
Improving on Excellence. An Evolutionary Approach.

J. P. CALDEIRA1,3
1 I.P.S. – E.S.T.

R. Vale de Chaves-Estefanilha
2810 Setúbal
PORTUGAL

F. MELICIO 2, 3
2 I.S.E.L.

R. Conselheiro Emidio Navarro
1900 Lisboa
PORTUGAL

A. ROSA 3
3 LASEEB-ISR-IST

Av. Rovisco Pais, 1, TN 6.21
1049-100 Lisboa

PORTUGAL

Abstract: - In this paper, we present a new hybridization method that, under certain conditions, can be used to
improve results obtained by the best existing algorithms for a particular problem. The proposed hybrid uses
Evolutionary Algorithm (EA) with a population of algorithms, to simultaneously evolve problem solutions and
individual algorithm parameters. As an example of this approach we describe the details of its application to
the Job Shop Problem (JSP) and use an EA to enhance results obtained by one of the most successful
algorithms for this problem – Nowicki and Smutnicki’s “Taboo Search Algorithm with back jump”
(TSAB) [12]. The new algorithm not only improved TSAB’s results but also improved the best known results
for several well known benchmark problems.

Key-Words: - Hybrid, Evolutionary, Taboo, Job Shop, Scheduling

1 Introduction
It has become quite common to use evolutionary
hybrids especially due to their improved
performance in relation to the basic evolutionary
algorithm. Usually hybrids are combined with a
simple Local Search Algorithm (LSA) to reduce the
EA’s search space to the set of local minimum.
These hybrid’s rely on the EA to guide the
population to promising regions in this reduced
search space, therefore the LSA’s do not have any
mechanisms to escape local minimum. Their role is
limited to finding the closest local minimum as
efficiently as possible. Although this kind of
hybridization makes the EA’s much more
competitive they can not really compete with
algorithms like TSAB. There are two main reasons
for this difference in performance:

• Neighborhood
• Solution Evaluation

TSAB uses a very small neighborhood with a high
probability of improvement. The neighborhood
resulting from the application of the EA’s variation
operators is much larger neighborhood with a lower
improvement probability. This means that the EA
will need more evaluations to reach a solution of
similar quality.
TSAB also evaluates every solution in a
neighborhood very efficiently. Since neighbors are
generated making small changes to the original
solution, their value can be calculated simply by

determining how a particular change will impact the
value of the original solution. This means that to
evaluate a neighbor, you do not start from scratch
but instead take a look at what was changed between
the two solutions. In an EA we can not take this
approach because the solutions resulting from
crossover operators differ greatly from the parents,
so every evaluation has to be done from scratch.
We therefore choose a different approach to
hybridization, one that will take full advantage of
TSAB’s speed and performance. Although TSAB is
a deterministic algorithm, if it is run with a different
initial solution or with different parameters, different
results can be obtained. The objective of this paper
is to describe an evolutionary hybrid that achieves
better results that the basic multi-start strategy given
equal computational resources. Our hybrid is simply
a EA with a population of TSAB’s with randomly
generated parameters and initial solutions. All
elements of the population run in parallel and from
time to time, some elements are randomly chosen
and cross their best solutions and algorithm
parameters.
We also describe several strategies to make our
hybrid more efficient allocating more computational
resources to more promising elements of the
population.

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp15-23)

mailto:pcaldeir@est.ips.pt
mailto:fmelicio@isel.pt
mailto:acrosa@isr.ist.utl.pt

2 Job Shop Problem
Job Shop scheduling is a well known scheduling
problem. It is NP-hard [3] and one of the most
intractable combinatorial problems.
The terminology of scheduling theory derives from
the processing and manufacturing industries. We
shall thus talk about jobs and machines, even tough,
in some cases, the objects referred to bear little
resemblance to either jobs or machines. The
structure of the general job-shop problem fits many
different scheduling problems in many diverse fields
as well as those in industry.
In the basic job-shop problem JSP [5] we have n
Jobs { }nJJJ ,...,, 21

