
Using Self-Organizing Networks for Intrusion Detection

RICHARD A. WASNIOWSKI
Computer Science Department

California State University
Carson, CA 90747, USA

Abstract: - In this paper we propose a framework for using self-organizing networks for agent based intrusion
detection system. A specific feature of this model is that the agent uses self organizing algorithm for pattern
classification from security logs and self organizing maps for visualization. We have developed a prototype for
this framework. This paper discusses also the issues of combining intelligent agent technology with the
self-organizing networks for intrusion detection.

Key-Words: - Intrusion detection system, neural networks, self-organizing maps, visualization.

1 Introduction
Intrusions detections for computer systems are
rapidly becoming one of the most important threats
for information systems. A major concern is the high
rate of false alarms produced by Intrusion Detection
Systems which undermine the applicability of such
systems. Over the past few years, agent based
intrusion detecting systems have emerged as a new
solution [2]. Agents represent a new generation of
computing systems and are one of the more recent
developments in Intrusion Detection Technology.
Unlike an expert system, an agent is embedded in its
environment. It can dynamically construct new rules
as it works, and is capable of using sensors to monitor
environment and then take protective actions. This
paper describes an agent based system which uses
intelligent modules, such as polynomial neural
network and self organizing maps for detection of
anomalies and intrusions. We propose a framework
which provides early warning when attack activities
are detected. Fuzzy Agent-Based Intrusion Detection
System (FABIDS) provides a framework for
integrating data collecting sensors, database,
algorithms and agents.

2 Intrusion Detection Systems
In general, there are three categories of Intrusion
Detection systems: host based, network based, and
application based. This classification depends on the
type of sensors they use to collect data in order to
detect possible attacks. In the host based approach
every host has its own IDS agent and it collects data
by monitoring connection attempts to various ports.
A network based IDS collects data at the network
level. Their sensors and agents are located
somewhere in the network and monitor network

traffic. The third type processes data from running
applications as input. Intrusion Detection Systems
are usually not implemented by using just a single
concept, but multiple concepts to gather information
to detect anomalous behavior in the system. Agents
are autonomous software entities that can act
independent from other agents and perform different
tasks. Agents are applications with predefined goals
and run autonomously. They can for example,
monitor an environment and issue alerts or start
intervention actions based on how they are
programmed. In the case of intrusion detection agents
can serve as detectives or monitors by recognizing
and retrieving data for analysis and develop real-time
alerts. Intelligent agent can assists users and acts on
their behalf. Agents can automate repetitive tasks,
remember events, summarize complex data, learn,
and make recommendations. Intelligent agents
continuously perform two main functions, which
differentiate them from other software programs:
they collect data from environment in which they
operate and reason to interpret data and suggest
actions. Agents can reduce intrusion detection
workload by sifting through large amounts of data for
evidence gathering. While there are multiple
definitions of intelligent agents, their essential
characteristic in intrusion detection is that agents are
software computing entities that perform intrusion
detection tasks autonomously. Agent technology is
not a new single technology, but rather the integrated
application of a number of concepts tools and
technologies. Agent tasks include: carry common
intrusion types and pattern to correlate simple alerts;
send back correlated alerts; communicate with other
agents. Developers normally do not set out to
construct an agent but more typically they add new

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp90-94)

functionality to existing application. In order to
define the characteristics of an agent further and to
distinguish them from any other type of program, the
following lists attributes of typical agent systems:
Autonomy: being able to carry out tasks
independently is the most important feature of an
agent.
Purpose: agents perform a set of tasks on behalf of a
user or other agents that are explicitly approved and
programmed.
Perception: agents need to be able to affect is
environment using some type of predefined
mechanisms.
Communications: an agent needs to be able to
interact with the users and other agents.
Intelligence: an agent needs to be able to interpret
monitored events to make appropriate decisions.
Agents represent a new generation of computing
systems and are one of the more recent developments
in Intrusion Detection Technology.

