
Modeling Fault-Tolerant and Secure Mobile Agent Execution

K.Mohammadi and H. Hamidi
 Department of Electrical Engineering

 Iran University of Science & Technology
Iran-Tehran

Abstract :The reliable execution of a mobile agent is a very important design issue in building a mobile agent system and
many fault-tolerant schemes have been proposed so far. Security is a major problem of mobile agent systems, especially
when money transactions are concerned . Security for the partners involved is handled by encryption methods based on
a public key authentication mechanism and by secret key encryption of the communication. To achieve fault tolerance for
the agent system, especially for the agent transfer to a new host, we use Distributed Transaction Processing.
We derive the Fault-Tolerant approach for Mobile Agents design which offers a user transparent fault tolerance that can
be activated on request, according to the needs of the task, also discuss how transactional agent with types of commitment
constraints can commit .Furthermore we propose a solution for effective agent deployment using dynamic agent domains.

Key-Words: Fault Tolerant, Mobile agent, Security, Network Management, checkpointing.

1 Introduction
A mobile agent is a software program which migrates
from a site to another site to perform tasks assigned by a
user. For the mobile agent system to support the agents in
various application areas, the issues regarding the reliable
agent execution, as well as the compatibility between two
different agent systems or the secure agent migration,
have been considered. Some of the proposed schemes are
either replicating the agents [1,2] or checkpointing the
agents [3,4]. For a single agent environment without
considering inter-agent communication, the performance
of the replication scheme and the checkpointing scheme is
compared in [5] and [6]. In the area of mobile agents,
only few work can be found relating to fault tolerance.
Most of them refer to special agent systems or cover only
some special aspects relating to mobile agents, e. g. the
communication subsystem. Nevertheless, most people
working with mobile agents consider fault tolerance to be
an important issue [7,8]. Mobile agents are becoming
a major trend of distributed systems and
applications in the coming years. It can bring
benefits such as reduced network load and
overcoming of network latency [9]. Nevertheless,
security is one of the blocking factors of the
development of these systems. The main unsolved
security problem lies on the possible existence of mali-
cious hosts that can manipulate the execution and
data of agents [10]. Most distributed applications we see
today are deploying the client/server paradigm. There
are certain problems with the client/server paradigm,
such as the requirement of a high network bandwidth, and
continuous user-computer interactivity.
In view of the deficiencies of the client/server paradigm,
the mobile code paradigm has been developed as an
alternative approach for distributed application design. In
the client/server paradigm, programs cannot move across
different machines and must run on the machines they
reside on. The mobile code paradigm, on the other hand,
allows programs to be transferred among and executed on

different computers. By allowing code to move between
hosts, programs can interact on the same computer
instead of over the network. Therefore, communication
cost can be reduced. Besides, mobile agent [11]
programs can be designed to work on behalf of users
autonomously. This autonomy allows users to delegate
their tasks to the mobile agents, and not to stay
continuously in front of the computer terminal. The
promises of the mobile code paradigm bring about active
research in its realization. Most researchers, however,
agree that security concerns are a hurdle [12]. In this
paper, we investigate these concerns. . First, in Section 2,
In Section 2 ,presents the model for fault-tolerant mobile
agent . In Section 3,security issues of the mobile agent are
discussed. In Section 4, discusses Security Modeling and
Evaluation for the Mobile Agent. In Section 5, Simulation
Results and Influence of the size of the Agent are
discussed.

2 Model
 We assume an asynchronous distributed system, i.e., there are
no bounds on transmission delays of messages or on relative
process speeds. An example of an asynchronous system is the
Internet. Processes communicate via message passing over a
fully connected network.

