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Abstract - In this paper a CNN vector-disease model is investigated from the

point of view of its dynamics. Existence of the travelling waves for such model

is proved.

1 INTRODUCTION

In his pioneering work, Fisher [1] used a logistic-based reaction-diffusion

model to investigate the spread of an advantageous gene in a spatially
extended population. Kermack and McKendrik [4] proposed a simple
deterministic model for a directly transmitted viral or bacterial agent

in a clossed population consisting of susceptibles, infectives and recov-
ereds.

Some vector-borne diseases as malaria, yellow fever, typhus, which
arrive and spread in new areas are one of the main public health prob-

lems throughout the world. The investigations of the spatial spread
of newly introduced diseases are interesting and challenging for both

theory and applications.
We will consider a host in a bounded region V ∈ RN(N ≤ 3), where

a disease is carried by a vector. The host is divided into two classes

- susceptible and infectious, and the vector population is divided into
three classes- infectious, exposed and susceptible. Let us denote by

v(t, x) - normalized spatial density of infectious host at time t in x,
and by w(t, x) - normalized spatial density of susceptible host at time
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t in x. Mention that normalization is done with respect to the spatial

density of the total population, therefor we have v(t, x) + w(t, x) = 1,
(t, x) ∈ R+×V, R+ = [0,∞). We define IV (t, x) as normalized spatial

density of infectious vector at time t in x, and SV (t, x) as normalized
spatial density of susceptible host at time t in x. Let β denotes the

host-vector constant rate, then the density of new infections in host
is given by βw(t, x)IV (t, x) = β[1 − v(t, x)]IV (t, x). We obtain the

following equation

∂v

∂t
(t, x) = D∆v(t, x)− bv(t, x)+ (1)

+β[1 − v(t, x)]IV (t, x),

where bv(t, x) is the rate at which the density of infectious vanishes, D
is a diffusion constant, ∆ is the Laplacian operator. In equation (1) we
can substitute IV (t, x) by

IV (t, x) =
∫ ∞
0

∫
V ξ(t, s, x, y)SV (t − s, y).

.η(s)dy ds =

=
∫ ∞
0

∫
V ξ(t, s, x, y)hη(s)v(t− s, y)dy ds,

where h is a positive constant, ξ(t, s, x, y) is the proportion of vectors
that arrive in x at time t, starting from y at time t − s, η(s) is the
proportion of vectors that are still infectious s units of time after they

became exposed. After substituting IV (t, x) into (1), changing the
limits and denoting d = βh, F (t, s, x, y) = ξ(t, s, x, y)η(s) we obtain

the following diffusive integro-differential equation modelling the vector
disease:

∂v

∂t
(t, x) = D∆v(t, x)− bv(t, x)− (2)

−d[1 − v(t, x)]
∫ t

−∞

∫
V F (t, s, x, y).

.v(s, y)dyds, (t, x) ∈ R+ × V.

The initial and boundary conditions are:

v(Θ, x) = Φ(Θ, x), (Θ, x) ∈ (−∞, 0]× V, (3)
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∂v

∂n
(t, x) = 0, (t, x) ∈ R+ × V,

where Φ is a continuous function for (Θ, x) ∈ (−∞, 0] × V, ∂
∂n

is the

outward normal derivative on ∂V. The convolution kernel F (t, s, x, y) is
a positive continuous function in its variables t ∈ R, s ∈ R+, x, y ∈ V,

and
∫∞
0

∫
V F (t, s, x, y)dy ds = 1. We will suppose that the convolution

kernel F has the following form F (t, s, x, y) = δ(x−y)δ(t−s). Therefore
we derive from (2) the following reaction- diffusion model:

∂v

∂t
= D∆v(t, x)− bv(t, x)+ (4)

d[1 − v(t, x)]v(t, x), (t, x) ∈ R+ × V.

In Section 2 we shall introduce the appropriate CNN representation
of the vector-disease model (4). The dynamics of this model will be

studied by using the describing function technique. In Section 3 the
existence of travelling waves of our CNN vector-disease model will be
proved.

2 CNN MODEL AND ITS DYNAMICS

It is known [6] that some autonomous CNNs represent an excellent ap-
proximation to nonlinear partial differential equations (PDEs). In this

section we will present the model (4) by a reaction-diffusion CNNs.
The intrinsic space distributed topology makes the CNN able to pro-

duce real-time solutions of nonlinear PDEs. Consider the following
well-known PDE, generally referred to us in the literature as a reaction-
diffusion equation [1]:

∂u

∂t
= f(u) + D∇2u,

where u ∈ RN , f ∈ RN , D is a matrix with the diffusion coefficients,

and ∇2u is the Laplacian operator in R2. There are several ways to ap-
proximate the Laplacian operator in discrete space by a CNN synaptic
law with an appropriate A-template. In our case we will take one-

dimensional discretized Laplacian template:

A : (1,−2, 1).
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Therefore the CNN representaion for our vector-disease model (4)

will be the following:

dvj

dt
= (vj−1 − 2vj + vj+1)− (5)

−bvj + d(1 − vj)vj, 1 ≤ j ≤ N.

The above equation is actualy ordinary differential equation which
is identified as the state euqation of an autonomous CNN made of N

cells. For the output of our CNN model we will take the standard
sigmoid function [2]. Let us denote by N(vj) = d(1 − vj)vj − bvj the

nonlinear part of this equation. We shall study the dynamics and the
stability properties of (5) by using the describing function method [5].