 to be processed on m Machines
{ }mMMM ,...,, 21

. Each job is processed on each machine
once and only once. The processing of a job on a
machine is called an operation. Operation Oij
represents the processing of the i th job on the j th
machine. The technological constraints specify the
order in which each job has to be processed on the
machines. Each job has its own processing order that
may have no relation to the processing order of other
jobs.
Each operation Oij is performed in a certain amount
of time – processing time Pij. This time is known in
advance and assumed fixed. The time needed to
transport a job to a machine and to set up that
machine for Oij is considered to be included in Pij.
We shall also assume that the machines not
processing any job are always available. The time at
which a Job Ji becomes available for processing is
called its ready time ri.
The general JSP is a static and deterministic
optimization problem. It is static because the
number of jobs and their ready times are known and
fixed. It is deterministic since processing times and
remaining parameters are known and fixed.
To solve the JSP we must find a sequence in which
jobs are processed on each machine that is:
• Feasible i.e. Compatible with the technological

constraints
• Optimal with respect to some objective function

or performance criteria.
The most widely used objective is to find feasible
schedules that minimise the completion time of the
total production program, normally referred to as
makespan (Cmax).
Since each job is partitioned into the operations
processed on each machine, a schedule for a certain
problem instance consists of an operation sequence
for each machine involved. These operation
sequences can be permuted independently from each
other. We therefore have a total of mn)!(different
sequences (feasible and infeasible).

In the general JSP a number of assumptions are
made. Some were mentioned explicitly above,
others were implicit. A complete list of these
assumptions is found in [5].

Fig. 1 – The Gantt Diagram
The diagram in Fig. 1 is a Gantt Diagram [5] of a
schedule with 3 jobs and 3 machines and shows
when each operation is processed on each machine.

3 The Taboo Algorithm
The Taboo Search Algorithm (TSA) was proposed
by Glover [7]. A TSA tries to keep track of the
visited search space to avoid revisiting the same
solutions and thus improving the efficiency of
search.
Taboo Search can be seen as an extension of the
basic Hill Climbing Algorithm. The same basic
concepts of Movement and Neighborhood apply. A
“movement” is a procedure that partially changes a
solution, transforming it into another, known as its
neighbor.
The Neighborhood, N(Sc), is the set of solutions
obtained when all possible “moves” are applied to
the current solution Sc. The TSA stores visited
solutions in a list. This list is known as the Taboo
List, T, because in the TSA it is forbidden to return
to solutions in this list. In each step, the TSA
chooses the best, unforbidden neighbor to be the
current solution of the next iteration. For this reason,
the TSA is also known as the “Steepest Decent,
Mildest Ascent”. The flowchart of the basic TSA is
shown in fig. 2.
Numerous authors have applied TSA to the JSP.
Their approaches differ mainly in the Neighborhood
Definition, the generation of the Initial Solution and
in the maintenance of the Taboo List.

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp15-23)

One of the best algorithms for solving the JSP is
Nowicki and Smutnicki’s Taboo Search Algorithm
with back jump (TSAB) [12].

Fig. 2 – The flowchart of the basic TSA
TSAB uses an acyclic graph representation. An
example of this representation for the schedule in
the Gantt diagram presented previously is:

In fig. 3:
• Continuous arcs represent the technological
constraints.
• Dotted arcs represent the order of operations
on each machine
• Each arc is weighed with the processing
time of the operations from which it originates.

We attribute TSAB’s success mainly to two factors:
• Neighborhood
• Back jump Mechanism (long term memory)

The neighborhood used is known as N1 [9]. It is a
small neighborhood of highly correlated feasible
solutions with a high probability of improvement.
These characteristics make N1 an excellent choice.
The back jump mechanism makes the TSA much
more effective allowing the use of information from
previous runs later on. Instead of starting with an
empty taboo list and some kind of heuristic initial
solution, TSAB returns to the promising points of
previous runs and tries a different route.
TSAB’s main parameters are:
• BestSol – Best Solution found at that time
(Coded as an Acyclic Graph)
• MaxInter – Maximum Number of Iterations
without improvement
• MaxT – Maximum size of the Taboo List
• MaxL- Maximum size of Back jump List

4 The Evolutionary Algorithm
A good implementation of an Evolutionary
Algorithm for any problem implies a careful choice
of representation and appropriate variation
operators. This is especially true for the JSP due its
technological constraints. Naive choices easily result
in the production of infeasible sequences.
We chose to use one of the most successful
representations for the JSP called Permutation with
Repetition (PWR) initially proposed by Bierwirth
[1].
In this representation, the order of operations within
the permutation is interpreted as a sequence for
building a schedule solution. The decoding
procedure scans each permutation from left to right
and uses sequence information to build a schedule
consecutively. The simple permutation of operations
normally leads to infeasible schedules because an
operation can only be scheduled if its predecessors
have already been scheduled. This problem can be
avoided using permutations with repetition in which
operations are represented by the identifier of the
job they belong to. The solution of the JSP with n =
3 and m = 3 shown previously in fig. 1 can be
represented as: [2,3,1,2,3,1,2,1,3].
The k th time job Ji appears in the permutation
refers to the k th operation of job Ji.’s technological
constraints. Since we make use of the technological
constraints to decode permutations, no infeasible
solutions will result.

