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Abstract: - In this paper we propose a framework for using self-organizing networks for agent based intrusion 
detection system.  A specific feature of this model is that the agent uses self organizing algorithm for pattern 
classification from security logs and self organizing maps for visualization. We have developed a prototype for 
this framework. This paper discusses also the issues of combining intelligent agent technology with the 
self-organizing networks for intrusion detection.  
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1 Introduction 
Intrusions detections for computer systems are 
rapidly becoming one of the most important threats 
for information systems. A major concern is the high 
rate of false alarms produced by Intrusion Detection 
Systems which undermine the applicability of such 
systems. Over the past few years, agent based 
intrusion detecting systems have emerged as a new 
solution [2]. Agents represent a new generation of 
computing systems and are one of the more recent 
developments in Intrusion Detection Technology.  
Unlike an expert system, an agent is embedded in its 
environment. It can dynamically construct new rules 
as it works, and is capable of using sensors to monitor 
environment and then take protective actions.  This 
paper describes an agent based system which uses 
intelligent modules, such as polynomial neural 
network and self organizing maps for detection of 
anomalies and intrusions. We propose a framework 
which provides early warning when attack activities 
are detected. Fuzzy Agent-Based Intrusion Detection 
System (FABIDS) provides a framework for 
integrating data collecting sensors, database, 
algorithms and agents.  
 
2 Intrusion Detection Systems 
In general, there are three categories of Intrusion 
Detection systems: host based, network based, and 
application based. This classification depends on the 
type of sensors they use to collect data in order to 
detect possible attacks. In the host based approach 
every host has its own IDS agent and it collects data 
by monitoring connection attempts to various ports. 
A network based IDS collects data at the network 
level. Their sensors and agents are located 
somewhere in the network and monitor network 

traffic. The third type processes data from running 
applications as input. Intrusion Detection Systems 
are usually not implemented by using just a single 
concept, but multiple concepts to gather information 
to detect anomalous behavior in the system.  Agents 
are autonomous software entities that can act 
independent from other agents and perform different 
tasks. Agents are applications with predefined goals 
and run autonomously. They can for example, 
monitor an environment and issue alerts or start 
intervention actions based on how they are 
programmed. In the case of intrusion detection agents 
can serve as detectives or monitors by recognizing 
and retrieving data for analysis and develop real-time 
alerts. Intelligent agent can assists users and acts on 
their behalf. Agents can automate repetitive tasks, 
remember events, summarize complex data, learn, 
and make recommendations. Intelligent agents 
continuously perform two main functions, which 
differentiate them from other software programs: 
they collect data from environment in which they 
operate and reason to interpret data and suggest 
actions. Agents can reduce intrusion detection 
workload by sifting through large amounts of data for 
evidence gathering. While there are multiple 
definitions of intelligent agents, their essential 
characteristic in intrusion detection is that agents are 
software computing entities that perform intrusion 
detection tasks autonomously. Agent technology is 
not a new single technology, but rather the integrated 
application of a number of concepts tools and 
technologies. Agent tasks include: carry common 
intrusion types and pattern to correlate simple alerts; 
send back correlated alerts; communicate with other 
agents. Developers normally do not set out to 
construct an agent but more typically they add new 
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functionality to existing application. In order to 
define the characteristics of an agent further and to 
distinguish them from any other type of program, the 
following lists attributes of typical agent systems:  
Autonomy: being able to carry out tasks 
independently is the most important feature of an 
agent.  
Purpose: agents perform a set of tasks on behalf of a 
user or other agents that are explicitly approved and 
programmed.  
Perception: agents need to be able to affect is 
environment using some type of predefined 
mechanisms.  
Communications: an agent needs to be able to 
interact with the users and other agents. 
Intelligence: an agent needs to be able to interpret 
monitored events to make appropriate decisions.  
Agents represent a new generation of computing 
systems and are one of the more recent developments 
in Intrusion Detection Technology.   
 
3 IDS Design Framework 
We developed an intrusion detection architecture 
called Fuzzy Agent-Based Intrusion Detection 
System (FABIDS). The architecture of this system is 
presented below: 
 
 

 
 
 

