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Abstract: - The binary support vector machines (SVMs) have been extensively investigated. 
However their extension to a multi-classification model is still an on-going research.  In this 
paper we present an extension of the binary support vector machines (SVMs) for the k > 2 class 
problems. The SVM model as originally proposed requires the construction of several binary 
SVM classifiers to solve the multi-class problem. We propose a single quadratic optimization 
problem called a pairwise multi-classification support vector machines (PAMSVMs) for 
constructing a pairwise linear and nonlinear classification decision functions. A kernel approach 
is also discussed for nonlinear classification problems. Computational results are presented for 
two real data sets. 
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1   Introduction 
Support Vector Machines (SVMs) 
developed by Vapnik [1] are based on 
statistical learning theory and have been 
successfully applied to a wide range of 
problems. They provide tools in modeling 
and simulation of decision making processes 
for classification and regression problems. 
SVMs for classification problems perform a 
mapping of the input variables into a high 
dimensional (possibly infinite) feature 
space. Classification is done in this feature 
space by the use of a hyperplane. The 
resulting discriminant function in the input 
space is generally a nonlinear function. In 
order to map the variables into a higher 
dimensional feature space we use implicitly 
the concept of a kernel function. 
Multi-classification SVM is an extension of 
support vector machines (SVMs), involving 
three or more classes. There is active 
research in this area, aiming at the 
construction of single optimization models 
for the reduction of the computational effort 
needed to solve the resulting large scale 

optimization problems and subproblems. 
Earlier attempts involved solving k SVM 
models, where k is the number of classes 
and k(k-1)/2 is the number of SVM 
classifiers [2, 3]. Other attempts involved the 
solution of a single optimization problem 
using all data at once [3, 4, 5]. The latter are 
arguably the most well constructed multi-
class formulations most closely aligned with 
Vapnik’s structural minimization principle 

[1].  
Our main contribution will be a multi-
classification formulation which will be 
expressed as a single optimization problem. 
We will look at the development of a 
pairwise multi-classification support vector 
machine (QP-PAMSVM) expressed as a 
quadratic optimization problem. Similar to 
the two-class problem we will formulate the 
optimal pairwise separator.  
This paper is organized as follows. In 
section 2 we review the SVM for the binary 
case. In section 3 we present a quadratic 
programming pairwise multi-classification 
support vector machine (QP-PAMSVM). In 
section 4 we give computational results for 
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two real data sets, and finally, section 5 
concludes the paper. 
 
 
2   Support Vector Machines 
In this section we consider the two-class 
classification problem.  The SVM avoids 
overfitting by maximizing the margin 
between two classes of training data, i.e., 
maximizing the distance between the 
separating hyperplane and the training data 
on either side of it.   

 
Fig 1: A Support Vector Machine 
classification problem; the optimal 
hyperplane is orthogonal to the shortest line 
connecting the two classes, and intersects it 
halfway. 
 
The formulation can be written in its primal 
form [1, 5, 6, 7, 8] as follows: 
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where d
ix ∈ℜ are the input training vectors, 

{ 1, 1}iy ∈ + − are the corresponding labels, 
2 Tw w w=  is the square of the 2-norm of the 

weight vector defining the separating 
hyperplane, and iξ  is a non-negative slack 
(penalty term) that measures the degree of 
violation of the constraints.  The parameter 
C is a constant, called the regularization 
parameter, which controls the trade-off 
between minimizing training errors and 
minimizing the norm of the weight vector 
(generalization ability). 
 

 
3   Pairwise Multi-classification 
Support Vector Machines 
In pairwise classification, we train a 
classifier for each possible pair of classes. 
For k classes, this results to k(k-1)/2 SVM 
classifiers. For the multi-classification case 
we express all k classes as a single 
optimization problem that will produce k(k-
1)/2 SVM classifiers.  
 
