
Two-phase multiobjective optimization

ALBERTO CANCELA, JULIÁN DORADO, JUAN R. RABUÑAL, ALEJANDRO PAZOS
Departamento de las Tecnologías de la Información y las Comunicaciones

Universidade da Coruña
Facultade de Informática, Campus de Elviña 15071, A Coruña

SPAIN

Abstract: - This work proposes a genetic algorithm (GA) based approach for the search of the Pareto optimal set
of a multiobjective optimization problem. First the global population is divided into various subpopulations. The
algorithm operation consists of two phases: firstly each subpopulation tries to optimize a different objective; later
the algorithm searches for good compromise solutions between objectives. Information is exchanged by means
of the migration of individuals during the second phase. A weighted sum is used for fitness calculation. Weight
vectors are randomly generated for each selection event, which creates a wide range of search directions. The
good behaviour of the proposed algorithm becomes visible in its application to some continuous problems.

Key-Words: - Multiobjective, optimization, genetic algorithm, subpopulation, migration, memetic

1 Introduction
In multiobjective optimization, obtaining the Pareto-
optimal front by means of GAs [1] implies two main
objectives: finding solutions that are close to the
front, and obtaining a uniform distribution of the
points. At present, there is no complete theoretical
basis that sustains the use of GAs for multiobjective
optimization. However, various methods have been
proposed [1] [2] and studies have been carried out to
guarantee the convergence of the obtained non-
dominated solutions [1] [2] to the Pareto optimal set
and, more recently, to maintain the diversity [3].

This work presents a new approach that tries to
improve the convergence towards the optimal front.
Section 2 contains a description of the proposed two-
phase method. An algorithm following the two-phase
approach is presented in section 3. The efficiency of
the algorithm is compared with other multiobjective
genetic algorithms by applying it to various
continuous problems. The results obtained are
summarized in section 4.

2 The two-phase procedure
Usually it is much more difficult to optimize a
function with many objectives than a function with
only one objective. The interactions between the
different objectives, mainly when not lineal, greatly
increase the difficulty of multiobjective problems.
The proposed approach is based on the ‘Divide and
Conquer’ paradigm. The approach can be divided in
two phases.

During the first phase the main objective is to find
good solutions for each of the objectives
independently of the other. To achieve this goal we

propose the division of the global population into
subpopulations, each optimizing one objective. The
separation of the individuals into smaller groups
allows a greater convergence speed in each
subpopulation. Also, if there exists certain
independence between the subpopulations, each of
them can converge towards a different region of the
search space, helping to maintain some degree of
diversity. Another benefit of the use of
subpopulations is that it facilitates the
implementation of a parallel GA: just processing each
subpopulation in a different machine. Other
approaches based on the use of subpopulations have
been published [4, 5]. A metapopulation evolutionary
algorithm (MEA) for multiobjective optimisation
problems was recently proposed [5]. In that work
elements from landscape ecology and population
dynamics are used to develop an algorithm that
combines 'diffusion' and 'island' properties. During
the second phase the search is centered on finding
good compromise solutions between the objectives.
At this stage, each subpopulation is allowed to
periodically export its best individuals, so that, when
combined with those of other subpopulations, they
can produce good compromise solutions of the Pareto
optimal set.

A similar approach that also uses two phases,
although not a GA, was already proposed [6] but only
for the bi-ojective case. The two phases of this
procedure are to (i) generate an initial solution by
optimizing only one single objective, and then (ii) ,
using some heuristics, different aggregates of the
objectives are optimized, increasing in each step the
importance of the second objective. Although this
approach showed interesting results, test problems

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp43-48)

used had clustered solutions that for similar weighted
objectives optimal solutions were very similar and the
algorithm took advantage of that property.

