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Abstract - An investigation of the results produced by two cooperative learning strategies exploited in the system REGAL
is reported. The objective is to produce a more efficient learning system. An extensive description about how to setup

suitable experiments is included. It is worthwhile to note that, in principle, these cooperative
learning strategies could be applied to a pool of different learning systems.
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I. I NTRODUCTION

Concept learning [3] is the task of finding a rule (in a
wide sense) that discriminates between positive and negative
instances of a given concept. The relevance of concept learning
is well characterized by the variety of its fielded applications
like prediction of mutagenetic compounds [12], and manage-
ment of computer systems and networks [13], [16]. Learning
concepts means searching large hypothesis spaces. So, the
capability to take advantage of effective search becomes a plus.

Approaches based on Genetic Algorithms [8], [5] proved
their potentialities on a variety of concept learning tasks [1],
[11], [4], [6].

From these efforts it emerged that the main disadvantage
of using GAs, with respect to alternative approaches, stays in
their high user waiting time and in their high computational
cost. A possible way of reducing GA computational cost is to
use distributed computation efficiently: possibly by promoting
cooperation or competition among the simultaneous evolving
populations. This approach is known as cooperative evolution
or co-evolution [10], [7], [18], [15], [24].

Hillis [7] studied a host-parasite coevolutive system to de-
velop sorting network. Other researchers exploit co-evolution
to decompose complex problem into simpler subproblems at
runtime, and then the evolution of several species, each one
oriented to a subproblem’s solution, is promoted. Periodically,
a candidate solution for the problem is assembled from the
species’ best individuals and evaluated. Finally, the solution
evaluation is backpropagated to the existing species through a
new problem decomposition that affects their further evolution
[10], [18], [15], [24].

In the past, we investigated how the adoption of cooperative
learning into the GA-based system REGAL [15] could produce
a more efficient learning system. Research on cooperative

learning includes also approaches like: boosting [22] and
bagging [2]. These techniques combines a pool of classifiers
in order to improve their separate classification performances.
Generally they exploit re-sampling or weighting of the learning
instances in order to acquire different classifiers to be com-
bined, and they are independent from the specific used learning
method.

The paper organization follows. In Section 2, REGAL and
two cooperative learning strategies are briefly described. In
Section 3, the experimental context is analyzed. In Section 4,
the results are reported. The conclusion ends the work.

II. T HE SYSTEMREGAL

REGAL [4], [15] learns relational disjunctive concept de-
scriptions in a restricted form of First Order Logic by using
cooperative evolution. In REGAL an individual is a conjunc-
tive formula (encoded as a fixed length bitstring) and a subset
of the individuals in the populations has to be determined to
form a disjunctive description for the target concept. For the
scope of this work, we concentrate on REGAL’s cooperative
architecture as a description of the system’s other components
have already been published.

REGAL’s architecture is a network of N processes
GALearners, coordinated by aSupervisor that imposes
cooperation among the evolving populations. Metaphorically
speaking, eachGALearner realizes a niche, defined by a
subset of the learning instances, where some species lives.
Each GALearnern tries to find a description for a subset
of the learning instancesLSn by evolving its population. In
addition, theGALearners may perform migration (exchange)
of individuals. TheSupervisor coordinates the distributed
learning activity by periodically assigning different subsets of
the learning instances to theGALearners. The composition
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of these subsets depends on the specific cooperative policy
used. Two policies of cooperation will be investigated.

III. T WO COOPERATIVELEARNING STRATEGIES

REGAL’s results depend on the emergence of an effective
cooperative behavior among its learning processes. As said
before, in the system, cooperation is achieved by periodically
adjusting the learning sets assigned to eachGALearner.
Thus, the cooperative learning strategy that determines the
composition of these learning sets becomes the very respon-
sible for a successful outcome. As no a priori information
is available on what is a successful assignment of learning
instances, we decided to develop two cooperative learning
strategies based on different assumptions.