Start

Current Solution (Sc)= Inititial
Solution, T = Ø

End

Yes

No

Generate
N = N(Sc) \ T

Add Sb to T
Sc = Sb

Choose Best
Neighbour (Sb) in N

Termination
Criteria

Bj Ej

Bm

Em

J1
J2

J3

M1 M3
M2

Fig. 3 – The Acyclic Graph

O11 O12 O13

O21 O23 O22

O32 O31 O33

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp15-23)

This representation therefore covers all feasible
sequences for any JSP instance but none of the
infeasible category. There is however a large
redundancy in this representation. The total amount
of different permutations is:

nm
nmPwR
!

)!.(
=

(permutation with repetition) which is much larger
than the number of possible sequences mnNR != . If
we take into consideration that permutation with
repetition only cover feasible sequences and that
these are only a small subset of the possible
sequences we have an idea of the magnitude of the
redundancy.
This redundancy can be seen in table 1:

N 2 3 5 10 10
M 2 3 5 10 15
NR 4 216 2.5E+10 4E+65 2.5E+98

PwR 6 1680 6.2E+14 2.4E+92 4E+141
Table 1: Comparison between representations

The variation operators consist of a multi-crossover
and multi-mutator.
The multi-crossover randomly selects a crossover
among Generalized Order Crossover (GOX),
Generalized Position Crossover (GPX) and Uniform
Crossover (GUX) [9]. All these operators produce
valid permutations with repetition while preserving
the relative order of the operations within both
parents.
The GOX was proposed by Bierwirth [1]. We start
by choosing a subsequence of the father
chromosome. The operations in this subsequence are
removed from the mother chromosome respecting
operation indices. We insert the subsequence in the
position where we found the first operation deleted
from the mother chromosome.

Father 3 2 2 2 3 1 1 1 3

Index 1 1 2 3 2 1 2 3 3

Mother 1 1 3 2 2 1 2 3 3

Index 1 2 1 1 2 3 3 2 3

GOX 1 3 2 2 2 3 1 1 3

GPX 1 3 2 2 3 1 2 1 3

Fig. 4. GOX and GPX Crossover
In fig. 4, the chosen subsequence is shaded in the
father chromosome. It consists of two operations of
Job 2 (indices 2 and 3), one operation of Job 3
(index 2) and one operation of Job 1 (index 2).
These operations are crossed out in the mother
chromosome.

In GOX we conclude by inserting the subsequence
in the position where the first operation was found in
the mother chromosome (circled operation). In the
GPX, we maintain the position of the substring in
the father.
The GUX operator in a normal uniform crossover in
which a child is obtained by randomly selecting
genes from the parent chromosomes. Selected genes
are eliminated in both parents. This procedure is
repeated until both parents are empty.
The multi-mutator randomly selects a mutation
operator amongst Position Based Mutator (PBM),
Order Based Mutator (OBM) and Swap Based
Mutator (SBM) [9]. The PBM deletes a randomly
chosen gene from the chromosome and reinserts it in
a randomly chosen position (fig. 5).

Parent 3 1 2 2 2 3 1 1 3

 Child 1 2 2 3 2 3 1 1 3

Fig. 5 - PBM Mutator

The OBM simply swaps values of two randomly
chosen genes and SBM swaps values of randomly
chosen adjacent genes.
We use a multi-crossover and multi-mutator because
they increase diversity and improve the EA’s
efficiency [4].

