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Abstract: - In this paper, we present a new hybridization method that, under certain conditions, can be used to 
improve results obtained by the best existing algorithms for a particular problem. The proposed hybrid uses 
Evolutionary Algorithm (EA) with a population of algorithms, to simultaneously evolve problem solutions and 
individual algorithm parameters. As an example of this approach we describe the details of its application to 
the Job Shop Problem (JSP) and use an EA to enhance results obtained by one of the most successful 
algorithms for this problem – Nowicki and Smutnicki’s “Taboo Search Algorithm with back jump” 
(TSAB) [12]. The new algorithm not only improved TSAB’s results but also improved the best known results 
for several well known benchmark problems.  
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1   Introduction 
It has become quite common to use evolutionary 
hybrids especially due to their improved 
performance in relation to the basic evolutionary 
algorithm. Usually hybrids are combined with a 
simple Local Search Algorithm (LSA) to reduce the 
EA’s search space to the set of local minimum. 
These hybrid’s rely on the EA to guide the 
population to promising regions in this reduced 
search space, therefore the LSA’s do not have any 
mechanisms to escape local minimum. Their role is 
limited to finding the closest local minimum as 
efficiently as possible. Although this kind of 
hybridization makes the EA’s much more 
competitive they can not really compete with 
algorithms like TSAB. There are two main reasons 
for this difference in performance: 

• Neighborhood 
• Solution Evaluation  

TSAB uses a very small neighborhood with a high 
probability of improvement. The neighborhood 
resulting from the application of the EA’s variation 
operators is much larger neighborhood with a lower 
improvement probability. This means that the EA 
will need more evaluations to reach a solution of 
similar quality.  
TSAB also evaluates every solution in a 
neighborhood very efficiently. Since neighbors are 
generated making small changes to the original 
solution, their value can be calculated simply by 

determining how a particular change will impact the 
value of the original solution. This means that to 
evaluate a neighbor, you do not start from scratch 
but instead take a look at what was changed between 
the two solutions. In an EA we can not take this 
approach because the solutions resulting from 
crossover operators differ greatly from the parents, 
so every evaluation has to be done from scratch.    
We therefore choose a different approach to 
hybridization, one that will take full advantage of 
TSAB’s speed and performance. Although TSAB is 
a deterministic algorithm, if it is run with a different 
initial solution or with different parameters, different 
results can be obtained.  The objective of this paper 
is to describe an evolutionary hybrid that achieves 
better results that the basic multi-start strategy given 
equal computational resources. Our hybrid is simply 
a EA with a population of TSAB’s with randomly 
generated parameters and initial solutions. All 
elements of the population run in parallel and from 
time to time, some elements are randomly chosen 
and cross their best solutions and algorithm 
parameters.   
We also describe several strategies to make our 
hybrid more efficient allocating more computational 
resources to more promising elements of the 
population. 
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2   Job Shop Problem 
Job Shop scheduling is a well known scheduling 
problem. It is NP-hard [3] and one of the most 
intractable combinatorial problems.  
The terminology of scheduling theory derives from 
the processing and manufacturing industries. We 
shall thus talk about jobs and machines, even tough, 
in some cases, the objects referred to bear little 
resemblance to either jobs or machines. The 
structure of the general job-shop problem fits many 
different scheduling problems in many diverse fields 
as well as those in industry. 
In the basic job-shop problem JSP [5] we have n 
Jobs { }nJJJ ,...,, 21

 to be processed on m Machines 
{ }mMMM ,...,, 21

. Each job is processed on each machine 
once and only once. The processing of a job on a 
machine is called an operation. Operation Oij 
represents the processing of the i th job on the j th 
machine. The technological constraints specify the 
order in which each job has to be processed on the 
machines. Each job has its own processing order that 
may have no relation to the processing order of other 
jobs.  
Each operation Oij is performed in a certain amount 
of time – processing time Pij. This time is known in 
advance and assumed fixed. The time needed to 
transport a job to a machine and to set up that 
machine for Oij is considered to be included in Pij. 
We shall also assume that the machines not 
processing any job are always available. The time at 
which a Job Ji becomes available for processing is 
called its ready time ri. 
The general JSP is a static and deterministic 
optimization problem. It is static because the 
number of jobs and their ready times are known and 
fixed. It is deterministic since processing times and 
remaining parameters are known and fixed. 
To solve the JSP we must find a sequence in which 
jobs are processed on each machine that is: 
• Feasible i.e. Compatible with the technological 