In this paper we propose an algorithm that uses
the two phase approach. The algorithm is based on
the one proposed by Ishibuchi and Murata: Multi-
Objective Genetic Local Search Genetic Algorithm
(MOGLS) [7]. MOGLS uses elitism and an external
set of non-dominated solutions so according to Coello
[8] it could be considered as a second generation
multiobjective evolutionary algorithm. Besides it has
shown promising results [2] and it takes under
consideration the use of a local search that can
improve the convergence towards the Pareto optimal
front. The main reason of choosing MOGLS is that it
is easy to implement although not the most effective.
Therefore, good experimental results can be justified
by the use of the two-phase approach and not to the
algorithm used as the basis. It should be noted that
weighted sum method cannot capture points on the
non-convex portion of a Pareto curve [9].

3 An algorithm with two phases
As stated in the previous section, the proposed
algorithm applies a division into subpopulations.
Following the nomenclature of Ishibuchi and Murata,
it could be called Multi-Objective Genetic Local
Search with Subpopulations (MOGLSS). The
division of the population is carried out by a division
operator (cf. section 3.1). The MOGLSS uses a
tentative set of non-dominated solutions for each
subpopulation, which is the set of all non-dominated
solutions found during the execution of the algorithm
in the subpopulation. A migration operator was added
to deal with the problem of information interchange
between different subpopulations (cf. section 3.2).

Similarly to the MOGLS, the MOGLSS uses a
weighted sum of the n objectives [9] to obtain the
fitness value of each solution:

() () () ()1 1 2 2 n nf x w f x w f x w f x= + + +K
 The weight values w1, …, wn are not constant but

randomly specified whenever a pair of parent
solutions are selected for a crossover operation. The
weights distribution varies according to the execution
phase of the algorithm (cf. section 3.1).

The execution of the proposed algorithm is
divided in two phases. During the first phase, each
subpopulation tries to optimize one of the objectives
without exchanging information with the other
subpopulations. During the second phase, each
subpopulation periodically exports copies of its best
individuals, so that, when combined with those of
other subpopulations, they can produce good

compromise solutions.
MOGLS applies a local search to each solution

generated by the genetic operators. The search
consists in examining k (user specified number)
neighbour solutions of each individual i. If any is
better than i then i is replaced with it. The use of a
local search is maintained in MOGLSS. The different
steps of this algorithm are outlined in figure 1.

Algorithm
Np: size of the population.
Ne: number of non-dominated solutions that are added
to the population in each generation
Ns: number of subpopulations.
Step 0 (Initialization): Generate an initial population of
Np solutions. Initialize the non-dominated solution sets
as the empty sets.
Step 1 (Evaluation): Calculate the values of the
objective functions for each solution of the current
population.
Step 2 (Division): Divide the population and update the
tentative sets of non-dominated solutions.
Steps 3 to 8 are executed out for each subpopulation
Step 3 (Change of phase): If a given number of
generations has passed, switch to the second phase.
Step 4 (Selection): Repeat until (Np/Ns - Ne)/2 pairs of
parent solutions are selected in each subpopulation:
Randomly generate a normalized weight vector
(according to the actual phase) and select a pair of
solutions using the vector obtained.
Step 5 (Crossover and mutation): Apply crossover and
mutation operations and evaluate generated solutions.
Step 6 (Elitist strategy): Randomly select in each
subpopulation Ne individuals of the tentative set of
non-dominated solutions of the subpopulation, and add
them to those obtained in step 5.
Step 7 (Local search): Apply a local search process to
the individuals obtained in step 6. Update the tentative
set of non-dominated solutions of the actual
subpopulation.
Step 8 (Migration): If the algorithm is in the second
phase, apply the migration operator.
Step 9 (Finalization Test): If stopping conditions are
not met return to step 3.

Fig. 1. MOGLSS algorithm.

3.1 Subpopulations and weight generation
The objective of the first phase, as has already been
stated, is to optimize each objective separately. This
is achieved by creating, at the start of the execution of
the algorithm, as many subpopulations as objectives
has the problem that is being solved. Henceforth, we
shall suppose (without loss of generality) that the nth
subpopulation searches optima for the nth objective.
The initial separation of individuals is done through
the assignment of the solutions that best optimize the
nth objective to the nth subpopulation.