5 The Evolutionary-Taboo Algorithm
The comparison of the results shows that a pure
EA’s (without local search) such as [1], are far from
being competitive with other algorithms such as
TSAB [12]. Including some local search greatly
improves the EA’s performance and results, but
even hybrid algorithms [9] are not very competitive.
Current hybridization approaches use very simple
local search heuristics, leaving most of the
computation time to the EA.
We propose a different hybridization model in
which the EA is used more as a meta-heuristic. The
use of a Meta–Heuristic will slow down the
algorithm we choose to hybridize but as long as the
original algorithm is fast and improved results are
obtained it will still be useful and practical.
We can compensate the loss of speed taking
advantage of the fact that EA’s are easy to
parallelize and to distribute over a local network
Using distribution the time required to run a hybrid
EA can be greatly reduced.
Our EA will evolve a population of independent
TSAB algorithms. Each element of the population is

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp15-23)

Initialization

Evaluation
(TSAB)

Evaluation
Policies

Variation
Operators

Replacement
Selection

Tournament
Selection

End

Termination
Criteria

initialized with a random initial solution and
parameters.
The TSAB parameters that are evolved are those
considered to have a greater influence on the
algorithm’s speed and results. In TSAB these are
MaxT, MaxL, MaxIter and BestSol. Since the EA
operators and TSAB use different representations
every time an operator is applied, the chromosomes
involved must first have their solutions encoded into
permutation with repetition and results have to be
decoded back into acyclic graphs as represented in
fig. 6.

Fig. 6 – Generation of new solutions

The reduced use of the crossover and mutation
operators ensures that the encoding and decoding
procedures will not be computationally expensive.
We will now go into the different parts of the EA in
more detail. Our hybrid algorithm is a Generational
EA with a replacement percentage of 5 to 10% and
the population size is 30. A tournament selector is
used to select the two parents. The child resulting
from the multi-crossover is then subjected to
mutation according to the mutation probability.
To make new elements more competitive with the
rest of the population, they are subjected to an
additional number of TSAB iterations before joining
the population. A tournament selector that returns
the worst individual is used to select the
chromosomes that will be replaced by the new
individuals.
As usual, iterations of the local search procedure
TSAB are performed during the evaluation step of
the EA. In our algorithm, the evaluation policies are
responsible for deciding who is evaluated and how
many TSAB iterations are performed on each
individual.

The flow chart of the basic operation of the
Evolutionary Taboo Algorithm is shown in fig. 7.

Fig. 7 – The flowchart of Evolutionary-Taboo

Algorithm

Taking a closer look at some of the EA components,
we have:

Chromosome: The chromosome consists of TSAB
parameters (MaxT, MaxL and MaxIter), a solution
BestSol (the best solution it found) and NumIter
(number of iterations to be done in the next
evaluation). The parameters that are changed by the
variation operators are BestSol, MaxT, MaxL and
MaxIter.
Initialization: The initial solution for TSAB is
obtained by generating random permutations with
repetition. The remaining parameters are initialized
as generating Gaussian values centered on the
default values of each parameter. Every
chromosome has NumIter set to InitIter (Initial
amount of iteration performed on each individual).
Example:
MaxT = Gaussian(DefaultMaxT, MaxTVariance)
Crossover: The TSAB solutions (BestSol) are
crossed using the crossover operators described for
permutations with repetition. The average of the
remaining parent parameters are used for the child
and NumIter is incremented by CxIter (Number of
iterations performed on the child produced).

Example: 2
21 MaxTMaxT

MaxT
+

=

Acyclic
graph

Encode

Decode

Variation
Operators

PWR Coding

Original
Solution

New
Solution

PWR Coding

Acyclic
graph

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp15-23)

Mutator: The TSAB solutions are mutated using
the mutators for permutations with repetition. The
remaining parameters are also mutated using a
Gaussian centered on previous parameter values, i.e.

MaxT = Gaussian(MaxT, MaxTVariance)
MaxT = Max(MinMaxT, MaxT)

Every parameter has a minimum value below which
values cannot fall. This keeps parameter values in an
acceptable range. Mutated chromosomes get an
additional MutIter iterations.
Evaluator: The evaluation of a chromosome consists
of performing a certain number of TSAB iterations
(NumIter). This number is determined by the
evaluation policies.
Evaluation Policies: In Evolutionary Taboo
Algorithm, we found the need to apply several
evaluation policies. The order in which the policies
are applied is as follows:

• Only New
• Improve Best
• Random Eval
• Mutate Equals
• KillTsa

These evaluation policies will be described in more
detail in the following section.