constraints 
• Optimal with respect to some objective function 

or performance criteria. 
The most widely used objective is to find feasible 
schedules that minimise the completion time of the 
total production program, normally referred to as 
makespan (Cmax).  
Since each job is partitioned into the operations 
processed on each machine, a schedule for a certain 
problem instance consists of an operation sequence 
for each machine involved. These operation 
sequences can be permuted independently from each 
other. We therefore have a total of mn )!(  different 
sequences (feasible and infeasible). 

In the general JSP a number of assumptions are 
made. Some were mentioned explicitly above, 
others were implicit. A complete list of these 
assumptions is found in [5]. 
 

 
Fig. 1 – The Gantt Diagram 
The diagram in Fig. 1 is a Gantt Diagram [5] of a 
schedule with 3 jobs and 3 machines and shows 
when each operation is processed on each machine. 
 
 
3   The Taboo Algorithm 
The Taboo Search Algorithm (TSA) was proposed 
by Glover [7]. A TSA tries to keep track of the 
visited search space to avoid revisiting the same 
solutions and thus improving the efficiency of 
search.  
Taboo Search can be seen as an extension of the 
basic Hill Climbing Algorithm. The same basic 
concepts of Movement and Neighborhood apply. A 
“movement” is a procedure that partially changes a 
solution, transforming it into another, known as its 
neighbor. 
The Neighborhood, N(Sc), is the set of solutions 
obtained when all possible “moves” are applied to 
the current solution Sc. The TSA stores visited 
solutions in a list. This list is known as the Taboo 
List, T, because in the TSA it is forbidden to return 
to solutions in this list. In each step, the TSA 
chooses the best, unforbidden neighbor to be the 
current solution of the next iteration. For this reason, 
the TSA is also known as the “Steepest Decent, 
Mildest Ascent”. The flowchart of the basic TSA is 
shown in fig. 2. 
Numerous authors have applied TSA to the JSP. 
Their approaches differ mainly in the Neighborhood 
Definition, the generation of the Initial Solution and 
in the maintenance of the Taboo List. 
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One of the best algorithms for solving the JSP is 
Nowicki and Smutnicki’s Taboo Search Algorithm 
with back jump (TSAB) [12]. 
 

 
 

Fig. 2 – The flowchart of the basic TSA 
TSAB uses an acyclic graph representation. An 
example of this representation for the schedule in 
the Gantt diagram presented previously is: 

 

 
 

In fig. 3: 
• Continuous arcs represent the technological 
constraints. 
• Dotted arcs represent the order of operations 
on each machine 
• Each arc is weighed with the processing 
time of the operations from which it originates. 

 
We attribute TSAB’s success mainly to two factors:  
• Neighborhood 
• Back jump Mechanism (long term memory) 
 
The neighborhood used is known as N1 [9]. It is a 
small neighborhood of highly correlated feasible 
solutions with a high probability of improvement. 
These characteristics make N1  an excellent choice. 
The back jump mechanism makes the TSA much 
more effective allowing the use of information from 
previous runs later on. Instead of starting with an 
empty taboo list and some kind of heuristic initial 
solution, TSAB returns to the promising points of 
previous runs and tries a different route. 
TSAB’s main parameters are: 
• BestSol – Best Solution found at that time 
(Coded as an Acyclic Graph) 
• MaxInter – Maximum Number of Iterations 
without improvement 
• MaxT – Maximum size of the Taboo List  
• MaxL- Maximum size of  Back jump List 
 
