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Abstract: - This work proposes a genetic algorithm (GA) based approach for the search of the Pareto optimal set 
of a multiobjective optimization problem. First the global population is divided into various subpopulations. The 
algorithm operation consists of two phases: firstly each subpopulation tries to optimize a different objective; later 
the algorithm searches for good compromise solutions between objectives. Information is exchanged by means 
of the migration of individuals during the second phase. A weighted sum is used for fitness calculation. Weight 
vectors are randomly generated for each selection event, which creates a wide range of search directions. The 
good behaviour of the proposed algorithm becomes visible in its application to some continuous problems. 
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1   Introduction 
In multiobjective optimization, obtaining the Pareto-
optimal front by means of GAs [1] implies two main 
objectives: finding solutions that are close to the 
front, and obtaining a uniform distribution of the 
points. At present, there is no complete theoretical 
basis that sustains the use of GAs for multiobjective 
optimization. However, various methods have been 
proposed [1] [2] and studies have been carried out to 
guarantee the convergence of the obtained non-
dominated solutions [1] [2] to the Pareto optimal set 
and, more recently, to maintain the diversity [3]. 

This work presents a new approach that tries to 
improve the convergence towards the optimal front. 
Section 2 contains a description of the proposed two-
phase method. An algorithm following the two-phase 
approach is presented in section 3. The efficiency of 
the algorithm is compared with other multiobjective 
genetic algorithms by applying it to various 
continuous problems. The results obtained are 
summarized in section 4. 
 
 
2   The two-phase procedure 
Usually it is much more difficult to optimize a 
function with many objectives than a function with 
only one objective. The interactions between the 
different objectives, mainly when not lineal, greatly 
increase the difficulty of multiobjective problems. 
The proposed approach is based on the ‘Divide and 
Conquer’ paradigm. The approach can be divided in 
two phases.  

During the first phase the main objective is to find 
good solutions for each of the objectives 
independently of the other. To achieve this goal we 

propose the division of the global population into 
subpopulations, each optimizing one objective. The 
separation of the individuals into smaller groups 
allows a greater convergence speed in each 
subpopulation. Also, if there exists certain 
independence between the subpopulations, each of 
them can converge towards a different region of the 
search space, helping to maintain some degree of 
diversity. Another benefit of the use of 
subpopulations is that it facilitates the 
implementation of a parallel GA: just processing each 
subpopulation in a different machine. Other 
approaches based on the use of subpopulations have 
been published [4, 5]. A metapopulation evolutionary 
algorithm (MEA) for multiobjective optimisation 
problems was recently proposed [5]. In that work 
elements from landscape ecology and population 
dynamics are used to develop an algorithm that 
combines 'diffusion' and 'island' properties. During 
the second phase the search is centered on finding 
good compromise solutions between the objectives. 
At this stage, each subpopulation is allowed to 
periodically export its best individuals, so that, when 
combined with those of other subpopulations, they 
can produce good compromise solutions of the Pareto 
optimal set. 

A similar approach that also uses two phases, 
although not a GA, was already proposed [6] but only 
for the bi-ojective case. The two phases of this 
procedure are to (i) generate an initial solution by 
optimizing only one single objective, and then (ii) , 
using some heuristics, different aggregates of the 
objectives are optimized, increasing in each step the 
importance of the second objective. Although this 
approach showed interesting results, test problems 
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used had clustered solutions that for similar weighted 
objectives optimal solutions were very similar and the 
algorithm took advantage of that property. 

In this paper we propose an algorithm that uses 
the two phase approach. The algorithm is based on 
the one proposed by Ishibuchi and Murata: Multi-
Objective Genetic Local Search Genetic Algorithm 
(MOGLS) [7]. MOGLS uses elitism and an external 
set of non-dominated solutions so according to Coello 
[8] it could be considered as a second generation 
multiobjective evolutionary algorithm. Besides it has 
shown promising results [2] and it takes under 
consideration the use of a local search that can 
improve the convergence towards the Pareto optimal 
front. The main reason of choosing MOGLS is that it 
is easy to implement although not the most effective. 
Therefore, good experimental results can be justified 
by the use of the two-phase approach and not to the 
algorithm used as the basis. It should be noted that 
weighted sum method cannot capture points on the 
non-convex portion of a Pareto curve [9]. 
 