2.1 Mobile Agent Model
 A mobile agent executes on a sequence of machines,
where a places)0(nip i ≤≤ provides the logical execution
environment for the agent . Each place runs a set of
services, which together compose the state of the place.
For simplicity, we say that the agent" accesses the state of
the place , " although access occurs through a service
running on the place. Executing the agent at a place ip is
called a stage iS of the agent execution . We call the
places where the first and last stages of an agent execute

(i.e., nandpp 0) the agent source and destination ,
respectively . The sequence of places between the agent

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp135-140)

source and destination respectively . The sequence of
places between the agent source and destination

(i.e., nppp ,..., 10) is called the itinerary of a mobile
agent. Whereas a static itinerary is entirely defined at the
agent source and does not change during the agent
execution, a dynamic itinerary is subject to modifications
by the agent itself.
Logically , a mobile agent executes in a sequence of stage

actions (Fig. 1).Each stage actions ia consists of

potentially multiple operations ,..., 10 opop Agent

(ni ≤≤0) at the corresponding stage iS represents the

agent a that has executed the stage action on places jp (j

<i) and is about to execute on place ip .The execution of

ia on place ip results in a new internal state of the agent
as well as potentially a new state of the place (if the
operations of an agent have side effects, i.e., are non

idempotent).We denote the resulting agent 1+ia . Place ip

forwards to 1+ip (for i < n).

Figure1:Model of mobile agent execution with 3
stages.

2.2 Fault Model
 Several types of faults can occur in agent
environments. Here, we first describe a general fault
model, and focus on those types, which are for one
important in agent environments due to high occurrence
probability, and for one have been addressed in related
work only insufficiently.
- Node failures: The complete failure of a compute node
implies the failure of all agent places and agents located
on it. Node failures can be temporary or permanent.
- Failures of components of the agent system: Failures of
agent places, or components of agent places become
faulty, e. g. faulty communication units or incomplete
agent directory. These faults can result in agent failures,
or in reduced or wrong functionality of agents.
- Failures of mobile agents: Mobile agents can become
faulty due to faulty computation, or other faults (e. g.
node or network failures).
- Network failures: Failures of the entire communication
network or of single links can lead to isolation of single
nodes, or to network partitions.
- Falsification or loss of messages: These are usually
caused by failures in the network or in the communication

units of the agent systems, or the underlying operating
systems. Also, faulty transmission of agents during
migration belongs to this type.
 Especially in the intended scenario of parallel
applications, node failures and their consequences are
important. Such consequences are loss of agents, and loss
of node specific resources. In general, each agent has to
fulfill a specific task to contribute to the parallel
application, and thus, agent failures must be treated. In
contrast, in applications where a large number of agents
are sent out to search and process information in a
network, the loss of one or several mobile agents might be
acceptable [2,3].

2. 3 Model Failures
 Machines, places, or agents can fail and recover later. A
component that has failed but not yet recovered is called
down; otherwise, it is up. If it is eventually permanently
up, it is called good [19]. In this paper, we focus on crash
failures (i.e., processes prematurely halt). Benign and
malicious failures (i.e., Byzantine failures) are not
discussed. A failing place causes the failure of all agent
running on it. Similarly, a failing machine causes all
places and agents on this machine to fail as well. We do
not consider deterministic, repetitive programming errors
(i.e., programming errors that occur on all agent

Figure2: The redundant places mask the place failure.

replicas or places) in the code or the place as relevant
failures in this Context. Finally a link failure causes the
loss of the messages or agents currently in transmission
on this link and may lead to network partitioning. We
assume that link failures (and network partitions) are not
permanent. The failure of a component (i.e., agent, place,
machine, or communication link) can lead to blocking in
the mobile agent execution. Assume, for instance that
place P1 fails while executing a1 (fig. 2). While P1
is down, the execution of the mobile agent cannot
proceed, i.e., it is blocked. Blocking occurs if a single
failure prevents the execution from proceeding . In
contrast, and execution is non blocking if it can proceed
despite a single failure ,the blocked mobile agent
execution can only continue when the failed component
recovers .this requires that recovery mechanism be in
place, which allows the failed component to be recovered.
If no recovery mechanism exists, then the agents state