 
4   The Evolutionary Algorithm 
A good implementation of an Evolutionary 
Algorithm for any problem implies a careful choice 
of representation and appropriate variation 
operators. This is especially true for the JSP due its 
technological constraints. Naive choices easily result 
in the production of infeasible sequences. 
We chose to use one of the most successful 
representations for the JSP called Permutation with 
Repetition (PWR) initially proposed by Bierwirth 
[1]. 
In this representation, the order of operations within 
the permutation is interpreted as a sequence for 
building a schedule solution. The decoding 
procedure scans each permutation from left to right 
and uses sequence information to build a schedule 
consecutively. The simple permutation of operations 
normally leads to infeasible schedules because an 
operation can only be scheduled if its predecessors 
have already been scheduled. This problem can be 
avoided using permutations with repetition in which 
operations are represented by the identifier of the 
job they belong to. The solution of the JSP with n = 
3 and m = 3 shown previously in fig. 1 can be 
represented as: [2,3,1,2,3,1,2,1,3]. 
The k th time job Ji appears in the permutation 
refers to the k th operation of job Ji.’s technological 
constraints. Since we make use of the technological 
constraints to decode permutations, no infeasible 
solutions will result.  
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This representation therefore covers all feasible 
sequences for any JSP instance but none of the 
infeasible category. There is however a large 
redundancy in this representation. The total amount 
of different permutations is: 

nm
nmPwR
!

)!.(
=    

(permutation with repetition) which is much larger 
than the number of possible sequences mnNR != . If 
we take into consideration that permutation with 
repetition only cover feasible sequences and that 
these are only a small subset of the possible 
sequences we have an idea of the magnitude of the 
redundancy.  
This redundancy can be seen in table 1: 
 

N 2 3 5 10 10
M 2 3 5 10 15
NR 4 216 2.5E+10 4E+65 2.5E+98

PwR 6 1680 6.2E+14 2.4E+92 4E+141  
Table 1: Comparison between representations 
 
The variation operators consist of a multi-crossover 
and multi-mutator.  
The multi-crossover randomly selects a crossover 
among Generalized Order Crossover (GOX), 
Generalized Position Crossover (GPX) and Uniform 
Crossover (GUX) [9]. All these operators produce 
valid permutations with repetition while preserving 
the relative order of the operations within both 
parents.  
The GOX was proposed by Bierwirth [1]. We start 
by choosing a subsequence of the father 
chromosome. The operations in this subsequence are 
removed from the mother chromosome respecting 
operation indices. We insert the subsequence in the 
position where we found the first operation deleted 
from the mother chromosome.  
 

Father 3 2 2 2 3 1 1 1 3 

Index 1 1 2 3 2 1 2 3 3 
          
Mother 1 1 3 2 2 1 2 3 3 

Index 1 2 1 1 2 3 3 2 3 
          
GOX 1 3 2 2 2 3 1 1 3 

GPX 1 3 2 2 3 1 2 1 3 

Fig. 4. GOX and GPX Crossover 
In fig. 4, the chosen subsequence is shaded in the 
father chromosome. It consists of two operations of 
Job 2 (indices 2 and 3), one operation of Job 3 
(index 2) and one operation of Job 1 (index 2). 
These operations are crossed out in the mother 
chromosome.  

In GOX we conclude by inserting the subsequence 
in the position where the first operation was found in 
the mother chromosome (circled operation). In the 
GPX, we maintain the position of the substring in 
the father.  
The GUX operator in a normal uniform crossover in 
which a child is obtained by randomly selecting 
genes from the parent chromosomes. Selected genes 
are eliminated in both parents. This procedure is 
repeated until both parents are empty.  
The multi-mutator randomly selects a mutation 
operator amongst Position Based Mutator (PBM), 
Order Based Mutator (OBM) and Swap Based 
Mutator (SBM) [9]. The PBM deletes a randomly 
chosen gene from the chromosome and reinserts it in 
a randomly chosen position (fig. 5).   
 

Parent 3 1 2 2 2 3 1 1 3 

          Child 1 2 2 3 2 3 1 1 3 

Fig. 5 - PBM Mutator 
 
The OBM simply swaps values of two randomly 
chosen genes and SBM  swaps values of randomly 
chosen adjacent genes. 
We use a multi-crossover and multi-mutator because 
they increase diversity and improve the EA’s 
efficiency [4]. 
 