 
3   An algorithm with two phases 
As stated in the previous section, the proposed 
algorithm applies a division into subpopulations. 
Following the nomenclature of Ishibuchi and Murata, 
it could be called Multi-Objective Genetic Local 
Search with Subpopulations (MOGLSS). The 
division of the population is carried out by a division 
operator (cf. section 3.1). The MOGLSS uses a 
tentative set of non-dominated solutions for each 
subpopulation, which is the set of all non-dominated 
solutions found during the execution of the algorithm 
in the subpopulation. A migration operator was added 
to deal with the problem of information interchange 
between different subpopulations (cf. section 3.2). 

Similarly to the MOGLS, the MOGLSS uses a 
weighted sum of the n objectives [9] to obtain the 
fitness value of each solution: 

( ) ( ) ( ) ( )1 1 2 2 n nf x w f x w f x w f x= + + +K  
 The weight values w1, …, wn are not constant but 

randomly specified whenever a pair of parent 
solutions are selected for a crossover operation. The 
weights distribution varies according to the execution 
phase of the algorithm (cf. section 3.1). 

The execution of the proposed algorithm is 
divided in two phases. During the first phase, each 
subpopulation tries to optimize one of the objectives 
without exchanging information with the other 
subpopulations. During the second phase, each 
subpopulation periodically exports copies of its best 
individuals, so that, when combined with those of 
other subpopulations, they can produce good 

compromise solutions.  
MOGLS applies a local search to each solution 

generated by the genetic operators. The search 
consists in examining k (user specified number)  
neighbour solutions of each individual i. If any is 
better than i then i is replaced with it. The use of a 
local search is maintained in MOGLSS. The different 
steps of this algorithm are outlined in figure 1. 
 

Algorithm  
Np: size of the population. 
Ne: number of non-dominated solutions that are added 
to the population in each generation 
Ns: number of subpopulations. 
Step 0 (Initialization): Generate an initial population of 
Np solutions. Initialize the non-dominated solution sets 
as the empty sets.  
Step 1 (Evaluation): Calculate the values of the 
objective functions for each solution of the current 
population.  
Step 2 (Division): Divide the population and update the 
tentative sets of non-dominated solutions. 
Steps 3 to 8 are executed out for each subpopulation 
Step 3 (Change of phase): If a given number of 
generations has passed, switch to the second phase. 
Step 4 (Selection): Repeat until (Np/Ns - Ne)/2 pairs of 
parent solutions are selected in each subpopulation: 
Randomly generate a normalized weight vector 
(according to the actual phase) and select a pair of 
solutions using the vector obtained. 
Step 5 (Crossover and mutation): Apply crossover and 
mutation operations and evaluate generated solutions. 
Step 6 (Elitist strategy): Randomly select in each 
subpopulation Ne individuals of the tentative set of 
non-dominated solutions of the subpopulation, and add 
them to those obtained in step 5. 
Step 7 (Local search): Apply a local search process to 
the individuals obtained in step 6. Update the tentative 
set of non-dominated solutions of the actual 
subpopulation.  
Step 8 (Migration): If the algorithm is in the second 
phase, apply the migration operator.  
Step 9 (Finalization Test): If stopping conditions are 
not met return to step 3. 

Fig. 1. MOGLSS algorithm. 
 
 
3.1 Subpopulations and weight generation 
The objective of the first phase, as has already been 
stated, is to optimize each objective separately. This 
is achieved by creating, at the start of the execution of 
the algorithm, as many subpopulations as objectives 
has the problem that is being solved. Henceforth, we 
shall suppose (without loss of generality) that the nth 
subpopulation searches optima for the nth objective. 
The initial separation of individuals is done through 
the assignment of the solutions that best optimize the 
nth objective to the nth subpopulation. 
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To help each subpopulation to search its 
corresponding optima, during the first phase, the 
weight vectors generated do not follow an uniform m-
dimensional distribution (with m being the number of 
objectives of the problem). We favour the algorithm 
to generate higher values in the component associated 
to the objective that is being optimized. To achieve 
this goal, weights for the objective we are trying to 
optimize are generated with an average value six 
times higher than for the rest of the objectives. Other 
values were tested but better results were obtained for 
values between five and ten. As a result, in the nth 
subpopulation vectors are created with a higher 
average value for the nth component. However, non 
zero weight values are allowed for the rest of the 
components of the vector. This allows a search for 
solutions in the complete Pareto optimal front, 
especially in the zones close to the optimum of each 
objective.  

