ ⋅∀ ∈ − > − , QEq p− = . 

Given the distance deviation threshold ε , p is an 
intrusion data point when and only 

when q p ε− ≥ . 

 

3   Fast NN Search Algorithm 
 
As aforementioned in Section 2, the computing 
complexity of system is mainly concentrated on the 
Euclidian distance computing of the similarity 
measure between the k-dimension feature vectors in 
both training phrase and detection phrase. The 
computational cost of measuring squared Euclidean 
distance is very high because a prohibitive number of 
mathematical operations are required especially 
when the input feature vector number and the 
dimension are large.  

In our method, we implement the faster NN 
search algorithm to accelerate similarity measures in 
order to implement the high efficient AID. The 
elimination-based fast search exploits some 
properties of the distance measure used in the nearest 
neighbor definition. Here, fast NN search algorithm 
-"Vector Elimination NN Search" is designed and 
implemented, where the codewords which cannot be 
nearer to the given test vector than the current 
nearest-neighbor are eliminated without incurring the 
cost of a distance computation. 

To suppose input feature vector is 

( )0 1 1, , , kX x x x −=   and the codeword 

is ( )0 1 1, , , kY y y y−=  . For X and Y: 

1

k

x l
l

S x
=

= ∑  ,
 

,
1

k

j j l
l

S y
=

= ∑                 (4) 

It is easy to prove that: 
2

2 2
2

1 1

( , )

( ) ( )
( )

j

k k
l jl x j

l jl
l l

D X Y

x y S S
x y k

k k= =

=

− − 
− ≥ • = 

 
∑ ∑        (5)

 

To take the current minimum Euclidean distance 

D as minD  in equation (2), we can get the elimination 

rule. If Y satisfies inequation (6), then the Euclidean 
distance between codeword Y and input feature 
vector can be avoided so that computing cost can be 
reduced. 

2 2( )x j minS S k D− ≥ •                (6) 

So, the fast NN search algorithm we implement in 
our AID system is described as following. 

Fig.3. Flowchart of VENNS  
 

0Y

1Y

3pY −

4pY −

2pY −

1pY −

pY

1pY +

2pY +

3pY +

4pY +

1mY −

mY

•• •

• • •

,
1

n

j j l
l

S y
=

= ∑

 
Fig.4.   The binary search in VENNS 
 

Input: codeword ( )0 2 1, , , kY y y y −=  , input 

vector: ( )0 2 1
, , ,

k
X x x x

−
=   

Output: jY  that is the nearest to the input 

vector X and their distance minD ; 

Step1 Compute ,
1

k

j j l
l

S y
=

= ∑  and
1

k

x l
l

S x
=

= ∑ , 

array 
,

1

k

j j l
l

S y
=

= ∑ in ascending order 

and store them in the temporary 
codebook C’; 

Step2 According to input X, to search pY  by 

the binary search:
1

*
x j

j m

argminS Sp j
≤ ≤

−= = , 

and then set ( , )pD X Y  as the minimal 

distance ( , )min pD D X Y= ; 

Step3 Search codeword p iY ±  ( 1,2, ,i m p= ⋅⋅⋅ − ) 

around pY  (Fig.4.), if p iY ±  satisfies 

inequation (6) then it will eliminate the 
Euclidean distance computing between 

p iY ±  and X. For else, to compute the 

Euclidean distance D between p iY ±  and 

X, and then to compute minD anew: 

{ , }min minD min D D= . Continue searching 

next codeword; 
Step4 Return 

minD  and its related codeword 

jY (
min jD X Y= − ). 
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4   Evaluation Methods and Results 
4.1 Data Processing 
It is necessary to do data processing to extract the 
feature attributes from TCP flows, and then, the date 
normalization will be processed to project whole 
feature attributes to a unit range no matter the 
continue attributes or quantitative attributes. In the 
paper, data processing is focused on TCP traffic. The 
program of data process in the paper is based on our 
amend edition of Libnids [11]. The aim of feature 
extraction is to achieve the maximum difference 
degree between usual usage behaviors and intrusion 
behaviors. A feature vector of the TCP traffic flow is 
shown in Table 1. The FlowState attribute is the most 
important among all feature attributes and we 
introduce the new method to present it in the 
following section. In order to get the correlation and 
statistical information in a certain time interval, the 
time window is used in the paper (120 seconds). 