Fig.1: FABIDS Architecture  
 
The system consists of multiple intelligent decision 
support modules, such as fuzzy inference module, 
classifier, database, etc. This framework integrates 
several modules such as data collecting sensors, 
database, fuzzy pattern classification etc [19]. The 
heart of the controller inference engine is a set of 
if-then rules whose antecedents and consequences are 
made up of linguistic variables and associated fuzzy 

membership functions. Consequences from fired 
rules are numerically aggregated by fuzzy set union 
and then defuzzified to yield a single crisp output as 
the control.  Since the differences between the normal 
and abnormal activities are not distinct, but rather 
fuzzy, the Fuzzy Inference module can reduce false 
alarms in determining intrusive activities. For 
detailed description see [20]. We are processing log 
files using event correlation engine similar to  Risto 
Vaarandi’s powerful Perl event correlation engine 
described in his article ‘A Data Clustering Algorithm 
for Mining Patterns From Event Logs’ published in 
Proceedings of the 2003 IEEE Workshop on IP 
Operations and Management  [13].  Our algorithm, 
with similarities to the Apriori and Max-Miner 
algorithms is implemented in Java. Recently, we 
have experimented with two new modules: neural 
networks based and self organizing based. 
 
3.1 Neural network based module 
Artificial neural network technology offers a 
potential solution to intrusion detection problem. 
Neural networks can perform clustering or 
categorization. This is also known as unsupervised 
pattern classification. A solution to a clustering 
problem shows the similarities between patterns and 
structures the data so that similar patterns are in the 
same group. The Self-Organizing Map (SOM) neural 
network algorithm formulated by Kohonen [3] is 
good at reducing multidimensional data to fewer 
dimensions, making it a good solution to the 
clustering problem. In this paper we investigate the 
application of self-organization modeling techniques, 
such as the Group Method of Data Handling 
(GMDH) in modeling financial systems. A 
combination of parametric and non-parametric 
GMDH algorithms is introduced to perform the one 
step ahead prediction [4] Group Method of Data 
Handling (GMDH) creates the model that includes 
only the most influential variables. The GMDH 
algorithms are based on a sorting-out procedure of 
model simulation and provide the best model 
according to the criterion given by the researcher. 
This model describes relations between their 
elements and the state of the whole system. Most of 
GMDH algorithms use polynomial referenced 
functions.  
General connections between input and output 
variables can be shown by Volterra functional series. 
A discrete analogue of Volterra series is 
Kolmogorov-Gabor polynomial  
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input data,  
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vector of coefficients or weights.  
 
Input data might consist of independent variables, 
functional expressions or finite residues. The key 
feature of GMDH algorithms is a partition of input 
data into two subsets. The first one is used to 
compute coefficients of the polynomial using the list 
square technique and to evaluate internal error by 
some criterion. The second one is used to calculate 
external error using information, which is not applied 
for the coefficients computations. 
 
3.2 SOM based visualization module 
Self Organizing Maps are a technique used for 
finding groups or clusters within a dataset. The 
difference between using SOMs instead of networks 
for classification and clustering is that no targets are 
needed when using SOMs. The SOM will 
automatically find groups within the data.  The main 
properties of Self-Organizing Maps [3] are as 
follows: The mapping represents the full set of data in 
an ordered form. Mutual similarities in the data 
samples will be represented as geometric 
relationships on the map. A SOM can be trained on 
the multi-dimensional input space (x1, x2,… xN,), and 
the resulting map used to classify each input. This 
relies upon the topology of the input space where the 
similarity of each of the inputs is important: 

 

 
 

Figure 2: SOM network  

 
The winning neuron for an input to a SOM is defined 
as: 

( ) jj
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where i(x) is the winning neuron index, wj is the 
weight vector for neuron j and the Euclidean distance 
metric is used: 
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The weights in a SOM are updated at time step t+1for 
neuron j using: 

 
( ) ( ) ( ) ( ) ( )( )twxthttwtw jijjj −+=+ ,1 η

 
where η(t) is the learning rate  
and hj,I(t) is the neighborhood for neuron j  
given the winning neuron i at time step t. 
 
The structures in the data set can automatically be 
visualized on the map whereby the degree of 
clustering is represented by shades of gray (see Fig.3) 
 
 

 
 

 
Fig. 3: Visualization of a SOM 

 
4 Experiments 
While conducting the research for this paper, the 
researcher was provided full access to the SNORT 
logs [19, 20] The basic SNORT architecture is made 
up of three main parts, the packet decoder, the 
detection engine and the alerting and logging system. 
The packet decoder can collect TCP/IP traffic at a 
blinding rate. Before the engine can compare any of 
the signatures in its database to the packets, the 
packet data is passed through a number of 
user-configurable preprocessors. These 
preprocessors can reassemble TCP packets into 
sessions, handle fragmented traffic, and even detect 
scans and probes. After the preprocessors have 
formatted the packet data to make it easier to search, 
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the detection engine examines the data for contents 
that match any of the signatures in its database. If any 
of the signatures are matched, then the action 
prescribed for the signature is taken by the third part 
of SNORT, the alert/log system. If configured, 
SNORT will also capture the packet data relating to 
the alert and store it on the hard drive. The alert 
system will publish alerts to an area on the file system 
for examination or to a remote analysis console 
through standard remote log formats like syslog. To 
encode the descriptions of various attacks a range of 
positive integers is assigned to each of the attack in 
the following way.   
 