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp135-140)

and, potentially, even its code may be lost. In the
following, we assume that such a recovery mechanism
exists (e.g., based on logging [13]. Replication prevents
blocking. Instead of sending the agent to one place at the
next stage, agent replicas are sent to a set iM of places

,..., 10
ii pp (Fig. 2). We denote by j

ia the agent replica of

ia executing on place j
ip ,but will omit the

superscripted index if the meaning is clear from the
context. Although a place may crash (i.e., stage1 in Fig.
2), the agent execution does not block. Indeed, 1

2p can
take over the execution of a1 and thus prevent blocking.
Note that the execution at stages 0S and S2 is not
replicated as the agent is under the control of the user.
Moreover, the agent is only configured at the agent source
and presents the results to the agent owner at the agent
destination. Hence, replication is not needed at these
stages.
Despite agent replication, network partitions can still
prevent the progress of the agent. Indeed, if the network is
partitioned such that all places currently executing the
agent at stage iS are in one partition and the places of
stage 1+iS are in another partition, the agent cannot
proceed with its execution . Generally (especially in the
Internet), multiple routing paths are possible for a
message to arrive at its destination. Therefore, a link
failure may not always lead to network partitioning. In the
following, we assume that a single link failure merely
partitions one place from the rest of the network .Clearly
,this is a simplification , but it allows us to define
blocking concisely. Indeed , in the approach presented in
this article, progress in the agent execution is possible in a
network partition that contains a majority of places .If no
such partition exists , the execution is temporally
interrupted until a majority partition is established again
,Moreover , catastrophic failures may still cause the loss
of the entire agent. A failure of all places in M1 (Fig. 2),
for instance ,is such a catastrophic. Failure (assuming no
recovery mechanism is in place). As no copy of a1 is
available any more , the agent a1 is lost and ,obviously
,the agent execution can no longer proceed .In other
words ,replication does not solve all problems .The
definition of non blocking merely addresses single
failures per stage as they cover most of the failures that
occur in a realistic environment.
In the next section ,we classify the places in Mi into iso-
places and hetero –places according to their properties
[16].

3. Security Issues of the Mobile Agent

 Any distributed system is subject to security threats,
so is a mobile agent system. Issues such as
encryption, authorization, authentication, non-
repudiation should be addressed in a mobile agent
system. In addition, a secure mobile agent system
must protect the hosts as well as the agents from

being tampered by malicious parties.
First, hosts must be protected because they
continuously receive agents and execute them. They
may not be sure where an agent comes from, and
are at the risk of being damaged by malicious
code or agents (Trojan horse attack). This problem
can be effectively solved by strong authentication of
the code sources, verification of code integrity, and
limiting the access rights of incoming agents to local
resources of hosts. This is mostly realized by the Java
security model [11. The main security challenge of
mobile agent systems lies on the protection of agents.
When an agent executes on a remote host, the host
is likely to have access to all the data and code
carried by the agent. If by chance a host is
malicious and abuses the code or data of an agent,
the privacy and secrecy of the agent and its owner
would be at risk.
 Seven types of attack by malicious hosts [10] can be
identified:(1)Spying out and manipulation code; (2)
Spying out and manipulation of data; (3) Spying out
and manipulation of control flow ; (4) Incorrect
execution of code; (5) Masquerading of the host;(6)
Spying out and manipulation of interaction with
other agents; and (7) Returning wrong results of
system calls to agents.
There are a number of solutions proposed to protect
agents against malicious hosts [9], which can be
divided into three streams:

• Establishing a closed network: limiting the set of
hosts among which agents travel, such that agents
travel only to hosts that are trusted.

• Agent tampering detection :using specially
designed state-appraisal functions to detect
whether agent states have been changed
maliciously during its travel.

• Agent tampering prevention: hiding from hosts
the data possessed by agents and the functions to
be computed by agents, by messing up code and
data of agents, or using cryptographic
techniques.