Only New: This policy marks the new elements
resulting from the variation operators for evaluation.
Improve Best: This policy tries to improve the
efficiency of the hybrid algorithm. To this end, the 5
individuals with the lowest makespan in which the
TSAB algorithm has still not come to an end, have
their iteration number increased by Num1, Num2,
Num3, Num4 e Num5 respectively. In our
implementation there is an exponential drop in
values from Num1 to Num5, but other strategies can
also be applied.
Random Eval: This policy allows any of the
population elements to be iterated. Once again, it
tries to attribute more computational resources to the
better individuals. This is done by sorting the
population by increasing makespans and then
generating a random number (Rn) between zero and
population size. All individuals ranking below Rn
are iterated with an additional EvalIter Iterations i.e.:
 NumIter = NumIter + EvalIter
Mutate Equals: This policy is responsible for
eliminating duplicates that may show up in the
population that would lead a repeated search of the
same areas in the search space (TSAB is
deterministic). Thus, to avoid wasting computational
resources covering the same areas, solutions are
compared two by two and when the disparity
between them falls below a certain threshold
(DisparThresh), one of the solutions is mutated. The

Disparity Function measures the degree of similarity
between solutions, according to the formula:

[]

1
)(

)()(

1

2
21

solutionofsequence
machineinioperationofpositioniOpPosSol

iOpPosSoliOpPosSolDisparity
i

−

−= ∑

Once again in mutated chromosomes:
 IterDefaultMutNumIterNumIter +=
KillTsa: To maintain the same number of active
individuals in the population, we increase the size of
the population by one every time a TSAB algorithm
ends its execution i.e. reaches MaxIter iterations
without improvement and has no more states stored
in its back jump list. To avoid the population
growing indefinitely, we limit the number of
terminated TSAB’s to a maximum of MaxTSA,
beyond which the inactive chromosome with the
greatest makespan is mutated. Again:
 IterDefaultMutNumIterNumIter +=

6 Results
As stated before the Evolutionary-Taboo algorithm
will be less computationally efficient than TSAB.
This should be obvious since we have a population
of TSAB algorithms running in parallel. What we
want to prove is that an evolutionary hybrid is better
than a multi-start strategy. To compare these
algorithms we performed 200 runs of the TSAB,
initialized in the same way as in the hybrid (with
random parameters and initial solution). Each run is
performed until TSAB reaches its termination
criteria. The problem instances selected are well
known benchmark problems [8] on which TSAB has
more difficulty in producing high quality results.
The results in table 2 show that, contrary to what
authors suggested [12], a multi-start strategy
resulted in a significant improvement in results
(2.7% on average) and for yn1 the best know
makespan was lowered to 886.
For the comparison to be fair, both algorithms must
be given an equal amount of computational
resources. In table 3, the hybrid was run 20 times
per problem instance for 100 generations. Although
the total number of generations in table 2 surpasses
that of table 3 for most problem instances, results of
the hybrid are normally better than those of the
multi-start algorithm. The hybrid also has a lower
standard deviation and average value.
We can also see that the average value of iterations
per evaluation is 14585 which show that most of the
computational resources are used on TSAB.

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp15-23)

When we increased the number of generations, the
results of the Evolutionary-Taboo Hybrid surpassed
our greatest expectations, improving the best known
makespans for many problem instances (table 4)
If we take into consideration that for some problem
instances only one run was needed to improve the
best know makespan, it should be relatively easy to
further improve some of the results shown in table 4.

 The parameters used where:
• popsize = 30 (Population size)
• repPerc = 0.08 (Replacement Percent)
• cross prob = 0.4 (Crossover Prob.)
• mut prob = 0.75 (Mutation Prob.)
• cxiter = 2500 (Crossover Iterations)
• mutiter = 1000 (Mutation Iterations)
• inititer = 2500 (Initial Iterations)
• evaliter = 500 (RandomEval Iter.)
• toursize = 2 (Tournament Size)
• numgen = 2500 (Number of Generations)
• NUM1 = 1050 (Improve Best Param.)
• NUM2 = 750
• NUM3 = 450
• NUM4 = 300
• NUM5 = 150

7 Conclusion

The evolutionary hybrid is better than a multi-start
strategy. If we take into consideration that the TSAB
algorithm was already one of the best algorithms for
the JSP, we were pleased that the hybrid took it even
further improving not only its results but also the
best-known results for several problem instances.
Although the hybrid requires much more
computational resources, this is not a serious
problem because it can be easily distributed over
several computers greatly reducing the time needed
to produce high quality results..
We expect that the same methodology will work on
other scheduling problems provided the local search
algorithm is fast. It could be worthwhile to try a
different representation for the EA. Although the
PWR coding works well by itself, its high
redundancy suggests that it is not ideal for use in
this kind of hybrid architecture. We would also like
to implement the island model to try to further
improve the algorithms results and efficiency.