First, we analyzed the methods used by well known learning
systems (like: AQ [14], C4.5 [20], FOIL [19]) to deal with
a large set of instances that cannot be covered by a single
conjunctive formula. They all exploit a ”divide et impera”
policy (also known as ”learn one conjunct at a time”): learns
a description, remove the instances covered by it from the
learning set, and restart the learning on the remaining in-
stances. So we decided to implement a similar policy as a
cooperative learning strategy, named Let Seed Expand, that
works as follows: when a learner find a descriptionψ, remove
from its learning set all the instances covered by other already
found descriptions and not covered byψ, and letψ improve. In
some sense, this policy realizes a pool of ”divide et impera”
learners evolving in parallel. A drawback of the ”divide et
impera” approach is that it causes the learning of a number
of descriptions covering few instances (the ”small disjuncts”
problem) that are usually not very predictive [9]. The reason
for such behavior is the sharp reduction of data available for
learning in the latest rounds of application of the policy.

We also defined an alternative form of cooperation, named
Describe Those Still Uncovered, that forces the learners in
dealing as soon as possible with the instances difficult to
cover. Essentially, as soon as a promising concept description
emerges, the instances not covered by it are included into all
the learning sets, whereas each covered instance is inserted
into only one learning set. This approach should reduce the
probability that ”small disjuncts” appear.

The detailed description of the cooperative learning
strategies follows.

The Cooperative Learning StrategyLet Seeds Expand

The cooperative learning strategy Let Seeds Expand,LSE,
has been explicitly designed to allow a parallel learning
activity based on the ”divide et impera” philosophy: remove
the covered instances and learn a description for the remaining
ones. Its definition follows:

CoopLSLSE(Concept, E, C,ω, {LSn}, N)
/* Concept is the current concept description */
/* E is the set of the available concept instances */
/* C is the set of the available non concept instances */
/* ω is the class of the concept instances */
/* {LSn} is the set of niches definitions */

/* N is the number of availableGALearners */
LS = E ∪ C
NotCovered = E -∪ψ∈Concept PosCov(ψ, LS, ω)
for n=1 to N

LSn = C ∪ NotCovered
endfor
π-list = < sort ψ ∈Concept by decreasing values ofπ(ψ, LS, ω) >
n = 1
while not empty(π-list) do

ϕ = FirstElem(π-list)
π-list = π-list - ϕ
LSn = LSn∪ PosCov(ϕ,LS,ω)
n = (n + 1) mod N

endwhile
return({LSn})
The procedureCoopLSLSE first determines which learning
instances are not covered by the current concept description
Concept; these instances will be included into every new
niche definition. Afterwards, the extension of one or more
conjuncts in Concept is added to a generic niche definition.
Roughly speaking, theCoopLSLSE strategy assigns to each
GALearner the task of extending (generalizing) the extension
of a found description to include the uncovered instances.

The name ”Let Seeds Expand” derives from the way the
concept description appears: first, some formulas, describing
subsets of the learning instances, are found and, then,
their extensions grow to include the uncovered instances.
Considering the extension of the found concept description,
this form of cooperation favors the discovery of formulas
having overlapping extensions because a number of the same
learning instances appears into several niche definitions.

The Cooperative Learning StrategyDescribe Those Still
Uncovered

A different form of cooperationCoopLSDTSU , (Describe
Those Still Uncovered), has been designed to help the dis-
covery of descriptions covering the ”difficult” instances. As
soon as a promising concept description appears the instances
not covered can be identified as difficult ones. Thus they get
included into all the learning sets to increase their probability
of being covered, whereas the covered ones are inserted into
only one learning set. The policy definition is:

CoopLSDTSU (Concept, E, C,ω, {LSn}, N)
/* Concept is the current concept description */
/* E is the set of the available concept instances */
/* C is the set of the available non concept instances */
/* ω is the class of the concept instances */
/* {LSn} is the set of niches’ definitions */
/* N is the number of availableGALearners */

LS = E ∪ C
NotCovered = E -∪ψ∈Concept PosCov(ψ, LS, ω)
for n=1 to N

LSn = C ∪ NotCovered
endfor
Assigned =∅
π-list = < sort ψ ∈Concept by decreasing value ofπ(ψ, LS, ω) >
n = 1
while not empty(π-list) do

ϕ = FirstElem(π-list)
π-list = π-list - ϕ
LSn = LSn∪ {e|e ∈ PosCov(ϕ,LS,ω) ande 6∈ Assigned)}
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Assigned = Assigned∪LSn

n = (n + 1) mod N
endwhile
return({LSn})
First, the procedureCoopLSDTSU includes the learning in-
stances not covered by the current concept description into
each new niche definition. After, theCoopLSDTSU strategy
orders the formulas in the current concept description Concept
according to theirπ value. Then, the i-thGALearner get
the task of learning a description covering the instances not
covered by the first i-1 formulas inπ-list, plus the instances
not covered by Concept.

