
Particle swarm and simulated annealing for multi-global optimization

A. ISMAEL F. VAZ1, ANA I.P.N. PEREIRA 2 and EDITE M.G.P. FERNANDES3
1,3Departamento de Produção e Sistemas, 2Departamento de Matemática

1,3Universidade do Minho, 2Instituto Politécnico de Bragança
1,3Campus de Gualtar, 4710-057 Braga, 2 Campus de Sta Apolónia, 5300 Bragança

PORTUGAL
 http://www.norg.uminho.pt

Abstract: - Particle swarm and simulated annealing optimization algorithms proved to be valid in finding a
global optimum in the bound constrained optimization context. However, their original versions can only detect
one global optimum even if the problem has more than one solution. In this paper we propose modifications to
both algorithms. In the particle swarm optimization algorithm we introduce gradient information to enable the
computation of all the global and local optima. The simulated annealing algorithm is combined with a stretching
technique to be able to compute all global optima. The numerical experiments carried out with a set of well-
known test problems illustrate the effectiveness of the proposed algorithms.

Key-Words: - Multi-global optimization, particle swarm optimization, simulated annealing.

1 Introduction
In this paper we address the following optimization
problem

)(min xf
Xx∈

 (1)

where is a given multi-modal objective
function and

RRf n →:
X is a compact set defined by

{ }njbxX j ,...,1, =≤= xaR jj
n : ≤∈ . A multi-global

optimization problem consists of finding all global
solutions of problem (1).

So, our purpose is to find all points such
that

Xx ∈∗

() ()xfxfXx ≤∈∀ ∗, . Here, we assume that
the problem (1) has a finite number of global
minimizers and the single function is continuously
differentiable.

f

This type of problem appears, for example, in
chemical engineering, neural networks and in
reduction methods for solving semi-infinite
programming problems], [], [], []. Due to the
existence of multiple local and global optima, these
problems cannot be efficiently solved by classical
optimization techniques. Recently, Eberhart and
Kennedy],] proposed the particle swarm
optimization (PSO) algorithm which is a simple
evolutionary algorithm motivated from the simulation
of social behavior. Although this is an effective
algorithm, when compared with other evolutionary
methods, for computing a global solution, some
problems can arise when the objective function has
more than one global minimum, since the algorithm
oscillates between the global minima. To be able to

find all global solutions, Parsopoulos and Vrahatis
] proposed a modification of the PSO algorithm

that relies on a function stretching technique, which is
used to escape from local minima and to separate the
swarm properly whenever a global minimizer is
detected.

[4 7 10 11

[3 [9

[11

In this paper, we propose another modification of
the PSO algorithm that uses objective gradient
information. The ideas behind the stretching
technique are also used in the context of a different
stochastic method, namely the simulated annealing
(SA) method. Although these strategies are quite
different, we decided to report on their ability to
detect all global solutions of a uni-objective problem.

This paper is organized as follows. We introduce
the new PSO and SA algorithms in Sections 2 and 3,
respectively. In Section 4 we report some numerical
results on a set of test problems to show their
efficiency and robustness. Finally, the conclusions
make up Section 5.

2 Particle swarm optimization
The particle swarm algorithm mimics a swarm
behavior in looking for a certain objective. The PSO
algorithm simulates the social behavior concept to
compute the global optima of problem (1). In the
simplest version, the PSO algorithm should only be
applied to problems with at most a global minimum.

To address the problem of computing all the
global and local optima we describe in the next
subsections the multi-local PSO algorithm which is
able to compute all the minima by making use of the
objective derivatives.

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp117-122)

2.1 Particle swarm optimization algorithm

The PSO algorithm uses a population (swarm) of
individuals (particles). To each individual i , at time
instant (or iteration) , is assigned a position

, and a velocity that provides
information to where the individual is traveling to.
The velocity at time instant

t
Xtxi ∈)(Xtvi ∈)(

1+t is computed by

njtxtyt

txtyttvttv
i
jjj

i
j

i
jj

i
j

i
j

,...,1)),()(ˆ)((

))()()(()()()1(

2

1

=−+

−+=+

νω

µωι
 (2)

where)(tι is the inertial parameter, µ is the
cognitive parameter, ν is the social parameter,

)(1 tjω and)(2 tjω are uniformly random numbers

drawn from , is the best ever position of
particle and is the best ever swarm position.

 is the direction to the particle
previous best ever position (cognitive direction) and

 is the direction to the swarm best ever
position (social direction). The next velocity is
composed by a random combination of the previous
velocity with the cognitive and social directions. The
new particle position is computed by

.

()1,0 y
)(ˆ ty

)(t

)

)(+ vtxi

)t

+t

(i

(i

i
x i

j−

(txi
j

)1 =

)(ty i
j

)(ˆ ty j −

(+txi)1

2.2 Multi-local particle swarm optimization

algorithm
In order to avoid the concentration of all particles
around the best swarm position (the global
minimum), we propose a multi-local particle swarm
optimization (MLPSO) algorithm which differs from
the original one, in such a way that the social
direction is dropped from equation (2) and the
gradient information is used instead. The new
equation for the velocity is then

))).(()((

))()()(()()()1(

2

1

tyft

txtyttvttv
i

jj

i
j

i
jj

i
j

i
j

−∇+

−+=+

νω

µωι
 (3)

The inclusion of the steepest descent direction in
the velocity equation (3) aims to drive each particle to
a neighbor local minimum and since we have a
population of particles, each one will be driven to a
local minimum. Global minima are also detected,
since they are local minima as well.