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp43-48)

To help each subpopulation to search its
corresponding optima, during the first phase, the
weight vectors generated do not follow an uniform m-
dimensional distribution (with m being the number of
objectives of the problem). We favour the algorithm
to generate higher values in the component associated
to the objective that is being optimized. To achieve
this goal, weights for the objective we are trying to
optimize are generated with an average value six
times higher than for the rest of the objectives. Other
values were tested but better results were obtained for
values between five and ten. As a result, in the nth
subpopulation vectors are created with a higher
average value for the nth component. However, non
zero weight values are allowed for the rest of the
components of the vector. This allows a search for
solutions in the complete Pareto optimal front,
especially in the zones close to the optimum of each
objective.

The operation during the first phase helps the
subpopulations to place themselves in different
regions, since the individuals that best optimize each
of the objectives are usually widely divergent. This
means that the generation of vectors of different
weights should facilitate the maintenance of the
population diversity. Another reason to not search
exclusively in the direction of the canonical vectors,
is that in that case the method would degenerate into
a VEGA shape [10]. This method does not provide an
uniform distribution of solutions, since it focuses on
the extremes of the Pareto Optimal front [7].

The objective of the second phase is to find good
compromise solutions between various objectives. To
this effect, the weight vectors generated during the
second phase follow an uniform distribution as in
MOGLS. This allows a search in a wide range of
directions.

3.2 Migration
The information exchange between different
populations occurs only in the last phase of the
execution. Given the fact that during the first phase
each subpopulation focuses on optimizing one single
objective, the solutions that are obtained in that
population will be not so good at the rest of the
objectives. To avoid the interference in the search of
the other subpopulations, we avoid sending copies of
individuals during the first phase by preventing any
migrations to occur until it has finished.

During the second phase, however, at fixed
intervals that can be modified, synchronous
interchanges of individuals [11] do take place
between subpopulations. For each migration, the
average adjustment is calculated for the nth objective

of the individuals of the nth subpopulation. After that,
those individuals that are better than the calculated
average are selected and their copies are sent to the
other subpopulations. The copies of other
subpopulations are received subsequently. Finally,
when new individuals are received due to migration,
we must provide a replacement mechanism that
preserves the size of the population. The algorithm
used in this work is shown in figure 2. This
replacement operator allows to conserve the best
individuals already in the subpopulation while
allowing the most promising individuals from other
subpopulations to be added.

Replacement
f: set of individuals that reach the subpopulation.
g: set of individuals of the subpopulation.
fb: variable to store the immigrating individual that has
the best weighted fitness.
gw: variable to store the individual of the subpopulation
that has the worst weighted fitness.
1. Order the individuals of f and g according to their
weighted fitness, using for each case the weight vector
that was used during its selection.
2. Select, among the previously non-elected individuals
of f, the best individual and assign it to fb. Select the
worst individual of g among the previously non-elected
ones, and assign it to gw. If fb dominates gw or if the
weighted fitness of fb is better than that of gp, replace gw
with fb.
3. Repeat step 2 until all the possible replacements have
been carried out.

Fig. 2. Replacement algorithm.

4 Results

The proposed algorithm was applied to standard
minimization functions: SPH-2, SPH-3 [1] [12],
ZDT6 [1] [12] and QV [12] [13]. The expression of
those functions is now shown:

SPH-m: 2 2

1 ,
() () (1)j i ji n i j

f x x x
< < ≠

= + −∑
1 , 2, 3j m m≤ ≤ =

Domain [-103,103]n,
n = 100

ZDT6: 1 1 1() 1 exp(4) sin(6)f x x xπ= − −

 ()()2
2

1() () 1 () ()f x g x f x g x= −

 () ()
1
4

2() 1 9 1n
iig x x n=

⎛ ⎞⎜ ⎟
⎝ ⎠

= + −∑

Domain: [0,1]n ,
n = 100

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp43-48)