Single TSAB Multi-Start TSAB

Problem
Instance

Lower
Bound

Best
Known
Make
Span

n m Best
Make
Span

Dist to
Best
%

Num. Of
Iterations

Best
Make
Span

Average
Make
Span

Stardard
Deviation%

Average
Num. of

Iterations

Total
Iterations

Dist to
Best
%

swv09 1604 1663 20 15 1793 7.8 63 373 1695 1777 1.9% 168 454 33 690 825 1.9%

swv11 2983 3005 50 10 3199 6.5 152 529 3060 3226 3.1% 231 943 46 388 569 1.8%

swv06 1591 1696 20 15 1768 4.3 55 568 1732 1789 1.9% 159 048 31 809 593 2.1%

swv12 2972 3038 50 10 3161 4.1 80 623 3078 3261 3.1% 221 932 44 386 344 1.3%

swv04 1450 1483 20 10 1541 3.9 101 195 1496 1543 1.5% 118 181 23 636 153 0.9%

yn1 826 888 20 20 921 3.7 66 965 886 905 0.8% 176 939 35 387 817 -0.2%

swv05 1421 1434 20 10 1486 3.6 24 473 1458 1528 2.2% 114 197 22 839 344 1.7%

swv13 3104 3146 50 10 3251 3.3 98 558 3184 3303 2.0% 181 759 36 351 878 1.2%

swv07 1446 1620 20 15 1669 3 121 385 1649 1716 1.5% 159 025 31 804 906 1.8%

yn2 861 909 20 20 934 2.8 72 230 909 929 0.9% 162 945 32 589 058 0.0%

swv01 1392 1418 20 10 1449 2.2 11 291 1439 1478 1.4% 108 354 21 670 761 1.5%

la29 1142 1153 20 10 1177 2.1 43 683 1164 1180 0.9% 84 540 16 908 052 1.0%

 Avg 3.94% Avg 1.8% Avg 1.25%

Table 2 – Results using Multi-start TSAB

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp15-23)

EvolutionaryTaboo Hybrid
Problem
Instance

Lower
Bound

Best
Known
Make
Span

n M Best
Make
Span

Average
Make
Span

Std.
Dev. %

Num.
of

Evals

Average
Num. of Iter.

 Total
Iterations

 Iteration /
evaluations

Dist ao
Melhor %

swv09 1604 1663 20 15 1682 1704.7 0.8% 92 1 331 502 26 573 088 14 473 1.14%

swv11 2983 3005 50 10 3044 3104.4 0.7% 91 1 327 057 26 541 148 14 527 1.30%

swv06 1591 1696 20 15 1705 1721.4 0.5% 91 1 317 484 26 349 683 14 407 0.53%

swv12 2972 3038 50 10 3098 3154.9 0.9% 92 1 330 605 26 612 100 14 510 1.97%

swv04 1450 1483 20 10 1487 1497 0.4% 91 1 340 538 26 810 754 14 683 0.27%

yn1 826 888 20 20 889 894.15 0.3% 92 1 360 294 27 205 887 14 730 0.11%

swv05 1421 1434 20 10 1445 1454.1 0.3% 93 1 333 471 26 669 418 14 377 0.77%

swv13 3104 3146 50 10 3155 3194.8 0.9% 92 1 320 562 26 411 247 14 370 0.29%

swv07 1446 1620 20 15 1640 1664 0.8% 93 1 340 624 26 812 484 14 454 1.23%

yn2 861 909 20 20 909 913.75 0.3% 93 1 362 551 27 251 022 14 722 0.00%

swv01 1392 1418 20 10 1428 1435.2 0.3% 93 1 370 974 27 419 486 14 679 0.71%

la29 1142 1153 20 10 1162 1167.3 0.2% 92 1 386 030 27 720 597 15 098 0.78%

 0.5% 14585.8 0.76%

Table 3 – Results using Evolutionary Hybrid (100 Generations)

TSAB EvolutionaryTaboo Hybrid
Prob. LB

Best
Known
Make
Span

n m #o Best
Make
Span

Dist to
Best
%

Num. of
Iter.