None of the proposed solutions solve the problem
completely. They either limit the capabilities of mobile
agents, or are not restrictive enough. A better
solution is being sought, and there is no general
methodology suggested to protect agents. In the mean
time, developers of mobile agent systems have to develop
their own methodologies according to their own needs .
Apart from attacks by malicious hosts, it is also
possible that an agent attacks another agent. However,

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp135-140)

this problem, when compared with the problem of
malicious hosts, is less important, because the actions of
a (malicious) agent to another agent can be effectively
monitored and controlled by the host on which the
agent runs, if the host is not malicious.

4 Security Modeling and Evaluation for the Mobile
Agent

 There is no well-know model for mobile agent security.
One of the few attempts so far is given by [12]. Software
reliability modeling is a successful attempt to give
quantitative measures of software systems. In the broadest
sense , security is one of the aspects of reliability . A
system is likely to be more reliable if it is more secure.
One of the pioneering efforts to integrate security and
reliability is [24]. In this paper, these similarities between
security and reliability were observed.

Table1: Analogy between Reliability and Security

 Thus, we have security function, effort to next
breach distribution, and security hazard rate like
the reliability function, time to next failure
distribution, and reliability hazard rate respectively
as in reliability theory. One of the works to fit
system security into a mathematical model is [14],
which presents an experiment to model the attacker
behavior. The results show that during the "standard
attack phase", assuming breaches are independent and
stochastically identical, the period of working time of
a single attacker between successive breaches is
found to be exponentially distributed.

Figure3: A Mobile Agent Travelling on a Network

 Now, let us consider a mobile agent travelling through n
hosts on the network, as illustrated in Figure3 . Each
host , and the agent itself , is modeled as an abstract
machine as in [12]. We consider only the standard attack
phase described in [14] by malicious hosts. On arrival at a
malicious host, the mobile agent is subject to an attack
effort from the host. Because the host is modeled as a
machine, it is reasonable to estimate the attack effort by
the number of instructions for the attack to carry out,
which would be linearly increasing with time. On arrival
at a non-malicious host, the effort would be constant zero.
Let the agent arrive at host i at time Ti, for i = 1, 2, ..., n.

Then the effort of host i at total time / would be
described by the time-to-effort function:

 Ei(t) = ki(t-Ti), where k is a constant

 We may call the constant ki the coefficient of malice.
The larger the ki, the more malicious host i is (ki =0 if host
i is non-malicious). Furthermore, let the agent stay on host
i for an amount of time tt, then there would be breach to
the agent if and only if the following breach condition
holds:

 Ei(ti+Ti) > effort to next breach by host i
 i.e., kiti > effort to next breach by host i

 As seen from [24,25], it is reasonable to assume
exponential distribution of the effort to next breach, so
we have the probability of breach at host i,

 P(breach at host i) = P(breach at time ti+TI)
 = P(breach at effort kiti)
 = 1 – exp(-vkiti) , v is a constant
 = 1 - exp(- λitI) , λi = vki

 We may call v the coefficient of vulnerability of the
agent. The higher the v, the higher is the probability of
breach to the agent. Therefore, the agent security E
would be the probability of no breach at all hosts, i.e.,

Suppose that we can estimate the coefficients of malice
ki’s for hosts based on trust records of hosts, and also
estimate the coefficient of vulnerability v of the agent
based on testing and experiments, then we can calculate
the desired time limits Ti’s to achieve a certain level of
security E. Conversely, if users specify some task must be
carried out on a particular host for a fixed period of time,
we can calculate the agent security E for the users based
on the coefficients of malice and vulnerability
estimates.

