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Abstract: - This paper presents least square formulations for constructing a pair-wise linear and 
nonlinear classification decision functions. The formulations are based on the KKT system 
obtained from the optimality conditions of the PAMSVM problem. This derivation can be 
considered a variant of the Suykens and Vandewalle’s least square multi-class SVMs, with the 
notable difference been the equality constraints used in their problem formulation and the 
encoded classes (labels) represented by multiple streams for the system output. The least square 
formulation will be of two types namely the pairwise least square multi-classification support 
vector machine (PALS-MSVM) and piecewise least square multi-classification support vector 
machine (PILS-MSVM).  A piece-wise MSVM formulation will be selected from the existing 
literature and its optimality conditions will be written out and expressed as a least square 
problem. The structures of both LS problems are essentially the same with the only difference 
been the matrix which has the dataset information. Since the Mercer conditions are applicable, 
kernels can be implemented as appropriate for nonlinear classification problems. 
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1   Introduction 
Support Vector Machines (SVMs) 
developed by Vapnik [1] are based on 
statistical learning theory and have been 
successfully applied to a wide range of 
problems. It does not only represent a 
universal spirit of learning methodology, it 
complements the existing methodology of 
modeling and simulation of decision making 
processes for classification and regression 
problems. The prime advantage of the 
SVMs for classification problems is its 
ability to perform a mapping of the variables 
in a high (possibly infinite) feature space 
thus, providing an avenue for exploring 
kernel classifiers. Classification is done in 
this feature space by making use of a 
hyperplane of a nonlinear decision surface, 
i.e. optimal separating plane. In order to map 
the variables into a high feature space we 
make use of Mercer’s condition.  

Multi-classification SVMs is an extension of 
support vector machines (SVMs) involving 
three or more classes. There is active 
research in this area aiming at the 
construction of single optimization models, 
the reduction of the computational effort 
needed to solve the resulting large scale 
optimization problems and subproblems. 
Earlier attempts investigated solving k SVM 
models, where k is the number of classes 
and k(k-1)/2 is the number of SVM 
classifiers [2, 3]. Other attempts involved the 
solution of a single optimization problem 
using all data at once [3, 4, 5]. Those 
attempts are arguably the most well-
constructed multi-class formulations most 
closely aligned with Vapnik’s principle [1] 
of always trying to solve problems directly. 
Our main concern will be a multi-
classification formulation which will be 
expressed as a single optimization problem. 
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We will look at the development of a pair-
wise multi-classification support vector 
machine (PAMSVM) expressed as a least 
square problem (PALS-MSVMs) and finally 
we will express a slight variant of the piece-
wise multi-classification support vector 
machines formulation [3, 4, 5] (PILS-
MSVM) as a least square piece-wise multi-
classification support vector machine (PILS-
MSVM). The PALS-MSVM is different 
from the LS-MSVM of Suykens and 
Vandewalle [6] in the sense that we use 
inequality constraints as in the primal 
PAMSVMs formulation.   
This paper is organized as follows. In 
section 2 pair-wise multi-classification 
support vector machine (PAMSVM) models 
are discussed. In section 3 we present a least 
square pair-wise support multi-classification 
support vector machines formulation (LS-
PAMSVMs) and piece-wise multi-
classification support vector machine 
formulation (LS-PIMSVM) respectively. In 
section 4 we give computation results and 
application areas, and section 5 concludes 
the paper. 
 
 
2   Pair-wise multi-classification 
support vector machines 
In pairwise classification, we train a 
classifier for each possible pair of classes. 
For k classes, this results to k(k-1)/2 SVM 
classifiers. Below is a pairwise MSVM 
formulation for a linearly separable 
problem: 
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Here is a 3 classes problem (k = 3) rewritten 
in matrix notation 
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Where n nI R ×∈  is the identity matrix, 
im niA R ×∈ , jm njA R ×∈ i j< , and 1imie R ×∈  

1jmje R ×∈ i j<  is a vector of ones. 
So for k > 2 problem (1) can be expressed in 
the following form: 
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The constrained optimization is solved by 
introducing Lagrange multipliers 0α ≥  and 
a Lagrangian 
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Differentiating the Lagrangian with respect 
to w and γ leads to  

( ) 0T TdL C C w A
dw

α= − =                                     (4) 
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α
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To eliminate the variables w and γ  from the 
Lagrangian, matrix ( )TC C  needs to be an 
invertible matrix. Since ( )TC C  is invertible, 
we have  