3 IDS Design Framework
We developed an intrusion detection architecture
called Fuzzy Agent-Based Intrusion Detection
System (FABIDS). The architecture of this system is
presented below:

Fig.1: FABIDS Architecture

The system consists of multiple intelligent decision
support modules, such as fuzzy inference module,
classifier, database, etc. This framework integrates
several modules such as data collecting sensors,
database, fuzzy pattern classification etc [19]. The
heart of the controller inference engine is a set of
if-then rules whose antecedents and consequences are
made up of linguistic variables and associated fuzzy

membership functions. Consequences from fired
rules are numerically aggregated by fuzzy set union
and then defuzzified to yield a single crisp output as
the control. Since the differences between the normal
and abnormal activities are not distinct, but rather
fuzzy, the Fuzzy Inference module can reduce false
alarms in determining intrusive activities. For
detailed description see [20]. We are processing log
files using event correlation engine similar to Risto
Vaarandi’s powerful Perl event correlation engine
described in his article ‘A Data Clustering Algorithm
for Mining Patterns From Event Logs’ published in
Proceedings of the 2003 IEEE Workshop on IP
Operations and Management [13]. Our algorithm,
with similarities to the Apriori and Max-Miner
algorithms is implemented in Java. Recently, we
have experimented with two new modules: neural
networks based and self organizing based.

3.1 Neural network based module
Artificial neural network technology offers a
potential solution to intrusion detection problem.
Neural networks can perform clustering or
categorization. This is also known as unsupervised
pattern classification. A solution to a clustering
problem shows the similarities between patterns and
structures the data so that similar patterns are in the
same group. The Self-Organizing Map (SOM) neural
network algorithm formulated by Kohonen [3] is
good at reducing multidimensional data to fewer
dimensions, making it a good solution to the
clustering problem. In this paper we investigate the
application of self-organization modeling techniques,
such as the Group Method of Data Handling
(GMDH) in modeling financial systems. A
combination of parametric and non-parametric
GMDH algorithms is introduced to perform the one
step ahead prediction [4] Group Method of Data
Handling (GMDH) creates the model that includes
only the most influential variables. The GMDH
algorithms are based on a sorting-out procedure of
model simulation and provide the best model
according to the criterion given by the researcher.
This model describes relations between their
elements and the state of the whole system. Most of
GMDH algorithms use polynomial referenced
functions.
General connections between input and output
variables can be shown by Volterra functional series.
A discrete analogue of Volterra series is
Kolmogorov-Gabor polynomial

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp90-94)

0
1 1 1 1 1 1

N N N N N N

i i ij i j ijk i j k
i i j i j k

y a a x a x x a x x x
= = = = = =

= + + + +...,∑ ∑∑ ∑∑∑

where y- output variable vector,

1 2()Nx x x, ,...,
input data,

1()N ij ijka a a a, ..., , ..., , ..., , ...
vector of coefficients or weights.

Input data might consist of independent variables,
functional expressions or finite residues. The key
feature of GMDH algorithms is a partition of input
data into two subsets. The first one is used to
compute coefficients of the polynomial using the list
square technique and to evaluate internal error by
some criterion. The second one is used to calculate
external error using information, which is not applied
for the coefficients computations.

3.2 SOM based visualization module
Self Organizing Maps are a technique used for
finding groups or clusters within a dataset. The
difference between using SOMs instead of networks
for classification and clustering is that no targets are
needed when using SOMs. The SOM will
automatically find groups within the data. The main
properties of Self-Organizing Maps [3] are as
follows: The mapping represents the full set of data in
an ordered form. Mutual similarities in the data
samples will be represented as geometric
relationships on the map. A SOM can be trained on
the multi-dimensional input space (x1, x2,… xN,), and
the resulting map used to classify each input. This
relies upon the topology of the input space where the
similarity of each of the inputs is important:

Figure 2: SOM network

The winning neuron for an input to a SOM is defined
as:

() jj
wxxi −= minarg

where i(x) is the winning neuron index, wj is the
weight vector for neuron j and the Euclidean distance
metric is used:

()∑
=

−=−=
m

i
ii wxwxd

1

2

The weights in a SOM are updated at time step t+1for
neuron j using:

() () () () ()()twxthttwtw jijjj −+=+ ,1 η

where η(t) is the learning rate
and hj,I(t) is the neighborhood for neuron j
given the winning neuron i at time step t.