QV: ()()
1
42

1 1
1() 10cos 2 10n

i ii
f x x x

n
π

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

= − +∑

 () ()()
1
42

2 1
1() 1.5 10cos 2 (1.5) 10n

i iif x x x
n

π
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

= − − − +∑

Domain: [-5,5]n ,
n = 100

MOGLSS performance for these problems is
compared to the most used multiobjective
evolutionary algorithms: SPEA, SPEA2, NSGA-2
and PESA. The results for those algorithms are those
obtained by Zitzler [12] and taken from his web page
[14]. MOGLSS parameters, for this comparison,
where chosen to make one million evaluations, same
number as in the work by Zitzler [12] [14] and 75%
of the generations were used during the first phase of
the algorithm. The number of local searches for
individual was set to 3. The one million evaluations
include those from the local search. For each test
function 30 runs with different random seeds were
carried out. The global population of MOGLSS was
set to 80, two point crossover with a probability of
0.6 was used and a tournament selection with three
participants was chosen. The mutation rate was 0.01.

SPH-2 C(M,P) C(M,N) C(M,S2) C(M,S)
Mean 0.631 0.620 0.610 1.000
Std.dev. 0.395 0.392 0.392 0.000
 C(P,M) C(N,M) C(S2,M) C(S,M)
Mean 0.204 0.232 0.245 0.000
Std.dev. 0.232 0.265 0.274 0.000

Table. 1. Coverage results for SPH-21.

SPH-3 C(M,P) C(M,N) C(M,S2) C(M,S)
Mean 0.900 0.803 0.854 1.000
Std. dev. 0.187 0.216 0.201 0.000
 C(P,M) C(N,M) C(S2,M) C(S,M)
Mean 0.000 0.002 0.000 0.000
Std. dev. 0.000 0.010 0.000 0.000

Table. 2. Coverage results for SPH-31.

The crossover operator chosen does not improve

the exploration capacities of the algorithm,
nevertheless the exploration can be enhanced by the
use of the local search. The neighbour solutions for
the local search were generated using the following
instructions:

If 40% of generations have not passed, modify
the value of one of the variables by an amount with
an absolute value lower than half the length of the
variable domain. In other case, modify it with a
percentage of the actual value of the variable. This

1 M=Moglss, N=Nsga2, S= Spea, S2=Spea2

percentage was randomly generated with an absolute
value lower than 85%. This value was empirically
chosen after simulations with values of 100%, 85%,
70%, 50% and 25%.

The initial idea was to modify the value of the
variable based on its current value. This idea had an
important drawback; if a variable had a value near
zero it would be difficult to generate values in distant
zones. That is the reason to modify the values
according to the length of the interval during the first
stages of the execution. During the later generations it
could be assumed that the values of those variables
whose optimum was not near zero had a value distant
enough from zero.

The metric used to compare the performance was
the coverage C(A,B) [1]:

() { }; ; weakly dominates
,

a A b B a b
C A B

B
∈ ∈

=

QV C(M,P) C(M,N) C(M,S2) C(M,S)
Mean 0.011 0.127 0.160 0.288
Std. dev. 0.041 0.134 0.184 0.106
 C(P,M) C(N,M) C(S2,M) C(S,M)
Mean 0.210 0.171 0.300 0.111
Std. dev. 0.000 0.139 0.210 0.074

Table. 3. Coverage results for QV1.

ZDT6 C(M,P) C(M,N) C(M,S2) C(M,S)
Mean 0.006 0.004 0.005 0.010
Std. dev. 0.012 0.012 0.011 0.018
 C(P,M) C(N,M) C(S2,M) C(S,M)
Mean 0.939 0.957 0.958 0.938
Std. dev. 0.080 0.088 0.010 0.080

Table. 4. Coverage results for ZDT61.

 The results are shown in tables 2, 3, 4 and 5,
where M, N, P, S and S2 denote MOGLSS, NSGA-2,
PESA, SPEA and SPEA2 respectively. Tables 1 and
2 show MOGLSS outperforms the rest of the
algorithms for SPH-2 and SPH-3. According to the
values shown in table 1 and 2 MOGLSS has better
scalability with respect to the number of objectives, at
least with respect to SPH. Besides, comparable
results are obtained for QV (table 3). In this case
MOGLSS seems to outperform Spea but it is
outperformed by Pesa and Spea2. Results for QV are
quite similar for Nsga2 and MOGLSS. The worst
obtained results, although acceptable, were those for
ZDT6 (table 4). In this case, although the diversity
and the spread of the solutions was good, the
algorithm failed to converge as near to the Pareto
front as the other algorithms. This is caused by the
non-convexity of the front [1]. ZDT6 front points

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp43-48)

have all variables equal to zero except for the first
variable. The MOGLSS only managed to get values
in the interval (10-8, 10-12) approximately.