Best Make
Span

Mean
Make Span

Num. of
Iterations

MakeSpan
Improvement %

swv09 1604 1663 20 15 300 1793 7.82 63 373 1661 1664.4 63 769 734 0.1%

swv11 2983 3005 50 10 500 3199 6.46 152 529 2987 2998.3 75 229 511 0.6%

swv15 2885 2940 50 10 500 3121 6.16 78 023 2913 2924 295 460 198 0.9%

abz7 656 656 20 15 300 687 4.73 55 414 658 658 67 494 609 -0.3%

swv03 1369 1398 20 10 200 1459 4.36 8 473 1403 1409 118 875 055 -0.4%

swv06 1591 1696 20 15 300 1768 4.25 55 568 1695 1695 74 487 227 0.1%

swv12 2972 3038 50 10 500 3161 4.05 80 623 3023 3031.6 124 861 250 0.5%

swv04 1450 1483 20 10 200 1541 3.91 101 195 1476 1476 54 151 075 0.5%

yn1 826 888 20 20 400 921 3.72 66 965 886 887 168 178 730 0.2%

swv05 1421 1434 20 10 200 1486 3.63 24 473 1431 1432.5 97 386 922 0.2%

swv13 3104 3146 50 10 500 3251 3.34 98 558 3105 3105 275 907 453 1.3%

swv07 1446 1620 20 15 300 1669 3.02 121 385 1608 1608 270 187 563 0.7%

yn2 861 909 20 20 400 934 2.75 72 230 906 906.5 123 356 300 0.3%

swv01 1392 1418 20 10 200 1449 2.19 11 291 1417 1417.5 53 773 767 0.1%

la29 1142 1153 20 10 200 1177 2.08 43 683 1153 1157.1 21 333 804 0.0%

Table 4 – Results using Evolutionary Hybrid

References:

[1] Bierwirth C,"A Generalized Permutation

Approach to Job Shop Scheduling with Genetic
Algorithms ", OR Spectrum, Vol 17, 89-92, 1995

[2] Bierwirth C., MattFeld D., "Production
Scheduling and Rescheduling with Genetic
Algorithms", Evolutionary Computation, Spring
1999, Volume 7, Number 1

[3] Blazewicz, J., Domschke,W., and Pesch, E.
(1996), “The Job-Shop scheduling problem:
Conventional and new solution techniques.”,

European Journal of Operations Research,
22:25-40

[4] Eiben A., Hinterding R., Michalewicz Z.,
“Parameter control in Evolutionary Algorithms”
Technical Report 98–07 Rijksuniveriteit te
Leiben Vakgroep Informatica, 1997

[5] French S., "SEQUENCING AND SCHEDULING
: An Introduction to the Mathematics of the Job-
Shop", John Wiley & Sons 1986

[6] Giffler B., Tompson G. “Algorithms for solving
production scheduling problems.”, Operations
Research,1960, 8:487-503

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp15-23)

[7] Glover F. E. Taillard, and D. de Werra, "A Users
Guide to Taboo Search", Annals of Operation
Research. 41 (1993), 3-28

[8] Imperial College Management School, OR-
Library, http://mscmga.ms.ic.ac.uk/info.html

[9] MattFeld D., "Evolutionary Search and the Job
Shop - Investigations on genetic algorithms for
production scheduling ", Spriger Verlag 1996

[10] Melicio, F., Caldeira, J.P., Rosa, A.C.,
”Timetabling implementation aspects by
Simulated Annealing”. IEEE-ICSSSE'98,
BeiJing, 1998.

[11] Michalewicz, Z., “Genetic Algorithms + Data
Structures = Evolution Programs”. Springer-
Verlag, 1994.

[12] Nowicki E., C. Smutnicki, "A fast Taboo
Search Algorithm for the Job Shop Problem ",
International Jornal of Management Science
Vol. 42 Nº6, June 1996

[13] Taillard, E., “Parallel Taboo Search
Techniques for the Job Shop Scheduling
Problem”, ORSA Journal on Computing, Vol. 6,
Nº2, Spring 1994

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp15-23)

http://mscmga.ms.ic.ac.uk/info.html