Applying the double Fourier transform:

F (s, z) =
k=∞∑

k=−∞
z−k

∫ ∞
−∞ fk(t)exp(−st)dt,

to the CNN equation (5) we obtain:

sV (s, z) = z−1V (s, z) − 2V (s, z) + zV (s, z)+ (6)

+N(s, z).

According to describing function technique [5] the transfer function in
this case is

H(s, z) =
1

s − z−1 + 2 + z
.

We are looking for possible periodic solutions of our CNN model (5)
of the form:

vj(t) = Vm0
sin(ω0t + jΩ0) (7)

If we take periodic boundary conditions [6] for our CNN model (5)
we obtain the following values of the spatial frequency

Ω0 =
2πk

N
, 0 ≤ k ≤ N − 1. (8)

After substituting s = iω0, z = exp(iΩ0) in the transfer function and
deriving its real and imaginary part we obtain equations together with

(8) for the unknowns ω0, Ω0 and Vm0
. According to the describing

function technique [5] the following proposition then hold:
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Proposition 1 CNN equation (5) for the vector-disease model (4) with

circular array of N cells has periodic solution vj(t) with a finite set of
spatial frequences Ω0 = 2πk

N
, 0 ≤ k ≤ N and a period T0 = 2π

ω0
.

In order to complete our stability analysis we will define the equilib-
rium points of the CNN model (5). Let us rewrite (5) in the following
way:

dv

dt
= A ∗ v + N (v) = F , (9)

where v is N dimensional vector with elements vj(t), A is one dimen-

sional discretized Laplacian template (1−21), ∗ is convolution operator.
According to the theory of dynamical systems [3] the equilbrium points
of (9) are those satifying:

F(ve) = A ∗ ve + N (ve) = 0.

There are two steady states: ve
1 = 0 and ve

2 = d−b
d . The Jacobian

matrix of the equilibrium points can be computed by the following

formulae:

Jps =
∂Fp

∂vs
|v=ve, 1 ≤ p, s ≤ N.

Then the following theorem hold for the stability of the steady states:

Theorem 1 For our CNN model (5) with periodic boundary condi-
tions:

i). if 0 < d ≤ b then the steady state ve
1 = 0 is asymptotically stable

and ve
2 = d−b

d is either stable or unstable for 0 ≤ v ≤ 1;
ii). if 0 ≤ b < d then the steady state ve

1 = 0 is either stable or

unstable and ve
2 = d−b

d is asymptotically stable in the interval 0 ≤ v ≤ 1.

Proof: The Jacobian matrix J of the equilibrium points in our case is
J = A− (b− d)Id − 2dve. Then for the steady state ve

1 = 0 we have for

the eigenvalues of J :

N∑
q=1

λq = trace(A − (b − d)Id) = (−2 − (b − d)),

which is negative for d ≤ b and either negative or positive for b < d.
For the steady state ve

2 = d−b
d the eigenvalues of the Jacobian J are:

N∑
q=1

λq = trace(A + (b − d)Id) = (−2 + (b − d)),
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which will be either positive or negative for d ≤ b, and negative for

b < d. Theorem is proved.

Remark 1 Recall that d represents the contact rate and b represents

the recovery rate. The above stability results indicate that there is
a threshold at d = b. If d ≤ b, then the proportion v of infectious

individuals tends to zero as t becomes large and disease dies out. If
d > b, the proportion of infectious individuals tends to an endemic
level v2 = d−b

d
as t becomes large. There are periodic solutions in the

region 0 ≤ v ≤ 1.

3 TRAVELLING WAVES OF THE CNN MODEL

Let us consider our CNN equation (5). The travelling wave solutions

will be presented in the following form:

vj(t) = v(η), 1 ≤ j ≤ N, (10)

where η = t − jh, h > 0 is a parameter. Note that η is the coordinate
moving along the array with a velocity equal to c = 1/h. Substituting

(10) in (5) we obtain

v̇ = v(η − h) − 2v(η) + v(η + h) + N (v),

where the dot denotes differentiation with respect to η. The two dif-
ference terms [v(η − h) − v(η)] − [v(η) − v(η + h)] can be replaced

approximately by the first derivatives: −v̇/h and +v̇/h, respectively.
Hence, we obtain

v̇ =
1

1 + 2c
N (v). (11)

Clearly, v ≡ 0 and v ≡ d−b
d are solutions of the stationary problem. So

there are two equilibria E0 = (0, 0) and E1 = (d−b
d , 0). The following

theorem for the travelling waves of vector-disease CNN model (5) hold:

Theorem 2 For vector-disease CNN model (5), there exists c > 0 and
d > b, such that there is a heteroclinic orbit connecting the equilbria E0

and E1 and the travelling wave v(η) is strictly monotonically decreasing.
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Proof: We require a trajectory from (0, 0) to (d−b
d , 0) in the phase

plane remaining in the strip 0 ≤ v ≤ 1. Any such wave front must be
monotonic. The equilibria (0, 0) and (d−b

d
, 0) cannot be centers or foci,

since the solutions close to such points must oscillate. Trajectories
which pass from one equilibria to another are known as heteroclinic

orbits [3]. It is easy to see that (11) has a heteroclinic solution v∗(η)
from E0 to E1 for the certain parameter values d > b. This solution

corresponds to a travelling wave of the vector disease CNN equation
(5) which satisfies:

limη→−∞v∗(η) = E0, limη→+∞v∗(η) = E1.

We obtain the following travelling front for the wave equation (11), here

b = 3.8, d = 4.8 and c = 2.0 − 2.4:
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