 
5   The Evolutionary-Taboo Algorithm 
The comparison of the results shows that a pure 
EA’s (without local search) such as [1], are far from 
being competitive with other algorithms such as 
TSAB [12]. Including some local search greatly 
improves the EA’s performance and results, but 
even hybrid algorithms [9] are not very competitive. 
Current hybridization approaches use very simple 
local search heuristics, leaving most of the 
computation time to the EA. 
We propose a different hybridization model in 
which the EA is used more as a meta-heuristic. The 
use of a Meta–Heuristic will slow down the 
algorithm we choose to hybridize but as long as the 
original algorithm is fast and improved results are 
obtained it will still be useful and practical. 
We can compensate the loss of speed taking 
advantage of the fact that EA’s are easy to 
parallelize and to distribute over a local network 
Using distribution the time required to run a hybrid 
EA can be greatly reduced. 
Our EA will evolve a population of independent 
TSAB algorithms. Each element of the population is 
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initialized with a random initial solution and 
parameters. 
The TSAB parameters that are evolved are those 
considered to have a greater influence on the 
algorithm’s speed and results. In TSAB these are 
MaxT, MaxL, MaxIter and BestSol. Since the EA 
operators and TSAB use different representations 
every time an operator is applied, the chromosomes 
involved must first have their solutions encoded into 
permutation with repetition and results have to be 
decoded back into acyclic graphs as represented in 
fig. 6. 
 

 
Fig. 6 – Generation of new solutions 

 
The reduced use of the crossover and mutation 
operators ensures that the encoding and decoding 
procedures will not be computationally expensive. 
We will now go into the different parts of the EA in 
more detail. Our hybrid algorithm is a Generational 
EA with a replacement percentage of 5 to 10% and 
the population size is 30. A tournament selector is 
used to select the two parents. The child resulting 
from the multi-crossover is then subjected to 
mutation according to the mutation probability.  
To make new elements more competitive with the 
rest of the population, they are subjected to an 
additional number of TSAB iterations before joining 
the population. A tournament selector that returns 
the worst individual is used to select the 
chromosomes that will be replaced by the new 
individuals.  
As usual, iterations of the local search procedure 
TSAB are performed during the evaluation step of 
the EA. In our algorithm, the evaluation policies are 
responsible for deciding who is evaluated and how 
many TSAB iterations are performed on each 
individual.  

The flow chart of the basic operation of the 
Evolutionary Taboo Algorithm is shown in fig. 7. 

 
 
 
 
 

 
 

 

 
Fig. 7 – The flowchart of Evolutionary-Taboo 

Algorithm 
 
Taking a closer look at some of the EA components, 
we have: 
 
Chromosome: The chromosome consists of TSAB 
parameters (MaxT, MaxL and MaxIter), a solution 
BestSol (the best solution it found) and NumIter 
(number of iterations to be done in the next 
evaluation). The parameters that are changed by the 
variation operators are BestSol, MaxT, MaxL and 
MaxIter.  
Initialization: The initial solution for TSAB is 
obtained by generating random permutations with 
repetition. The remaining parameters are initialized 
as generating Gaussian values centered on the 
default values of each parameter. Every 
chromosome has NumIter set to InitIter (Initial 
amount of iteration performed on each individual). 
Example: 
MaxT = Gaussian(DefaultMaxT, MaxTVariance)  
Crossover: The TSAB solutions (BestSol) are 
crossed using the crossover operators described for 
permutations with repetition. The average of the 
remaining parent parameters are used for the child 
and NumIter is incremented by CxIter (Number of 
iterations performed on the child produced).  

Example:   2
21 MaxTMaxT

MaxT
+

=
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Mutator: The TSAB solutions are mutated using 
the mutators for permutations with repetition. The 
remaining parameters are also mutated using a 
Gaussian centered on previous parameter values, i.e. 