According to this policy, the learning instances covered by
Concept are included into only one niche definition. Instead,
those instances not covered by any formula appear in all
the niche definitions. As soon as an instance is covered, the
number of niches, containing it, drops to one. Considering
the extensions of the found concept description, this form of
cooperation biases the learning activity towards descriptions
that do not cover the same instances, i.e., they tend to have
almost non overlapping extensions.

IV. EMPIRICAL QUALITATIVE EVALUATION

The effectiveness of any concept learning system is pri-
marily evaluated on the basis of its averaged prediction error
estimate. However, in order to provide a closer insight in
a system behavior, additional measures may be used, such
as, for instance, measures accounting for the structure of the
acquired concept description. The comparison of REGAL’s
performances in terms of its average prediction error has
already been analyzed [17]. We are here interested in the
qualitative evaluation of how cooperation affects the structure
of the found concept descriptions. Consequently, we will study
REGAL’s behavior with and without a cooperative strategy at
work and considering the effect of migration. Given all the
previous, setting up a suitable experimental context involves
dealing with the following three issues:
1) The selection of what characteristics of concept description
should be measured. We chose the following ones: (a) its
average prediction error (ε) evaluated on a independent set of
instances; (b) its complexity (C); (c) the number of conjuncts
(NC) in Concept; (d) the maximum (MXC), average (AVC)
and minimum (SMC) number of positive examples covered
by any conjunct in Concept; (e) and the user waiting time (T),
i.e. cpu time of the slowest learners to complete its task. The
complexity (C) of a concept description has been defined as
the number of conditions (i.e. its number of constants) to be
tested in order to verify it.
2) The selection of the learning problem. In order to be able
to compare the learned concept descriptions with respect to
reasonable target ones, we chose an applicative domain whose
(near to) optimal concept descriptions area priori known.
These target concept descriptions are characterized by a null
predictive error and by a low complexity value.
3) The selection of a set of operative conditions, including

parameters’ values, under which to run the learning system.
We now discuss issues 2) and 3) in more details.

Characteristics of the Selected ApplicationAs applicative
domain, we selected a known concept learning dataset: the
”Mushrooms”1 [23] one. This problem is characterized by
the absence in its hypothesis spaces of a purely conjunctive
concept description and by the existence in its hypothesis
spaces of at least a disjunctive concept description. The
knowledge about this hypothesis space comes from results
appeared in the literature.

From previous experiments, we know that the Mushrooms
application admits as good description for the poisonous
mushrooms concept that requires 15 conditions to be tested.

Three randomly selected sets of 4000 instances (2000 edible
plus 2000 poisonous) have been used as learning sets, while
the remaining 4124 instances have been used for testing.
Choosing Proper Experimental ConfigurationsIn order to
run a GA-based system, a set of parameters such as the
population size, the number of generations to be accomplished
(in short, the generation number), the crossover probability,
the mutation rate, etc. have to be fixed [5]. In general, the
results obtained by any GA-based system are sensitive to the
chosen values. A system is robust to the parameter variation if
a little variation in its parameters values corresponds to a little
shift in the ”quality” of its results. We analyzed and discussed
REGAL’s parameter sensitivity in [4].

In this work, we used our usual parameter setting as reported
in Table I. The population size and the generation number
were chosen after some exploratory runs which allowed to
determine a sufficiently small value. A migration rate of 0.5
means that half of one population migrates toward other GAs.