5 Evaluation Results and Influence of the Size of
the Agent

 We evaluate transactional agents in terms of access
time compared with client- server model. The
computation of mobile agents is composed moving , class
loading, manipulation of objects, creation of clone, and
commitment steps. In the client – server model, there are
computation steps of program initialization, class loading
to client, manipulation of objects, and two- phase
commitment.
 Access time from time when the application program
starts to time when the application program ends, is
measured for Agents and client-server model. Figure 4
shows the access time for number of object servers, the
non- fault tolerant and secure mobile agents shows that

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp135-140)

mobile agents classes are not loaded when an agent A
arrives at an object server. Here, the agent can be
performed after Aglets classes are loaded. On the other
hand, the fault tolerant and secure mobile agents means
that an agent manipulates objects in each object server
where mobile agents classes are already loaded, i.e. the
agent comes to the object server after other agents have
visited on the object server. As shown in Figure4, the
client-server model is faster than the transactional agent.
However, the transactional agent is faster than the client-
server model if object servers are frequently manipulated,
i.e. fault tolerant and secure mobile agents classes are a
priori loaded.

0

1
2

3

4
5

6
7

8

9
10

11

1 2 3

number of object servers

ac
ce

ss
 ti

m
e

[s
ec

.]

Client Server (MobileAgent) Fault Tolerant& Secure Mobile Agent

Figure4: Access Time for Number of Object Servers

 A simulator was designed to evaluate the algorithm. The
system was tested in several simulated network conditions
and numerous parameters were introduced to control the
behavior of the agents. We also investigated the dynamic
functioning of the algorithm. Comparing to the previous
case the parameter configuration has a larger effect on the
behavior of the system. The most vital parameter was the
frequency of the trading process and the pre-defined
critical workload values.

 Figure 5 shows the number of agents on the network. In
a dynamic network situation. The optimal agent
population is calculated by dividing the workload on the
whole network with the optimal workload of the agent.
Simulation results show that choosing correct agent
parameters the workload of the agents is within a ten
percent environment of the predefined visiting frequency
on a stable network. In a simulated network overload the
population dynamically grows to meet the increased
requirements and smoothly returns back to normal when
the congestion is over.

Agent population

0

5

10

15

20

25

30

35

40

45

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201

Time

Po
pu

la
tio

n

Actual population Optimal Population

Figure 5: The size of the agent population under

changing network conditions

 To measure the performance of fault tolerant mobile
agent system our test consists of sequentially sending a
number of agents that increment the value of the
counter at each stage of the execution . Each agent
starts at the agent source and returns to the
agent source , which allows us to measure its round–
trip time . Between two agents , the places are not
restarted. Consequently, the first agent needs considerably
longer for its execution , as all classes need to be
loaded into the cache of the virtual machines .
Consecutive agents benefit from already cached
classes and thus execute much faster . We do not
consider the first agent execution in our measurement
results . For a f air comparison , we used the same
approach for the single agent case (no replication).
Moreover , we assume that the Java class files
are locally available on each place . Clearly , this is
a simplification , as the class files do not need to be
transported with the agent . Remote class loading adds
additional costs because the classes have to be transported
with the agent and then loaded into the virtual machine.
However, once the classes are loaded in the class loader,
other agents can take advantage of them and do not need
to load these classes again. The size of the agent has a
considerable impact on the performance of the fault-
tolerant mobile agent execution .To measure this impact,
the agent carries a Byte array of variable length used to
increase the size of the agent. As the results in fig. 6
show , the execution time of the agent . increases linearly
with increasing size of the agent . Compared to the single
agent, the slope of the curve for the replicated agent is
steeper.

Figure6: Costs of single and replicated agent execution

increasing agent size .

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp135-140)

6 Conclusion
 In this paper ,we have identified two important
properties for fault-tolerant mobile agent execution: non-
blocking and exactly-once. Non-blocking ensures that the
agent execution proceeds despite a single failure of either
agent ,place ,or machine .Blocking is prevented by the use
of replication.
 This paper discussed a mobile agent model for
processing transactions which manipulate object servers .
An agent first moves to an object server and then
manipulates objects.
 General possibilities for achieving fault tolerance in
such cases were regarded, and their respective advantages
and disadvantages for mobile agent environments, and the
intended parallel and distributed application scenarios
shown. This leads to an approach based on warm standby
and receiver side message logging.
 In the paper dynamically changing agent domains were
used to provide flexible, adaptive and robust operation.
The performance measurement of Fault – Tolerant
Mobile Agent System show the overhead introduced by
the replication mechanisms with respect to a non-
replicated agent .Not surprisingly ,They also show that
this overhead increases with the number of stages and the
size of the agent.