MaxT = Gaussian(MaxT, MaxTVariance) 
MaxT = Max( MinMaxT, MaxT ) 

Every parameter has a minimum value below which 
values cannot fall. This keeps parameter values in an 
acceptable range. Mutated chromosomes get an 
additional MutIter iterations. 
Evaluator: The evaluation of a chromosome consists 
of performing a certain number of TSAB iterations 
(NumIter). This number is determined by the 
evaluation policies. 
Evaluation Policies: In Evolutionary Taboo 
Algorithm, we found the need to apply several 
evaluation policies. The order in which the policies 
are applied is as follows: 

• Only New 
• Improve Best 
• Random Eval 
• Mutate Equals 
• KillTsa 

These evaluation policies will be described in more 
detail in the following section. 
 
Only New: This policy marks the new elements 
resulting from the variation operators for evaluation. 
Improve Best: This policy tries to improve the 
efficiency of the hybrid algorithm. To this end, the 5 
individuals with the lowest makespan in which the 
TSAB algorithm has still not come to an end, have 
their iteration number increased by Num1, Num2, 
Num3, Num4 e Num5 respectively. In our 
implementation there is an exponential drop in 
values from Num1 to Num5, but other strategies can 
also be applied.  
Random Eval: This policy allows any of the 
population elements to be iterated. Once again, it 
tries to attribute more computational resources to the 
better individuals. This is done by sorting the 
population by increasing makespans and then 
generating a random number (Rn) between zero and 
population size. All individuals ranking below Rn 
are iterated with an additional EvalIter Iterations i.e.: 
 NumIter = NumIter + EvalIter 
Mutate Equals: This policy is responsible for 
eliminating duplicates that may show up in the 
population that would lead a repeated search of the 
same areas in the search space (TSAB is 
deterministic). Thus, to avoid wasting computational 
resources covering the same areas, solutions are 
compared two by two and when the disparity 
between them falls below a certain threshold 
(DisparThresh), one of the solutions is mutated. The 

Disparity Function measures the degree of similarity 
between solutions, according to the formula: 

[ ]

1
)(

)()(

1

2
21

solutionofsequence
machineinioperationofpositioniOpPosSol

iOpPosSoliOpPosSolDisparity
i

−

−= ∑

 

Once again in mutated chromosomes:  
   IterDefaultMutNumIterNumIter +=  
KillTsa: To maintain the same number of active 
individuals in the population, we increase the size of 
the population by one every time a TSAB algorithm 
ends its execution i.e. reaches MaxIter iterations 
without improvement and has no more states stored 
in its back jump list. To avoid the population 
growing indefinitely, we limit the number of 
terminated TSAB’s to a maximum of MaxTSA, 
beyond which the inactive chromosome with the 
greatest makespan is mutated. Again: 
 IterDefaultMutNumIterNumIter +=  
 
 
6   Results 
As stated before the Evolutionary-Taboo algorithm 
will be less computationally efficient than TSAB. 
This should be obvious since we have a population 
of TSAB algorithms running in parallel. What we 
want to prove is that an evolutionary hybrid is better 
than a multi-start strategy. To compare these 
algorithms we performed 200 runs of the TSAB, 
initialized in the same way as in the hybrid (with 
random parameters and initial solution). Each run is 
performed until TSAB reaches its termination 
criteria. The problem instances selected are well 
known benchmark problems [8] on which TSAB has 
more difficulty in producing high quality results.  
The results in table 2 show that, contrary to what 
authors suggested [12], a multi-start strategy 
resulted in a significant improvement in results 
(2.7% on average) and for yn1 the best know 
makespan was lowered to 886. 
For the comparison to be fair, both algorithms must 
be given an equal amount of computational 
resources. In table 3, the hybrid was run 20 times 
per problem instance for 100 generations. Although 
the total number of generations in table 2 surpasses 
that of table 3 for most problem instances, results of 
the hybrid are normally better than those of the 
multi-start algorithm. The hybrid also has a lower 
standard deviation and average value. 
We can also see that the average value of iterations 
per evaluation is 14585 which show that most of the 
computational resources are used on TSAB. 
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When we increased the number of generations, the 
results of the Evolutionary-Taboo Hybrid surpassed 
our greatest expectations, improving the best known 
makespans for many problem instances ( table 4) 
If we take into consideration that for some problem 
instances only one run was needed to improve the 
best know makespan, it should be relatively easy to 
further improve some of the results shown in table 4. 
 