Given that the data sets in nR  are 
represented by a matrix im niA R ×∈ , where 

1,..,i k=  (k classes). 
Let iA  be an im n× matrix whose rows are 
points in the ith class. 
Let jA  be a jm n× matrix whose rows are 
points in the jth class. Then if nx R∈  can be 
classified as follows: 
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In the separable case, the pairwise linear 
discriminant function between two classes 
must satisfy the following set of inequalities: 
 Find ij nw R∈ and ij Rγ ∈ , such that  

,i ij ij ij j ijA w e e A w i jγ γ> > < ,                     
(3) 
where e is a vector of ones of appropriate 
dimension. If such a wij and γij exist, we say 
that the sets are pairwise linearly separable. 
To classify a new point x, we employ the 
“Max Wins” strategy. This is a voting 
approach [2, 3]. For example, if the sign of 
[ T ij ijx w γ− ] gives that x  is in the ith class, 
then the vote for the ith class is increased by 
one. Otherwise, the jth is increased by one. 
Hence we predict x  as being in the class 
with the largest vote. In the case that those 
two classes have identical votes, we select 
the one with the smallest index. 
 
 
3.1   PAMSVM linear separability 
formulation 
We propose the construction of a pairwise 
linear and pairwise nonlinear SVM using a 
single quadratic program (QP). Like in the 
dichotomous case we formulate the optimal 
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pairwise linear separator for the separable 
case. For the pairwise separable case there 
exists a ij nw R∈ and ij Rγ ∈ , such that 

i ij ij ij j ijA w e e A w i jγ γ> > < ,                   (4) 
Since infinitely many wij and γij exist, the 
optimal solution would provide the largest 
margin of classification. The margin of 
separation between classes i and j is 2

ijw
. 

Therefore, one would minimize ijw for i j< . 

Let
i

ij
j

A
A

A

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

 and 1ijy = ±  for classes i and j 

respectively. 
For the pairwise linearly separable problem 
we formulate the constrained optimization 
problem as below: 
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Here is a 3 classes problem (k = 3) rewritten 
in matrix notation 
Let 
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where the identity matrix n nI R ×∈ , 
, ,ji m nm ni jA R A R i j××∈ ∈ < 1imie R ×∈ and 

1jmje R i j×∈ <   are the vectors of ones. So, 
for k > 2 problem (5) can be expressed in 
the following form: 
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where

12 13 ( 1) 12 13 ( 1), ,.., , ,..,
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The constrained optimization is solved by 
introducing Lagrange multipliers 0α ≥  and 
a Lagrangian 

21( , , )  ( )
2

TL w Cw Aw E eα γ α γ= − + −               (7) 

Differentiating the Lagrangian with respect 
to w and γ leads to  

( ) 0T TdL C C w A
dw

α= − =                                  (8) 

0TdL E
d

α
γ
= − =                                             (9) 

To eliminate variables w and γ  from the 
Lagrangian, matrix ( )TC C  needs to be an 
invertible matrix. Since ( )TC C  is invertible, 
we have  

1( )T T TC C A A− =                                         (10)                                 
So from equations (8) & (10) and (9) we can 
obtain the relations  
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Using the relationships in (11) we 
eliminate ( , )w γ from the Lagrangian and we 
obtain the Wolfe dual quadratic optimization 
problem below: 
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In matrix notation the Wolfe dual becomes  

1max
2
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where ( 1) ( 1), ,.., , ,
T T T T T

ij ji k k k k i jα α α α α− −⎡ ⎤= <⎣ ⎦  

 
Solving for w in matrix notation 

T Tij i ij j jiw A Aα α= −  
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Using a summation notation the Wolfe dual 
of problem (5) is given as 
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Where mij is the number of training points 
for pairwise comparison between classes i 
and j. 

Solving for ijw :
1

ijm
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3.2   PAMSVM nonlinear separability 
formulation 
For the pairwise nonlinearly separability, we 
employ the kernel trick to map the input data 
into a higher dimension feature space using 
a kernel function [9]. 
Replacing ij ijT

A A with a kernel ( , )ij ij T
K A A , 

the dual problem in (14) becomes 
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In matrix notation the dual problem (14) 
becomes 

1max ( , )
2

. . 0

0,

T T T

T

e K A A

s t E

i j

α
α α α

α

α

−

=

≥ <

                       (16) 

 
 
3.3   PAMSVM inseparability 
formulation 
To construct a pairwise inseparable 
classifier, we introduce a parameter λ . This 
parameter is a constant called the 
regularization parameter, which controls the 
trade-off between minimizing training errors 
and minimizing the norm of the weight 
vector (generalization ability).  