Another experiment was carried out to gain
knowledge of the influence of the duration of each
phase in the final results. We fixed all parameters as
in the previous experiment and used a first phase
lenght of 25%, 50%, 75% and 90% of the total
number of generations. 30 simulations were carried
out for each combination of problem and phase
lenght. Results are shown in tables 6, 7, 8 and 9. In
each cell of those tables we show the set coverage for
the corresponding row and column, Coverage(row,
column). Besides, for a better performance measure,
hypervolume [1] was calculated using normalized
objective function values. The results for the
hypervolume metric are represented in boxplots in
figures 3 and 4.

First phase 25% 50% 75% 90%
25% - 0.229 0.077 0.140
50% 0.290 - 0.142 0.118
75% 0.445 0.359 - 0.186
90% 0.551 0.426 0.358 -

Table. 5. Set Coverage results for SPH-2.

First phase 25% 50% 75% 90%
25% - 0.091 0.050 0.086
50% 0.110 - 0.067 0.047
75% 0.194 0.241 - 0.128
90% 0.288 0.233 0.141 -

Table. 6. Set Coverage results for SPH-3.

First phase 25% 50% 75% 90%
25% - 0.066 0.058 0.216
50% 0.470 - 0.141 0.333
75% 0.529 0.315 - 0.402
90% 0.401 0.234 0.156 -
Table. 7. Set Coverage results for QV.

First phase 25% 50% 75% 90%

25% - 0.225 0.195 0.393
50% 0.588 - 0.356 0.639
75% 0.625 0.429 - 0.668
90% 0.360 0.185 0.170 -

Table. 8. Set Coverage results for ZDT6

From the results of the simulations we can
recommend that about 75% of time should be used by
the first phase. This behaviour is more evident in QV
and ZDT6 test functions (tables 7 and 8 and figure 4).
SPH-2 and SPH-3 have very similar optima for each
objective. Pareto optimal solutions only change in the
first variables while the rest have value zero. During

the first phase, search is not disturbed by the
migration of individuals. Spending a lot of time in the
first phase is not worthless in those cases as the
search is not disturbed and the result of the search
should contain most of the correct values for most of
the Pareto optimal front (97-98 variables out of 100
in these cases). This justifies that similar results were
obtained for 75% and 90% first phase length for SPH,
even 90% obtained better results. Nevertheless the
results for ZDT6 (table 8 and figure 4) are rather
different, although it is a similar function from the
point view of Pareto optimal points similarity, results
were better for 75%. This different behaviour should
be a consequence of the non-convexity of the
problem.

25% 50% 75% 90% 25% 50% 75% 90%

SPH-2 SPH-3
Fig. 3. Hypervolume boxplots for SPH-2 and SPH-3

for first phase different lengths.

25% 50% 75% 90%25% 50% 75% 90%

ZDT6QV
Fig. 4. Hypervolume boxplots for QV and ZDT6 for

first phase different lengths.

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp43-48)

The results showed that spending little time in the
first phase makes difficult to obtain good solutions in
only one of the objectives. Nevertheless a short
second phase may make difficult to find good
compromise solutions. Therefore can be easily
deduced that if the user is more concerned about
compromise solutions a longer second phase should
be used. On the other hand if the user is interested in
'extreme' solutions a shorter second phase is
recommended.

5 Conclusion
This paper proposes a new genetic algorithm for
multiobjective optimization that is based on a two
phases procedure. An implementation based on the
multiobjective algorithm with local search [7] is used
for performance test. The efficiency of the algorithm
is shown through comparison with extensively used
test functions and with recent algorithms. Besides,
some indications are given about the recommended
length of each phase.