 
Table1. Feature attributes of TCP Flow feature vector 

 
 
4.2 Quantization of TCP Flow state 
 
There are nine flags involved in the connection 
establishment of TCP 3-way handshake protocol and 
the connection close of TCP 4-way handshake 
protocol (Fig.5.). We devised a 9-bit number to 
identify the connection state. The flag will be set to 1 
if that corresponding flag is observed during the 
establishment-close process. Otherwise, it will set to 
0. The decimal function

0 1, 8( , )Sum Flag Flag Flag……，
with 

the non-repeating value is used to quantitate the 
whole connection process： 

8

0 1, 8
0

( , ) 2i
i

i

Sum Flag Flag Flag Flag
=

= •∑……，
                    (4) 

0 1 2 3 4

5 6 7 8

2 2 2 2 2

2 2 ' 2 ' 2

active passive syn

fin fin

RST RST SYN ACK ACK

FIN ACK FIN ACK

= • + • + • + • + • +

+ • + + • + •  

According to Eq.(10), the TCP connection with 
the normal close can be described as follows: 

Sum=（111111100）2=（508）10 

Consider the situation that, with TCP protocol, 
the certain flag repeat in a TCP Flow, we substituted 
the 32-bit number (4 bytes) for the 9-bit number, as in 
Fig. 5. So, if the occurrence time of one certain flag is 
less than 15, the sum will not be repeated. The 
number of occurrence time will take value of 15 if it 
exceeds 15. (RST passive/ RST active occurrence time is 
less than 3). 

 

 

 
         Fig.5. Quantization of TCP Flow state 

Most attacks can result in the abnormal state of 
connection according to the TCP protocol. Generally, 
14 connection-closing states are summarized in [12]. 
We find that method is clumsy relatively in data 
preprocess program. What is more important, these 
14 states cannot include all the complicated instances 
of TCP connection state. By state quantization, every 
state of connection can be easy mapped to an int data 
range affording the state synopsis attribute directly 
leading to the whole improvement of feature vector. 

 
4.3 Experiments and Results 
4.3.1   Data Set  

The Intrusion Detection Evaluation Data Set of 
1999 DARPA [13, 14] has been widely used in the 
community of intrusion detection. The data set of 
DARPA 1999 includes data of five weeks. The data 
sets of Week1, Week2 and Week3 are train data set. 
But Week1 and Week3 data sets have entirety normal 
network traffic logs attack free. Week2 data set has 
labeled attack data in order to train the supervised 
learning classifiers based anomaly intrusion 
detection, so the Week2 is not suit in our experiments. 
The data sets of Week4 and Week5 data sets are the 
test data sets including attacks for detection. Table 3 
gives the statistic information about the DARPA 
1999 data set after the data processing that we extract 
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the TCP Flow feature vectors from the original 
outside.tcpdump log files in the data set.  

We examined only the outside.tcpdump logs to 
reduce the complexity of our experiments. The 
codebook is designed by the data set attack free in 
week1 and week3. Consider the fact that the target of 
this paper is limited in the scope of TCP Flows and 
not general, we test for 35 instance TCP attacks in the 
Week 4 and Week 5 presented in Table 2 [13]. The 
experiment computer is Dawning Sever 
(Linux7.2/PIII800/RAM1G). 

 
        Table2. Attacks in experiments 

Attack Name Num. 
Back (DoS) 3 
Selfping (Probing) 3 
Portsweep (Probing) 12 
Satan (Probing) 2 
Mscan (Probing) 1 
Ntinfoscan (Probing) 3 
Apache2 (DoS) 3 
Queso (Probing) 3 
Neptune/SYN-flood 
(DoS) 

3 

Processtable (DoS) 2 
Total 35 

 
4.3.2   Parameter Selection in SOM  
The parameters of SOM used to train codebooks are 
selected by experience in the Table5. Particularly, 
two dimension sizes of codebook (30×30 and 40×40) 
are selected to creating the network traffic usage 
profile in order to do some comparisons. 