The structures in the data set can automatically be
visualized on the map whereby the degree of
clustering is represented by shades of gray (see Fig.3)

Fig. 3: Visualization of a SOM

4 Experiments
While conducting the research for this paper, the
researcher was provided full access to the SNORT
logs [19, 20] The basic SNORT architecture is made
up of three main parts, the packet decoder, the
detection engine and the alerting and logging system.
The packet decoder can collect TCP/IP traffic at a
blinding rate. Before the engine can compare any of
the signatures in its database to the packets, the
packet data is passed through a number of
user-configurable preprocessors. These
preprocessors can reassemble TCP packets into
sessions, handle fragmented traffic, and even detect
scans and probes. After the preprocessors have
formatted the packet data to make it easier to search,

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp90-94)

the detection engine examines the data for contents
that match any of the signatures in its database. If any
of the signatures are matched, then the action
prescribed for the signature is taken by the third part
of SNORT, the alert/log system. If configured,
SNORT will also capture the packet data relating to
the alert and store it on the hard drive. The alert
system will publish alerts to an area on the file system
for examination or to a remote analysis console
through standard remote log formats like syslog. To
encode the descriptions of various attacks a range of
positive integers is assigned to each of the attack in
the following way.

Entry point (1 bit of information) Web server
software (ISAPI filters, Perl modules, etc.) or web
application (HTML, server-side and client-side
scripts, server components, SQL sentences, etc.)

Vulnerability (3 bits of information) Code Injection,
HTML manipulation, Overflows, Misconfiguration
(default directories, sample applications, guest
accounts, etc.) X if Not applicable,

Threat (3 bits of information): Authentication ,
Authorization, Confidentiality, Integrity,
Availability,

Auditing Action (4 bits of information): Read,
Modify, Delete, Fabricate, Impersonate, Bypass,
Search, Interrupt, Probe, Unknown,

Length (1 bit of information): Expected, Unexpected
(unusually long), X - Not applicable,

HTTP element (7 bits of information): GET/POST,
HOST, COOKIE, REFERER, TRANSLATE,
SEARCH, PROPFIND

Target (1 bit of information) Web application
(source files, customers’ data, etc.), Platform (OS
command execution, system accounts, network, etc.)

Scope (1 bit of information) Local (one user
affected), Universal (all users affected), X - Not
applicable

Privileges (1 bit of information), 0 - Unprivileged
user, 1 - Administrator/root, X - Not applicable.

Let us consider typical common attacks directed
against different types of web servers and platforms:
0, X, 1, 9, 0, 01, 1, X, 0
0, 1, 2, 0, 0, 01, 0, X, X
1, 0, 1, 3, 0, 01, 1, X, 0

Let us explain the last description. The web
application allows SQL injection. The attacker
exploits this vulnerability by executing a SQL Server
extended procedure and adds himself to the OS users.
These encoding vectors are useful in a number of
ways, especially in intrusion detection systems. An
intrusion detection system (IDS) detects and reports
attempts to break into or misuse networked computer
systems in real time. A traditional IDS consists of
three functional components: A monitoring
component, such as a packet capturer, which collects
traffic data. An inference component, which analyzes
the captured data to determine whether it corresponds
to normal activity or malicious activity. An alerting
component, which generates a response when an
attack has been detected. This response can be
passive such as writing an entry in an event log or
active such as changing configuration rules in the
firewall to block the attacker’s IP address. Coding
web attacks into vectors could helps the post
processing of IDS alerts. Encoding web attacks into
vectors helps the application-level firewall to decide
about the action to be taken when an attack is
detected. The most important advantage of this
scheme over data compression methods is that the
decompression is not needed in the applications. Real
world examples of attacks against different
platforms, web servers, and applications are given to
illustrate how this taxonomy can be applied. In our
experiments we also used various sets of benchmark
data such as the KDD Cup 1999 Intrusion detection
contest data, SNORT logs and real-time data. The
KDD Cup 1999 data was prepared by the 1998
DARPA Intrusion Detection Evaluation program by
MIT Lincoln Labs. Lincoln labs set up an
environment consisting of a local-area network
simulating a typical U.S. Air Force LAN. They
acquired nine weeks of raw TCPdump data that was
processed into connection records. The original data
contains 744MB of data with 4.94 million records.
The dataset has 41 attributes for each connection
record plus one class label specifying one of 24
attacks or normal condition. All these attacks fall into
four major categories: Denial of Service (DoS),
Remote to User (R2U), User to Root (U2R) and
Probing (Probe). While conducting the research for
this paper we were provided full access to the
SNORT logs from one of the departmental servers
[20] The FABIDS sensors were also monitoring
network devices: a NAT Router/Firewall and a web
server. The NAT Router/Firewall was configured to
allow Internet access to the web server, by mapping
selected ports to the web server behind the NAT
Router/Firewall on the internal network. This
configuration was selected to allow a single attack to

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp90-94)

simultaneously attack the NAT Router/Firewall and
the web server so we could generate events logs with
identical timestamps to ensure that we could
successfully merge data from multiple sensors.