1( )T T TC C A A− =                                           (6)                                
So from equations (4) & (5) and (6) we can 
obtain the relations  
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3   Least Square Multi-
classification Support Vector 
Machines 
 
3.1   LS-PAMSVM Formulation 
The derivation of the PALS-MSVM 
formulation is based on a slight variation of 
problem (2), where we minimize the 
regularization term and the sum of square 
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error referring to slack variables that account 
for inseparability of the constraints of (2). 
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Define the Lagrangian 
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where 0α ≥  are Lagrange multipliers. 
From the optimality conditions, we obtain 
the Karush-Kuhn Tucker (KKT) system by 
differentiating the Lagrangian with respect 
to , , , w andα β ξ γ  
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Eliminating variables w and ξ and 
substituting the relations obtained 
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into the optimality conditions to obtain the 
linear system  
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lsA is a symmetric matrix, m m
lsA R ×∈ , the 

ls ls lsA x b= system is non-homogeneous and 
consistent. 
 
3.2   LS-PIMSVM Formulation 
This is the MSVM formulation of 
Bredensteiner and Bennet [4] which declares 
a set of points , 1, ,iA i k= L represented by 
matrices im niA R ×∈  are piecewise-linearly 

separable if there exist i nw R∈  and i Rγ ∈  
such that:    

, , 1,..., ,i i i i j jA w e A w e i j k i jγ γ− > − = ≠             (20) 
In canonical form  

( ) ( ) 1, , 1,..., ,T i j i jx w w e i j k i jγ γ− − − > = ≠          (21) 
The bounding plane separating classes i and 
j is defined ( ) ( )T i j i jx w w e γ γ− = − . 
Below is a piecewise MSVM formulation 
for a linearly separable problem: 
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To classify a new point x we employ the 
“Max Wins” strategy [2, 3]. 
if sign [ ( ) ( )T i j i jx w w e γ γ− − − ] says that x  
is in the ith class,  
then the vote for the ith class is increased by 
one. Otherwise, the jth is increased by one. 
Then we predict x  as being in the class with 
the largest vote. In the case that those two 
classes have identical votes, select the one 
with the smallest index. Alternatively, we 
could compute ( ) T i i

ig x x w γ= − , and find i  
such that ( ) T i i

ig x x w γ= −  is maximized 
i.e. ( )g x =

1,..,
max ( )ii k

g x
=

, where ( )g x  is a 

decision function. 
From relation (20) and (21) the class with 
the maximum vote should also be the class 
with

1,..,
max ( )ii k

g x
=

.  

 
The derivation of the least square PIMSVM 
is based on a slight variation of the 
Bredensteiner and Bennet [4] MSVM 
formulation, where the norm is minimized 
simultaneously with the sum of square error 
given in problem (23). 
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Here is a 3 classes problem (k = 3) rewritten 
in matrix notation 
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where identity matrix n nI R ×∈ , im niA R ×∈  and 
1imie R ×∈  is a vector of ones. So when k > 2, 

we simply adjust the matrices Ĉ , Â and Ê , 
and express problem (23) in the matrix 
notation  
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By defining the Lagrangian for problem (24) 
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where 0α ≥  are Lagrange multipliers, we 
can obtain the Karush-Kuhn Tucker (KKT) 
system by differentiating the Lagrangian 
with respect to , , , w andα β ξ γ  
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Eliminating variables w and ξ in eqs. (25) - 
(30) we obtain 
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and substituting into the optimality 
conditions we obtain the linear system 
below: 
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Where ˆ
lsA is a symmetric matrix, ˆ m m

lsA R ×∈ , 
the ˆˆ ˆls ls lsA x b= system is non-homogeneous 
and consistent. 
 