Adding the error criterion 0ξ ≥ and 
weighting it with the regularization 
parameter λ , then the primal problem (6) 
becomes 
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and the dual of problem (17) becomes 
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Replacing ij ijT

A A with a kernel ( , )ij ij T
K A A  

and using the summation notation the dual 
problem (18) can be expressed as 
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4   Numerical Testing 
In this section we present the computational 
results that utilize multi-class classification 
formulation of problem (18) for 
discriminating between k classes. 
Experiments were carried out on a vertical 1 
inch two-phase flow dataset [10] and the 
admission data for graduate school of 
business [11]. Description of datasets is as 
follows: 
 
Vertical Two-Phase Flow Dataset: The two-
phase flow dataset [10] uses a pair of flow 
rates (superficial gas and liquid velocity) to 
delineate the flow regime. There are 209 
instances (points) and 2 attributes (features). 
The distribution of instances with respect to 
their class is as follows: 44 instances in class 
1 (bubble flow), 102 instances in class 2 
(intermittent flow), and 63 instances in class 
3 (annular flow).   
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Admission Data for Graduate School of 
Business: The admission data dataset [11] 
uses the undergraduate grade point average 
(GPA) and graduate management aptitude 
test (GMAT) scores to help determine which 
applicants should be admitted to the school’s 
graduate program. There are 85 instances 
(points) and 2 attributes (features). The 
distribution of instances with respect to their 
class is as follows: 28 instances in class 1 
(not admitted), 26 instances in class 2 
(borderline), and 31 instances in class 3 
(admitted). 
   
The QP formulation was implemented using 
the optimization and matrix decomposition 
routines in the MATLAB [12] software. The 
two-phase flow dataset were scaled by 
taking the natural logarithm of each 
instance, while the admission data were 
scaled using the unit vector normalization 
for the QP formulation. The methods were 
trained on 50% of the dataset, and tested on 
the whole dataset (50% training, 50% testing 
data), all randomly drawn from the dataset 
to obtain 3 training sample data. We report 
the results of the quadratic programming 
(QP) formulation of PAMSVM (λ = 1). 
 

 
Table 1: Performance of PAMSVM 
 
Table 1 contains the results for the QP-
PAMSVM on the Two-Phase flow and 
Admission dataset. The errors rates are low 
enough to demonstrate the capability of the 
model. The linear kernel employed was 
adequate enough to give a low 
misclassification error, however further 
studies could involve the use of nonlinear 
kernels in problem (19). Note that the 
quality of the solution is dependent on the 
choice of λ. For this problem λ = 1 was 
sufficient enough to present good results. 
Further computational studies could be of 
interest such as varying choices of λ to 

determine the effect on the solution of the 
QP MSVM model.  
 
 
 
5   Conclusion and Future Work 
In this paper we presented an extension of 
the binary SVMs to the multi-class SVMs. 
We have used a quadratic programming 
formulation. The proposed method presents 
an accurate and good alternative to existing 
earlier methods based on solving k SVM 
models which can become computationally 
intensive due to the number of SVM models 
one would have to solve in order to 
discriminate between k classes. 
Formulation (18) was applied to the Two-
Phase flow and Admission dataset and the 
results are very encouraging considering that 
the kernel used is a linear kernel. The linear 
kernel indicates that the both datasets are 
linearly separable but with a tolerable 
misclassification rate (see Table 1). Future 
work will involve the investigation of 
nonlinear kernels to solve nonlinear 
classification problems. Mercer’s condition 
is applicable, so kernel functions can be 
incorporated into the MSVM methods. 
Further computational studies would include 
the implementation of several preprocessing 
schemes to normalize the data and varying 
the choice of meta-parameter λ to help 
determine the effect on the model 
performance.   
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