 
Table 3 Parameters in SOM 

Parameter Value 
Topology Hexa 
Neighborhood function Bubble 
Dimension 

 
30×30 
40×40 

Learning rate function Linear 
Training rate of first phase 0.5 
Radius in first phase 20 
Training length of first phase 50000 
Training length of second 
phase 

500000 

Training rate of second phase 0.02 
Radius in second phase 10 

 
4.3.3   Experiment Results 
As we use QE to evaluate the on-detecting network 
traffic feature vectors, Fig.6 (a-d) presents the QE 
distributions (30×30 codebook) in outside traffic of 

the training data of week1 Fri. and the testing data of 
some week5 days. By QEs, these figures can give the 
better explain to understand the data distribution in 
the training or testing phrase. From the Fig.6 (a), we 
can observe that QEs of the training data are well 
regulated and don’t change with the large deviations. 
However, the strong contrast in Fig.6 (b) (c) (d) of the 
testing data including attacks are the sharp variations 
of QEs due to the high values of attack traffic QEs. 
Markedly, on 18:04, Neptune attack (a sort of 
SYN-flood DoS attack) can be viewed with QEs 
values ranging from 1.8038 to 2.3063 in Fig.6 (b). 

 
 

 
(a)Week1 Fri. Out             (b)Week5 Mon. Out 

    
(c)Week5 Tue. Out         (d)Week5 Wed. Out 

Fig.6. QE distributions of training data and 
testing data.  

 
In Table 4 the whole detail detection rates (DRs) 

and false positive rates (FPRs) are presented 
according the different thresholds ε  (QEs). By 
varying detection thresholds, the Receiver Operating 
Characteristic (ROC) curves of DR and FPR are 
illustrated in Fig.7. for fair comparison of two 
different sizes of codebook. Fig.7. shows that the DR 
is trend to 100% fast by changing the threshold 
smaller; but the FPR also rises too. In the ROC 
curves, the eight points in inflexion areas suggest the 
ideal situations with the higher DRs and the lower 
PFRs. Table 4 just presents such situations where two 
codebooks achieve the better performance with 
DR-FPR- ε  (98.034%,1.03%,0.76) and 
(96.623%,1.12%,0.80). So, adjusting detection 
thresholds is necessary to for the certain sizes of 
codebook in order to achieve the tradeoff outcomes 
with some parameters having been selected.  
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Table 4. Thresholds for codebook 40×40 and 30×
30 
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Fig.7. ROC curves of DR and FPR for  

codebook of 40×40 and 30×30 
 

In addition to the codebooks of 40×40 and 30
×30, we use additional the codebook 25×25 to test 
efficiency differences between two different 
approaches: Basic SOM and Fast SOM with our 
VENNS implemented in our AID system. Fig.8. 
shows the different system performances in the 
codebook training time and detection time according 
to various codebook sizes. The comparison outcome 
is very impressive because of computing time cost 
reducing greatly. Recall that the training data sets 
have 450,019 TCP Flows and the test data sets have 
621,111 TCP Flows, the results of detection and 
training time cost of fast SOM with VENNS 
algorithm are strongly impressed. The detection rate 
reaches about 7575 units every second which 
outperforms greatly the SVM classifier detection rate 
3445 units every second in [3] even omitting the 
effect of different data dimensions. The comparison 
between our method and SVM validates the higher 
performance of fast SOM used in our AID 
framework. It is deserved to point that [5] used basic 
SOM to implement the network based intrusion 
detection which is similar with our method in some 
meaning. Fig.8. can explain the advantage of our 
method over [5]. 

 
 
 
 
 

 

 
 (a)   Training  

 
(b) Detection 

Fig.8. Time cost comparisons between AID 
based the basic SOM and AID based the SOM with 
VENNS. 

 

5 Conclusion 
The intrusion detection researches are still focus 

in the network and computer security fields. The 
paper proposed anomaly intrusion detection 
framework using the SOM. Further more, this paper 
has focused on enhancing the overall performances 
of AID to achieve more efficiency and usability for 
the high speed network, which is usually neglected 
by some researches. For reducing the computing cost, 
the fast NN search-VENNS algorithm to accelerate 
similarity measures has been implemented to satisfy 
the need of real-time detection style. The evaluation 
experiments have clearly confirmed that AID 
framework in the paper could achieve the high 
performance. 
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