References
[1] H.Hamidi and K.Mohammadi, "Modeling and
Evaluation of Fault Tolerant Mobile Agents in Distributed
Systems ," Proc.Of the 2th IEEE Conf . on Wireless &
Optical Communications Networks (WOCN2005),pp.91-
95, March 2005.
 [2] S. Pleisch and A. Schiper, "Modeling Fault-Tolerant Mobile
Agent Execution as a Sequence of Agree Problems," Proc. of
the 19th IEEE Symp. on Reliable Distributed Systems, pp. 11-
20,2000.
[3] S. Pleisch and A. Schiper, "FATOMAS - A Fault-Tolerant
Mobile Agent System Based on the Agent-Dependent Ap-
proach," Proc. 2001 Int'l Conf on Dependable Systems and
networks,pp.215-224,luI.2001.
[4] M. Strasser and K. Rothermel, "System Mechanism for Par-
tial Rollback of Mobile Agent Execution," Proc. 20th In!'l Conf
on Distributed Computing Systems, 2000.
[5] T. Park, I. Byun, H. Kim and H.Y. Yeom, "The Performance
of Checkpointing and Replication Schemes for Fault Tolerant
Mobile Agent Systemss ," Proc. 21th IEEE Symp. on Reliable
Distributed Systems, 2002.
[6] L. Silva, V. Batista and 1.G. Silva, "Fault-Tolerant
Execution of Mobile Agents," Proc.In!'1 Conf on Dependable
Systems and lIIenvorks, 2000.
[7] M. Izatt, P. Chan, and T. Brecht. Ajents: Towards an
Environment for Parallel, Distributed and Mobile Java
Applications. In Proc. ACM 1999 Conference on Java Grande,
pages 15-24, June 1999.
[8] M.Shiraishi, T.Enokido and M.Takizawa" Fault – Tolerant
Mobile Agents in Distributed Objects Systems"proc,of the
Ninth IEEE Workshop on Future Trends of Distributed
Computer Systems(FTDCS,03), pp. 11-20 ,2003.
[9] H.W.Chan,K.M.Wong , R.Lyu “ Design ,Implementation
,and Experimentation on Mobile Agent Security for Electronic
Commerce Application,” Distributed systems, s. Mullender,ed.,
second ed., pp. 199-216, Reading, Mass.: Addison-wesley ,
1993.
[10] X.Defago,A. schiper,and N. sergent, “semi-passive

Replication,”proc. 17th IEEE symp. Reliable Distributed sy
[11] F.Hohl."A Model of Attacks of Malicious Hosts Against
Mobile Agents".proceedings of the ECOOP Workshop on
Distributed Object Security and 4th Workshop on Object
systems:Secure Internet Mobile Computations ,p.105-
120.INRIA,France ,1998.
[12] Fritz Hohl. “A Model of Attacks of Malicious Hosts
Against Mobile Agents”. In Fourth Workshop on Mobile Object
Systems (MOS’98): Secure Internet Mobile Computations,
http://cuiwww.unige.ch/~ecoopws/ws98/papers/hohl.ps, 1998.
[13] Sarah Brocklehurst, Bev Littlewood, Tomas Olovsson and
Erland Jonsson. “On
Measurement of Operational Security”. In Proceedings of the
Ninth Conference on Computer Assurance (COMPASS’94):
Safety, Reliability, Fault Tolerance and Real Time, Security,
p.257-266.1994.
[14] Erland Jonsson. “A Quantitative Model of the
Security Intrusion Process Based on Attacker Behavior”.
In IEEE Transactions on Software Engineering, Vol. 23,
No. 4. IEEE, April 1997.
stem (SRDS ' 98),pp. 43-50, oct. 1998.

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp135-140)