5 Conclusion
As computer attacks become more and more
sophisticated, the need to provide effective intrusion
detection methods increases. Network-based
distributed attacks are especially difficult to detect
and require coordination among different intrusion
detection components. We propose a solution that
responds to such requirements

References:
[1] S. Axelsson. “Intrusion Detection Systems: A

Taxonomy and Survey.” Technical Report No
99-15, Dept of Computer Engineering, Chalmers
University of Technology, Sweden, March 2000

[2] J. Balasubramaniyan, J.O. Garcia-Fernandez, D.
Isacoff, E.H. Spafford, and D.M. Zamboni. “An
Architecture for Intrusion Detection using
Autonomous Agents.” Technical Report, Dept.
of Computer Science, Purdue Univ., West
Lafayette, IN, 1998

[3] T. Kohonen, Self-Organizing Map, 2nd ed.,
Springer-Verlag, Berlin, 1995.

[4] J.A. Muller, A.G. Ivakhnenko and F. Lemke,
GMDH algorithms for complex system modeling,
Mathematical and Computer Modeling of
Dynamical Systems, vol.4. no.4. pp. 275-316,
1998.

[5] L. Anastasakis and N. Mort, The development of
self-organization techniques in modeling: a
review of the group method of data handling
(GMDH), ACSE Research Report No 813,
University of Sheffield, UK, 2001 or
www.shef.ac.uk/acse/research/students/l.anastasa
kis/813.pdf

[6]T. Kohonen, S. Kasaki, K. Lagus, et.al.
Self-Organization of a massive document
collection. IEEE transaction of Neural Networks
2000, V.11, 3, pp.574-585.

[7] H.R. Madala and A.G. Ivakhnenko, Inductive
Learning Algorithms for Complex Systems
Modeling, Boca Raton: CRC Inc., 1994.

[8] A.G. Ivakhnenko, Polynomial theory of complex
systems, IEEE Trans. Syst. Man Cybern. SMC-1
(1971) 364–378.

[9] S.J. Farlow (Ed.), Self-organizing Method in
Modeling: GMDH Type Algorithm, Marcel
Dekker, New York, 1984.

[10] Kohonen, Teuvo. The Self-Organizing Map.
Proceedings of the IEEE. Vol. 78.n0, Sept 1990. p
1464-1480.

[11] Kasabov Nikola. Foundations of Neural
Networks, Fuzzy Systems, and Knowledge
Engineering. MIT Press. Cambridge
Massachusetts. 1996.

[12] Teuvo Kohonen, Erkki Oja, Olli Simula, Ari
Visa, and Jari Kangas. Engineering Applications
of the Self-Organizing Map. Proceedings of the
IEEE Vol. 884 no 10 October 1996.

 [13]Risto Vaarandi, “SEC - a Lightweight Event
Correlation Tool”, Proceedings of the 2nd IEEE
Workshop on IP Operations and Management,
2002.

[14]D. Bulatovic and D. Velasevic, “A Distributed
Intrusion Detection System Based on Bayesian
Alarm Networks,” In Proc. of CQRE’99, LNCS
1740, pp. 219–228, 1999.

[15]J. Cannady. “Artificial Neural Networks for
Misuse Detection.” In Proc. of the 21st National
Information Systems Security Conf., VA, 1998,
pp. 441-454

[16] C.A. Carver, J.M. Hill, J.R. Surdu, and U.W.
Pooch. “A Methodology for using Intelligent
Agents to Provide Automated Intrusion
Response.” In Proc. of the IEEE Systems, Man,
and Cybernetics Information Assurance and
Security Workshop, West Point, NY, 2000

[17] Richard E. Neapolitan. Probabilistic Reasoning
in Expert Systems. Wiley, 1990.

[18] S. Northcutt, Network Intrusion Detection: An
Analyst's Handbook, New Riders, 1999

[19]Wasniowski R A, Intrusion Detection System
with Fuzzy Logic Agent, RAW-TR-01-09

[20]Wasniowski RA, Agent Based Design
Methodology, RAW-TR-00-12

[21]Wooldridge, M., and Jennings, N. (1995)
"Intelligent Agents: Theory and Practice,"
Knowledge Engineering Review, Vol. 10, No. 2.

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp90-94)