Entry point (1 bit of information)  Web server 
software (ISAPI filters, Perl modules, etc.) or web 
application (HTML, server-side and client-side 
scripts, server components, SQL sentences, etc.)   
 
Vulnerability (3 bits of information) Code Injection, 
HTML manipulation, Overflows, Misconfiguration 
(default directories, sample applications, guest 
accounts, etc.) X if Not applicable,  
 
Threat (3 bits of information): Authentication , 
Authorization, Confidentiality, Integrity, 
Availability,  
 
Auditing Action (4 bits of information): Read, 
Modify, Delete, Fabricate, Impersonate, Bypass, 
Search, Interrupt, Probe, Unknown,  
 
Length (1 bit of information): Expected, Unexpected 
(unusually long), X - Not applicable,  
 
HTTP element (7 bits of information): GET/POST, 
HOST, COOKIE, REFERER, TRANSLATE, 
SEARCH, PROPFIND   
 
Target (1 bit of information)  Web application 
(source files, customers’ data, etc.), Platform (OS 
command execution, system accounts, network, etc.)  
 
Scope (1 bit of information) Local (one user 
affected), Universal (all users affected), X - Not 
applicable   
 
Privileges (1 bit of information), 0 - Unprivileged 
user, 1 - Administrator/root, X - Not applicable.  
 
Let us consider typical common attacks directed 
against different types of web servers and platforms: 
0, X, 1, 9, 0, 01, 1, X, 0 
0, 1, 2, 0, 0, 01, 0, X, X  
1, 0, 1, 3, 0, 01, 1, X, 0 

Let us explain the last description. The web 
application allows SQL injection. The attacker 
exploits this vulnerability by executing a SQL Server 
extended procedure and adds himself to the OS users. 
These encoding vectors are useful in a number of 
ways, especially in intrusion detection systems. An 
intrusion detection system (IDS) detects and reports 
attempts to break into or misuse networked computer 
systems in real time. A traditional IDS consists of 
three functional components: A monitoring 
component, such as a packet capturer, which collects 
traffic data. An inference component, which analyzes 
the captured data to determine whether it corresponds 
to normal activity or malicious activity. An alerting 
component, which generates a response when an 
attack has been detected. This response can be 
passive such as writing an entry in an event log or 
active such as changing configuration rules in the 
firewall to block the attacker’s IP address. Coding 
web attacks into vectors could helps the post 
processing of IDS alerts. Encoding web attacks into 
vectors helps the application-level firewall to decide 
about the action to be taken when an attack is 
detected. The most important advantage of this 
scheme over data compression methods is that the 
decompression is not needed in the applications. Real 
world examples of attacks against different 
platforms, web servers, and applications are given to 
illustrate how this taxonomy can be applied. In our 
experiments we also used various sets of benchmark 
data such as the KDD Cup 1999 Intrusion detection 
contest data, SNORT logs and real-time data.  The 
KDD Cup 1999 data was prepared by the 1998 
DARPA Intrusion Detection Evaluation program by 
MIT Lincoln Labs. Lincoln labs set up an 
environment consisting of a local-area network 
simulating a typical U.S. Air Force LAN. They 
acquired nine weeks of raw TCPdump data that was 
processed into connection records. The original data 
contains 744MB of data with 4.94 million records. 
The dataset has 41 attributes for each connection 
record plus one class label specifying one of 24 
attacks or normal condition. All these attacks fall into 
four major categories: Denial of Service (DoS), 
Remote to User (R2U), User to Root (U2R) and 
Probing (Probe). While conducting the research for 
this paper we were provided full access to the 
SNORT logs from one of the departmental servers 
[20]   The FABIDS sensors were also monitoring 
network devices: a NAT Router/Firewall and a web 
server. The NAT Router/Firewall was configured to 
allow Internet access to the web server, by mapping 
selected ports to the web server behind the NAT 
Router/Firewall on the internal network. This 
configuration was selected to allow a single attack to 
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simultaneously attack the NAT Router/Firewall and 
the web server so we could generate events logs with 
identical timestamps to ensure that we could 
successfully merge data from multiple sensors. 
 
5 Conclusion 
As computer attacks become more and more 
sophisticated, the need to provide effective intrusion 
detection methods increases. Network-based 
distributed attacks are especially difficult to detect 
and require coordination among different intrusion 
detection components. We propose a solution that 
responds to such requirements      
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