 The parameters used where: 
• popsize =  30 (Population size) 
• repPerc = 0.08   (Replacement Percent) 
• cross prob =  0.4 (Crossover Prob.) 
• mut prob =  0.75 (Mutation Prob.) 
• cxiter =  2500 (Crossover Iterations) 
• mutiter =  1000 (Mutation Iterations) 
• inititer =  2500 (Initial Iterations) 
• evaliter =  500 (RandomEval Iter.) 
• toursize =  2 (Tournament Size) 
• numgen =  2500 (Number of Generations) 
• NUM1 =  1050 (Improve Best Param.) 
• NUM2 =  750 
• NUM3 =  450 
• NUM4 =  300 
• NUM5 =  150 

 
7   Conclusion 
 
The evolutionary hybrid is better than a multi-start 
strategy. If we take into consideration that the TSAB 
algorithm was already one of the best algorithms for 
the JSP, we were pleased that the hybrid took it even 
further improving not only its results but also the 
best-known results for several problem instances.  
Although the hybrid requires much more 
computational resources, this is not a serious 
problem because it can be easily distributed over 
several computers greatly reducing the time needed 
to produce high quality results.. 
We expect that the same methodology will work on 
other scheduling problems provided the local search 
algorithm is fast. It could be worthwhile to try a 
different representation for the EA. Although the 
PWR coding works well by itself, its high 
redundancy suggests that it is not ideal for use in 
this kind of hybrid architecture. We would also like 
to implement the island model to try to further 
improve the algorithms results and efficiency. 

 
 

 

 
Single TSAB Multi-Start TSAB 

Problem 
Instance 

Lower 
Bound 

Best 
Known 
Make 
Span 

n m Best 
Make 
Span 

Dist to 
Best 
% 

Num. Of 
Iterations 

Best 
Make 
Span 

Average 
Make 
Span  

Stardard 
Deviation% 

Average 
Num. of 

Iterations 

Total 
Iterations 

Dist to 
Best 
% 

swv09 1604 1663 20 15 1793 7.8 63 373 1695 1777 1.9% 168 454 33 690 825 1.9% 

swv11 2983 3005 50 10 3199 6.5 152 529 3060 3226 3.1% 231 943 46 388 569 1.8% 

swv06 1591 1696 20 15 1768 4.3 55 568 1732 1789 1.9% 159 048 31 809 593 2.1% 

swv12 2972 3038 50 10 3161 4.1 80 623 3078 3261 3.1% 221 932 44 386 344 1.3% 

swv04 1450 1483 20 10 1541 3.9 101 195 1496 1543 1.5% 118 181 23 636 153 0.9% 

yn1 826 888 20 20 921 3.7 66 965 886 905 0.8% 176 939 35 387 817 -0.2% 

swv05 1421 1434 20 10 1486 3.6 24 473 1458 1528 2.2% 114 197 22 839 344 1.7% 

swv13 3104 3146 50 10 3251 3.3 98 558 3184 3303 2.0% 181 759 36 351 878 1.2% 

swv07 1446 1620 20 15 1669 3 121 385 1649 1716 1.5% 159 025 31 804 906 1.8% 

yn2 861 909 20 20 934 2.8 72 230 909 929 0.9% 162 945 32 589 058 0.0% 

swv01 1392 1418 20 10 1449 2.2 11 291 1439 1478 1.4% 108 354 21 670 761 1.5% 

la29 1142 1153 20 10 1177 2.1 43 683 1164 1180 0.9% 84 540 16 908 052 1.0% 

     Avg 3.94%   Avg 1.8%  Avg 1.25% 

Table 2 – Results using Multi-start TSAB 
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EvolutionaryTaboo Hybrid 
Problem 
Instance 

Lower 
Bound 

Best 
Known 
Make 
Span 

n M Best 
Make 
Span 

Average 
Make 
Span 

Std. 
Dev. % 

Num. 
of 

Evals 

Average 
Num. of Iter. 