To solve the linear system (19) and (35), we 
express the system as a least square 
unconstrained minimization problem 
(unified approach) [8] of the form 
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α
= + −                        (36) 

where αls is the trade off constant that seeks 
to find a compromise between obtaining the 
minimum norm solution and minimum 
residual solution. This form is especially 
useful for rank deficient/singular matrices 
and badly conditioned Hessians. In case that 
the Hessian is not positive definite (P.D.) we 
force the matrix or Hessian to become 
positive definite for a suitable 0lsα > , and 
determine a solution x  that minimizes ( )f x .  
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The optimality conditions for ( )f x are as 
follows: 
First order conditions 
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Second order conditions 
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where 2 ( )f x∇ is P.D. 
The minimum solution is obtained from the 
first order relation 
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4   Numerical Testing 
In this section we present the computational 
results using systems (19) and (35) for 
discriminating between k classes. 
Experiments were carried out on a vertical 1 
inch two-phase flow dataset [9] and the 
admission data for graduate school of 
business [10]. Description of datasets is as 
follows: 
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Vertical Two-Phase Flow Dataset: The two-
phase flow dataset [9] uses a pair of flow 
rates (superficial gas and liquid velocity) to 
delineate the flow regime. There are 209 
instances (points) and 2 attributes (features). 
The distribution of instances with respect to 
their class is as follows: 44 instances in class 
1 (bubble flow), 102 instances in class 2 
(intermittent flow), and 63 instances in class 
3 (annular flow).   
 
Admission Data for Graduate School of 
Business: The admission data dataset [10] 
uses the undergraduate grade point average 
(GPA) and graduate management aptitude 
test (GMAT) scores to help determine which 
applicants should be admitted to the school’s 
graduate program. There are 85 instances 
(points) and 2 attributes (features). The 
distribution of instances with respect to their 
class is as follows: 28 instances in class 1 
(not admitted), 26 instances in class 2 
(borderline), and 31 instances in class 3 
(admitted). 
   
Both formulations were implemented using 
the optimization and matrix decomposition 
routines in the MATLAB [11] software. The 
two-phase flow dataset was scaled by taking 
the natural logarithm of each instance, while 
the admission data were scaled using the Z – 
score normalization. The methods were 
trained on 50% of the dataset, and tested on 
the whole dataset (50% training, 50% testing 
data), all randomly drawn from the dataset 
to obtain 3 training sample data. We report 
the results of the LS formulation of PALS-
MSVM (λ, αls = 1), and the least square 
formulation of PILS-MSVM (λ, αls = 1). The 
most accurate model will be the one that has 
the highest classification accuracy. 
 

 
Table 1: Performance of LS-PAMSVM and 
LS-PIMSVM. 
 

Table 1 contains the results for three multi-
class methods, PALS-MSVM, and PILS-
MSVM on the Two-Phase flow and 
Admission dataset. The misclassification 
error of the PILS-MSVM is noticeably 
higher than the PALS-MSVM. The mean 
error rate of the PALS-MSVM on the Two-
Phase flow dataset is lower and produces the 
best generalization ability. The mean 
accuracy of the PILS-MSVM is also 
acceptable (see Table 1). On the Admission 
dataset, the mean accuracy of the PALS-
MSVM is lower and produces the best 
generalization ability. The results 
demonstrate the potential of the methods. 
Note that the quality of the solution is 
dependent on the choice of λ and αls. For this 
problem λ, αls = 1 were sufficient enough to 
present good results. Further computational 
studies could be of interest such as varying 
choices of λ and αls to determine the effect 
on the performance of the methods.  
 
 
5   Conclusion and Future Work 
In this paper we presented an extension of 
the binary SVM to the multiclass SVM. We 
have derived a least square formulation 
using the KKT system obtained from the 
optimality conditions for both the pairwise 
and piecewise least square SVM. The two 
methods proposed present an accurate and 
capable alternative to existing earlier 
methods based on solving k SVM models 
which can be tiresome due to the number of 
SVM models one would have to solve in 
order to discriminate between k classes. 
The proposed methods were applied to the 
Two-Phase flow and Admission dataset and 
comparisons were made between the two 
methods, PALS-MSVM and PILS-MSVM. 
The results are very encouraging 
considering that the kernel used is a linear 
kernel that indicates that the both datasets 
are close to be linearly separable with a 
tolerable misclassification rate. All error 
rates are acceptable, with the analysis of 
both the Two-Phase flow and the analysis of 
the Admission data favoring the PALS-
MSVM as being the best most accurate 
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method. The PALS-MSVM has shown 
consistency with respect to the dataset of 
interest. Further studies will involve the use 
of nonlinear kernel classifiers. Since, the 
Mercer’s condition is applicable kernel 
functions can be incorporated into the 
MSVM formulations.  
Further computational studies would include 
the implementation of several preprocessing 
schemes to normalize the data. Also varying 
the choices of λ and αls to help determine the 
effect on the performance of the model.   
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