The operation during the first phase helps the 
subpopulations to place themselves in different 
regions, since the individuals that best optimize each 
of the objectives are usually widely divergent. This 
means that the generation of vectors of different 
weights should facilitate the maintenance of the 
population diversity. Another reason to not search 
exclusively in the direction of the canonical vectors, 
is that in that case the method would degenerate into 
a VEGA shape [10]. This method does not provide an 
uniform distribution of solutions, since it focuses on 
the extremes of the Pareto Optimal front [7]. 

The objective of the second phase is to find good 
compromise solutions between various objectives. To 
this effect, the weight vectors generated during the 
second phase follow an uniform distribution as in 
MOGLS. This allows a search in a wide range of 
directions. 

 
 

3.2 Migration 
The information exchange between different 
populations occurs only in the last phase of the 
execution. Given the fact that during the first phase 
each subpopulation focuses on optimizing one single 
objective, the solutions that are obtained in that 
population will be not so good at the rest of the 
objectives. To avoid the interference in the search of 
the other subpopulations, we avoid sending copies of 
individuals during the first phase by preventing any 
migrations to occur until it has finished.  

During the second phase, however, at fixed 
intervals that can be modified, synchronous 
interchanges of individuals [11] do take place 
between subpopulations. For each migration, the 
average adjustment is calculated for the nth objective 

of the individuals of the nth subpopulation. After that, 
those individuals that are better than the calculated 
average are selected and their copies are sent to the 
other subpopulations. The copies of other 
subpopulations are received subsequently. Finally, 
when new individuals are received due to migration, 
we must provide a replacement mechanism that 
preserves the size of the population. The algorithm 
used in this work is shown in figure 2. This 
replacement operator allows to conserve the best 
individuals already in the subpopulation while 
allowing the most promising individuals from other 
subpopulations to be added. 

 
Replacement 
f: set of individuals that reach the subpopulation. 
g: set of individuals of the subpopulation. 
fb: variable to store the immigrating individual that has 
the best weighted fitness.  
gw: variable to store the individual of the subpopulation 
that has the worst weighted fitness. 
1. Order the individuals of f and g according to their 
weighted fitness, using for each case the weight vector 
that was used during its selection. 
2. Select, among the previously non-elected individuals 
of f, the best individual and assign it to fb. Select the 
worst individual of g among the previously non-elected 
ones, and assign it to gw. If fb dominates gw or if the 
weighted fitness of fb is better than that of gp, replace gw 
with fb. 
3. Repeat step 2 until all the possible replacements have 
been carried out. 

Fig. 2. Replacement algorithm. 
 
 
4   Results 
 
The proposed algorithm was applied to standard 
minimization functions: SPH-2, SPH-3 [1] [12], 
ZDT6 [1] [12] and QV [12] [13]. The expression of 
those functions is now shown: 
 

SPH-m: 2 2

1 ,
( ) ( ) ( 1)j i ji n i j

f x x x
< < ≠

= + −∑  
1 , 2, 3j m m≤ ≤ =  

Domain [-103,103]n,  
n = 100 
 
ZDT6:  1 1 1( ) 1 exp( 4 ) sin(6 )f x x xπ= − −  

             ( )( )2
2

1( ) ( ) 1 ( ) ( )f x g x f x g x= −  

             ( ) ( )
1
4

2( ) 1 9 1n
iig x x n=

⎛ ⎞⎜ ⎟
⎝ ⎠

= + −∑  

Domain:  [0,1]n ,  
n = 100 
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QV:  ( )( )
1
42

1 1
1( ) 10cos 2 10n

i ii
f x x x

n
π

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

= − +∑  

   ( ) ( )( )
1
42

2 1
1( ) 1.5 10cos 2 ( 1.5) 10n

i iif x x x
n

π
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

= − − − +∑  

Domain:  [-5,5]n ,  
n = 100 

MOGLSS performance for these problems is 
compared to the most used multiobjective 
evolutionary algorithms: SPEA, SPEA2, NSGA-2 
and PESA. The results for those algorithms are those 
obtained by Zitzler [12] and taken from his web page 
[14]. MOGLSS parameters, for this comparison, 
where chosen to make one million evaluations, same 
number as in the work by Zitzler [12] [14] and 75% 
of the generations were used during the first phase of 
the algorithm. The number of local searches for 
individual was set to 3. The one million evaluations 
include those from the local search. For each test 
function 30 runs with different random seeds were 
carried out. The global population of MOGLSS was 
set to 80, two point crossover with a probability of 
0.6 was used and a tournament selection with three 
participants was chosen. The mutation rate was 0.01.  