 Total 
Iterations 

 Iteration / 
evaluations 

Dist ao 
Melhor % 

swv09 1604 1663 20 15 1682 1704.7 0.8% 92 1 331 502 26 573 088 14 473 1.14% 

swv11 2983 3005 50 10 3044 3104.4 0.7% 91 1 327 057 26 541 148 14 527 1.30% 

swv06 1591 1696 20 15 1705 1721.4 0.5% 91 1 317 484 26 349 683 14 407 0.53% 

swv12 2972 3038 50 10 3098 3154.9 0.9% 92 1 330 605 26 612 100 14 510 1.97% 

swv04 1450 1483 20 10 1487 1497 0.4% 91 1 340 538 26 810 754 14 683 0.27% 

yn1 826 888 20 20 889 894.15 0.3% 92 1 360 294 27 205 887 14 730 0.11% 

swv05 1421 1434 20 10 1445 1454.1 0.3% 93 1 333 471 26 669 418 14 377 0.77% 

swv13 3104 3146 50 10 3155 3194.8 0.9% 92 1 320 562 26 411 247 14 370 0.29% 

swv07 1446 1620 20 15 1640 1664 0.8% 93 1 340 624 26 812 484 14 454 1.23% 

yn2 861 909 20 20 909 913.75 0.3% 93 1 362 551 27 251 022 14 722 0.00% 

swv01 1392 1418 20 10 1428 1435.2 0.3% 93 1 370 974 27 419 486 14 679 0.71% 

la29 1142 1153 20 10 1162 1167.3 0.2% 92 1 386 030 27 720 597 15 098 0.78% 

       0.5%    14585.8 0.76% 

Table 3 – Results using Evolutionary Hybrid (100 Generations) 
 

TSAB EvolutionaryTaboo Hybrid 
Prob. LB 

Best 
Known 
Make 
Span 

n m #o Best 
Make 
Span 

Dist to 
Best 
% 

Num. of 
Iter. 

Best Make 
Span 

Mean 
Make Span 

Num. of 
Iterations 

MakeSpan 
Improvement % 

swv09 1604 1663 20 15 300 1793 7.82 63 373 1661 1664.4 63 769 734 0.1% 

swv11 2983 3005 50 10 500 3199 6.46 152 529 2987 2998.3 75 229 511 0.6% 

swv15 2885 2940 50 10 500 3121 6.16 78 023 2913 2924 295 460 198 0.9% 

abz7 656 656 20 15 300 687 4.73 55 414 658 658 67 494 609 -0.3% 

swv03 1369 1398 20 10 200 1459 4.36 8 473 1403 1409 118 875 055 -0.4% 

swv06 1591 1696 20 15 300 1768 4.25 55 568 1695 1695 74 487 227 0.1% 

swv12 2972 3038 50 10 500 3161 4.05 80 623 3023 3031.6 124 861 250 0.5% 

swv04 1450 1483 20 10 200 1541 3.91 101 195 1476 1476 54 151 075 0.5% 

yn1 826 888 20 20 400 921 3.72 66 965 886 887 168 178 730 0.2% 

swv05 1421 1434 20 10 200 1486 3.63 24 473 1431 1432.5 97 386 922 0.2% 

swv13 3104 3146 50 10 500 3251 3.34 98 558 3105 3105 275 907 453 1.3% 

swv07 1446 1620 20 15 300 1669 3.02 121 385 1608 1608 270 187 563 0.7% 

yn2 861 909 20 20 400 934 2.75 72 230 906 906.5 123 356 300 0.3% 

swv01 1392 1418 20 10 200 1449 2.19 11 291 1417 1417.5 53 773 767 0.1% 

la29 1142 1153 20 10 200 1177 2.08 43 683 1153 1157.1 21 333 804 0.0% 

Table 4 – Results using Evolutionary Hybrid 
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