It should be also taken under consideration that
the distributions on which the weight vectors
generation was based could be modified during the
execution of the algorithm, according to the
preferences of the user. This modification would
provide a method with a progressive articulation of
preferences which would allow the incorporation of
user preferentes, which is one of the future challenges
of the multiobjective evolutionary algorithms [8].

The parallel implementation of the algorithm will
be developed in future works. Besides the proposed
approach should be tested with other multiobjective
algorithms like SPEA2, NSGA2 and PESA.

Acknowledgments:
This work was supported by the Spanish Department
of Science and Technology (MCYT) (TIC2003-
07593) and by the Instituto de la Salud Carlos III
(Red nº: G03/160).

References:
[1] Deb K. Multi-Objective Optimization Using

Evolutionary algorithms. John Wiley & Sons,
2001

[2] Coello C. A. A Comprehensive Survey if
Evolutionary-Based Multiobjective Optimization
Techniques, Knowledge and Information Systems.
Knowledge and Information Systems, Vol. 1, No.
3, pp. 269-308, 1999.

[3] Laumanns M. et al. On the Convergence and
Diversity-Preservation Properties of Multi-

Objective Evolutionary Algorithms. TIK-Report
No. 108. Institut für Technische Informatik und
Kommunikationsnetze, 2001.

[4] Whitley D. and Starkweather T. Genitor II: a
Distributed Genetic Algorithm. Journal Expt.
Theor. Artif. Intell., 2:189-214. 1990.

[5] Kirley M. "MEA: A metapopulation evolutionary
algorithm for multi-objective optimisation
problems". Proceedints of the 2001 Congress on
Evolutionary Computation. Piscataway, NJ: IEEE
Service Center, may 2001, vol. 2, pp. 949-956.

[6] Paquete L. and Stützle. “A two-phase local search
for the biobjective traveling salesman problem”.
In C. Fonseca, P. Fleming, E. Zitzler, K. Deb, and
L. Thiele, editors, Proceedings of the
Evolutionary Multi-criterion Optimization (EMO
2003), pp. 479-493. Lecture Notes in Computer
Science 2632. Springer Verlag, 2003.

[7] Ishibuchi H. and Murata T. “Multi-Objective
Genetic Local Search Algorithm”, Proceedings of
1996 IEEE International Conference on
Evolutionary Computation, May, Nagoya, Japan,
Institute of Electrical and Electronics Engineers,
Piscataway, NJ, 119-124, 1996.

[8] Coello C. A. “Evolutionary Multiobjective
Optimization: Current and Future Challenges”.
Advances in Soft Computing Engineering, Design
and Manufacturing. pp. 243-256, Springer-
Verlag, 2003.

[9] Marler R. T. and Arora J. S. Revies of Multi-
Objective Optimization Concepts and Algorithms
for Engineering. University of Iowa, Optimal
Design Laboratory. Technical Report Number
ODL-01.03. 2003.

[10] Schaffer J. D. “Multi-Objective Optimization
with Vector Evaluated Genetic Algorithms”.
Proceedings of 1st ICGA, p. 93-100, 1985.

[11] Cantú-Paz E. A Survey of Parallel Genetic
Algorithms, 1998.

[12] Zitzler E., Laumanns M. and Thiele L. SPEA2:
Improving the Strength Pareto Evolutionary
Algorithm for Multiobjective Optimization.
Technical Report no. 103, Computer Engineering
and Communication Networks Lab (TIK) Swiss
Federal Institute of Technology (ETH) Zurich,
Gloriastrasse 35, CH-8092 Zurich, May, 2001.

[13] Quagliarella D. and Vincini A. “Coupling
genetic algorithms and gradient based
optimization techniques”. Genetic Algorithms and
Evolution Strategy in Engineering and Computer
Science: Recent advances and industial
applications, pp. 289-309. Wiley, Chichester,
1997.

[14] Zitzler E. Test Problem Suite web page.
http://www.tik.ee.ethz.ch/~zitzler/testdata.html

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp43-48)