 
SPH-2 C(M,P) C(M,N) C(M,S2) C(M,S)
Mean 0.631 0.620 0.610 1.000 
Std.dev. 0.395 0.392 0.392 0.000 
 C(P,M) C(N,M) C(S2,M) C(S,M)
Mean 0.204 0.232 0.245 0.000 
Std.dev. 0.232 0.265 0.274 0.000 

Table. 1. Coverage results for SPH-21. 
 

SPH-3 C(M,P) C(M,N) C(M,S2) C(M,S)
Mean 0.900 0.803 0.854 1.000 
Std. dev. 0.187 0.216 0.201 0.000 
 C(P,M) C(N,M) C(S2,M) C(S,M)
Mean 0.000 0.002 0.000 0.000 
Std. dev. 0.000 0.010 0.000 0.000 

Table. 2. Coverage results for SPH-31. 
 
The crossover operator chosen does not improve 

the exploration capacities of the algorithm, 
nevertheless the exploration can be enhanced by the 
use of the local search. The neighbour solutions for 
the local search were generated using the following 
instructions: 

If  40% of generations have not passed, modify 
the value of one of the variables by an amount with 
an absolute value lower than half the length of the 
variable domain. In other case, modify it with a 
percentage of the actual value of the variable. This 

                                                           
1 M=Moglss, N=Nsga2, S= Spea, S2=Spea2 

percentage was randomly generated with an absolute 
value lower than 85%. This value was empirically 
chosen after simulations with values of 100%, 85%, 
70%, 50% and 25%. 

The initial idea was to modify the value of the 
variable based on its current value. This idea had an 
important drawback; if a variable had a value near 
zero it would be difficult to generate values in distant 
zones. That is the reason to modify the values 
according to the length of the interval during the first 
stages of the execution. During the later generations it 
could be assumed that the values of those variables 
whose optimum was not near zero had a value distant 
enough from zero.  

The metric used to compare the performance was 
the coverage C(A,B) [1]: 

( ) { }; ; weakly dominates
,

a A b B a b
C A B

B
∈ ∈

=  

 
QV C(M,P) C(M,N) C(M,S2) C(M,S)
Mean 0.011 0.127 0.160 0.288 
Std. dev. 0.041 0.134 0.184 0.106 
 C(P,M) C(N,M) C(S2,M) C(S,M)
Mean 0.210 0.171 0.300 0.111 
Std. dev. 0.000 0.139 0.210 0.074 

Table. 3. Coverage results for QV1. 
 

ZDT6 C(M,P) C(M,N) C(M,S2) C(M,S)
Mean 0.006 0.004 0.005 0.010 
Std. dev. 0.012 0.012 0.011 0.018 
 C(P,M) C(N,M) C(S2,M) C(S,M)
Mean 0.939 0.957 0.958 0.938 
Std. dev. 0.080 0.088 0.010 0.080 

Table. 4. Coverage results for ZDT61. 
 

 The results are shown in tables 2, 3, 4 and 5, 
where M, N, P, S and S2 denote MOGLSS, NSGA-2, 
PESA, SPEA and SPEA2 respectively. Tables 1 and 
2 show MOGLSS outperforms the rest of the 
algorithms for SPH-2 and SPH-3. According to the 
values shown in table 1 and 2 MOGLSS has better 
scalability with respect to the number of objectives, at 
least with respect to SPH. Besides, comparable 
results are obtained for QV (table 3). In this case 
MOGLSS seems to outperform Spea but it is 
outperformed by Pesa and Spea2. Results for QV are 
quite similar for Nsga2 and MOGLSS. The worst 
obtained results, although acceptable, were those for 
ZDT6 (table 4). In this case, although the diversity 
and the spread of the solutions was good, the 
algorithm failed to converge as near to the Pareto 
front as the other algorithms. This is caused by the 
non-convexity of the front [1]. ZDT6 front points 
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have all variables equal to zero except for the first 
variable. The MOGLSS only managed to get values 
in the interval (10-8, 10-12) approximately.  