V. REGAL WITH OR WITHOUT USING A COOPERATIVE

STRATEGY

The experiments reported in this section aims to study what
kind of descriptions are learnt and what computational cost is
involved when no cooperation or some cooperation policy is
exploited. A set of basic configurations has been selected to
act as a baseline. The following configurations, corresponding
to the parameter settings appearing in Table I, have been
considered:
CONF1 (16 GAlearners andµ = 0.0) - A basic distributed
approach: 16GA Learners, each one evolving a population
of 100 individuals. No cooperative strategy to coordinate the
learners. This means that every learner exploits the whole
learning set.
CONF2 (16 GA learners andµ = 0.5) - As CONF1 plus
migration of individuals among theGA learners.
Plus CONF1 and CONF2 exploiting one cooperative policy.

1The problem consists in recognizing mushrooms from the Agaricus and
Lepiota families as Edible (the firsts) and Poisonous (the seconds). The dataset
contains 8124 instances, 4208 of edible mushrooms and 3916 of poisonous
ones. Each instance is described by a vector of 22 discrete attributes, each
of which can assume from 2 to more than 6 different values. By defining
a predicate for each<attribute, value> pair, the language template for this
application could be coded as a bitstring of 126 bits.
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TABLE I

REGAL’S CONFIGURATIONS USED IN THIS WORK.

Parameter Value
Population size 1600
Number of GA learner 16
Crossover probabilitypc 0.6
Mutation probabilitypm 0.0001
Migration rateµ 0.0 or 0.5
Generation limit 200
Generation gap 0.9
Cooperation None/LSE/DTSU

In Table II, the results obtained are reported. The leftmost
column of the table shows the configuration’s identifier. The
other columns of the table contains the parameters already
described plus the ’Cons & Compl’ field that summarizes
whether the learned concept description is complete and
consistent on the learning set. Finally, the rows, with the value
”Target”, report the features of the target concept. For each
configuration settings three runs have been performed. The
reported error rate is an average over the three runs. Instead
the other values are the real values of the description found
in the experiment with the median error rate.

The experimental findings can be summarized as follows:
A) In CONF1, the maintenance of genetic diversity is mainly
deferred to thelocality of the evolution: eachGA Learner
only affects the evolution of its population. When migration
of individuals occurs (CONF2), genetic diversity across pop-
ulation tends to reduce. Thus letting individuals, describing
(part of) their parents’ original niches, merge and favoring
the appearance of general descriptions. In turn, this biases
the learning system toward the discovery of overfit con-
cept description [21] that may decrease the classification
performances as observable when passing from CONF1 to
CONF2 in the experiments. In addition, migration increases
the computational cost of a factor proportional to the number
of exchanged individuals. This is due to the double evaluation
migrating individuals are subjected to in the leaving and
incoming niche. A minor point to be investigated during the
system’s reimplementation would be to reduce this computa-
tional overhead.

Let us evaluate now the contribution of cooperation to
REGAL’s performances:
1) both forms of cooperation allow to learn good concept
descriptions.
2) The effect of migration of individuals is not very evident
from the point of view of the error rate but a decrease in the
solution complexity is observable when it is used.
3) Quite surprisingly using a cooperative strategy does not
significantly increase the system running cost. The reason
may be that the evolving populations tend to converge toward
simple descriptions at an earlier generation than when no
cooperation is present.

In summary, it seems that both cooperative policies perform
reasonably well across a variety of system’s configurations.

Of course, additional study is needed in order to confirm or
discard these latter conclusions.

TABLE II

REGAL LEARNING THE ”POISONOUS MUSHROOMS” CONCEPT.

CoopLS µ T C ND MXD SMD AVG e[%] Cons &
Compl

CONF1
None 0.0 76 7 2 1946 1139 1542 2 No
LSE 0.0 72 21 4 1946 62 946 0 Yes
DTSU 0.0 73 63 5 1946 329 1064 0 Yes

CONF2
None 0.5 97 14 2 1946 1161 1553 4 No
LSE 0.5 103 16 3 1946 414 1089 0 Yes
DTSU 0.5 99 42 4 1946 317 1063 0 Yes

Target - 15 3 1946 197 1096 0 Yes

VI. CONCLUSION

Investigations of two cooperative learning strategies has
been reported. We believe that a distributed genetic base
learner able to exploit these two cooperative strategies may
acquire satisfactory concept descriptions across a range of
applications. Additional experimentation, required to confirm
or discard this claims, is in progress.
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