Another experiment was carried out to gain 
knowledge of the influence of the duration of each 
phase in the final results. We fixed all parameters as 
in the previous experiment and used a first phase 
lenght of 25%, 50%, 75% and 90% of the total 
number of generations. 30 simulations were carried 
out for each combination of problem and phase 
lenght. Results are shown in tables 6, 7, 8 and 9. In 
each cell of those tables we show the set coverage for 
the corresponding row and column, Coverage(row, 
column). Besides, for a better performance measure, 
hypervolume [1] was calculated using normalized 
objective function values. The results for the 
hypervolume metric are represented in boxplots in 
figures 3 and 4.  
 

First phase 25% 50% 75% 90% 
25% - 0.229 0.077 0.140 
50% 0.290 - 0.142 0.118 
75% 0.445 0.359 - 0.186 
90% 0.551 0.426 0.358 - 

Table. 5. Set Coverage results for SPH-2. 
 

First phase 25% 50% 75% 90% 
25% - 0.091 0.050 0.086 
50% 0.110 - 0.067 0.047 
75% 0.194 0.241 - 0.128 
90% 0.288 0.233 0.141 - 

Table. 6. Set Coverage results for SPH-3. 
 

First phase 25% 50% 75% 90% 
25% - 0.066 0.058 0.216 
50% 0.470 - 0.141 0.333 
75% 0.529 0.315 - 0.402 
90% 0.401 0.234 0.156 - 
Table. 7. Set Coverage results for QV. 

 
First phase 25% 50% 75% 90% 

25% - 0.225 0.195 0.393 
50% 0.588 - 0.356 0.639 
75% 0.625 0.429 - 0.668 
90% 0.360 0.185 0.170 - 

Table. 8. Set Coverage results for ZDT6 
 

From the results of the simulations we can 
recommend that about 75% of time should be used by 
the first phase. This behaviour is more evident in QV 
and ZDT6 test functions (tables 7 and 8 and figure 4). 
SPH-2 and SPH-3 have very similar optima for each 
objective. Pareto optimal solutions only change in the 
first variables while the rest have value zero. During 

the first phase, search is not disturbed by the 
migration of individuals. Spending a lot of time in the 
first phase is not worthless in those cases as the 
search is not disturbed and the result of the search 
should contain most of the correct values for most of 
the Pareto optimal front (97-98 variables out of 100 
in these cases). This justifies that similar results were 
obtained for 75% and 90% first phase length for SPH, 
even 90% obtained better results. Nevertheless the 
results for ZDT6 (table 8 and figure 4) are rather 
different, although it is a similar function from the 
point view of Pareto optimal points similarity, results 
were better for 75%. This different behaviour should 
be a consequence of the non-convexity of the 
problem. 

25%  50%  75%  90% 25%  50%  75%  90%

SPH-2 SPH-3  
Fig. 3. Hypervolume boxplots for SPH-2 and SPH-3 

for first phase different lengths. 

25%  50%  75%  90%25%  50%  75%  90%

ZDT6QV  
Fig. 4. Hypervolume boxplots for QV and ZDT6 for 

first phase different lengths. 
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The results showed that spending little time in the 
first phase makes difficult to obtain good solutions in 
only one of the objectives. Nevertheless a short 
second phase may make difficult to find good 
compromise solutions. Therefore can be easily 
deduced that if the user is more concerned about 
compromise solutions a longer second phase should 
be used. On the other hand if the user is interested in 
'extreme' solutions a shorter second phase is 
recommended. 

 
 

5   Conclusion 
This paper proposes a new genetic algorithm for 
multiobjective optimization that is based on a two 
phases procedure. An implementation based on the 
multiobjective algorithm with local search [7] is used 
for performance test. The efficiency of the algorithm 
is shown through comparison with extensively used 
test functions and with recent algorithms. Besides, 
some indications are given about the recommended 
length of each phase. 

It should be also taken under consideration that 
the distributions on which the weight vectors 
generation was based could be modified during the 
execution of the algorithm, according to the 
preferences of the user. This modification would 
provide a method with a progressive articulation of 
preferences which would allow the incorporation of 
user preferentes, which is one of the future challenges 
of the multiobjective evolutionary algorithms [8]. 

The parallel implementation of the algorithm will 
be developed in future works. Besides the proposed 
approach should be tested with other multiobjective 
algorithms like SPEA2, NSGA2 and PESA. 
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