In order for the algorithm to be completely
described we need to define the stopping rule. The
algorithm terminates when either a specified

maximum number of iterations, , is attained or
all the particle have landed, i.e.,

max
tN

pt ε≤+
2

)1(i

i
vmax .

Including the gradient into the direction can pose
some difficulties to the algorithm, since the computed
velocity can make particles to get out of the feasible
region. To prevent this behavior, the velocity is
scaled to fit the maximum velocity allowed and
whenever a particle gets out of the feasible region its
position is projected onto it.

3 The simulated annealing approach
Usually, the SA method converges to just one global
solution in each run. In order to be able to locate all
global optima, the SA algorithm is combined with a
strategy based on the stretching of the objective
function. In the next subsections we briefly describe
the main ideas behind a simulated annealing method,
the function stretching technique and propose a
stretched simulated annealing algorithm.

3.1 Simulated annealing method
The SA method is a stochastic method for global
optimization. It can be easily characterized by four
main phases: the generation of a new candidate point,
the acceptance criterion, the reduction of the control
parameters and the stopping rule. The scheme to
generate the new candidate point is crucial as it
should give a good exploration of the search region
and provide a feasible point. Usually, a new point, ,
is generated using the current approximation, ,
and a generating probability density function,

.

y
)(tx

))((txF
The acceptance criterion allows the SA algorithm

to avoid getting stuck in non-global minima, when
searching for a global one. Let be the
acceptance function which represents the probability
of accepting the new point when is the
current point. The most used criterion in SA
algorithms is the Metropolis criterion and is given by

))(),((tctxA A

y)(tx

()
() ()

≤=+

)(

),()1(
)(

)(

tx

ctxAifytx
t

txf

Aτ

≡
−

−

,

,1min)

otherwise

e c
yf

A(t

where τ is a uniformly random number drawn from
()1,0 . This criterion accepts all new points such
that

y
() ())(txfyf ≤ . However, if () ())(tx

y
fyf > ,

the point might be accepted with some probability.

 The parameter c is called the control
parameter associated with the acceptance function

)(tA

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp117-122)

and must define a positive decreasing sequence as
. For a good performance, its initial value

must be sufficiently high, so that a good search for
promising regions to locate the global minimizer
inside the feasible region is accomplished. However,
extremely high values yield a slow convergence.

∞→t

[2

j =λ

u
()1,0

(xf

()

since higher function values are assigned to its
neighbors. In equations (4) and (5), 1γ , 2γ and ξ
are positive constants and denotes the well-
known sign function.

().sign

3.3 Stretched simulated annealing algorithm As far as the stopping rule is concerned, the main

idea is to stop the process when no further changes
occur. Different termination rules are proposed in [],

] and [].

We propose a stretched simulated annealing (SSA)
approach, which combines the SA algorithm with the
function stretching technique previously described.
Thus, the SSA algorithm generates a sequence of
optimization problems defined as

1
8

8
 In this work we consider the adaptive simulated
annealing (ASA) of Ingber []. This variant considers
different generating probability density functions for
each variable, as in general the objective function
behaves differently along different directions. Taking
this into consideration, a new feasible candidate point
is generated as follows:

() ()
()

>
=

≡Φ
∈ 1

1
min

tifxh
tifxf

x
Xx

where

() () ()
()

 ∈

=
.

~

otherwisexf
xVxifxfxh ε () ,,...,1,)(njabtxy jjjjj =−+= λ

 where (1,1−∈j)λ is determined by x represents an already detected global minimizer
and ()xVε denotes a neighborhood ε of x . The
sequence of optimization problems are solved by the
SA algorithm. As previously shown, (x)f~ eliminates
the already detected global minimum. However, all
the minima that are located below and at the same
level of ()xf are not altered, meaning that other
global minima will be detected in subsequent
iterations. The process stops when either no new
global minimum is detected, in a fixed number of
successive iterations , or a maximum number
of function evaluations, , is reached.

maxN
max
feN

)(1
)(

11
2
1

12

tc
tc

usign
j

j

F

u

F

−

+

 −

−

and is a uniformly distributed random variable in
. As the process develops, the control

parameters are reduced in order to obtain

better approximations to the minimum. Although
ASA algorithm claims to converge very quickly, its
efficiency depends heavily on a large set of control
variables. We refer to [] for further details on the
control parameters c and updating rules.

)(tc
jF

8

11

)(t
jF)(tcA

4 Computational experiments 3.2 The function stretching technique

The function stretching technique is a recently
proposed technique [] that transforms, in a two
stage process, the objective function into a new

function

()xf
()xf~ . The transformation is carried out

along the following lines. After a global minimizer x
of has been detected, the first stage of the
process elevates the function using

)

() () ()()(1
2
1 +−−+= xfxfsignxxxfxf
γ). (4)

In this section, results from the implementation of the
MLPSO and SSA approaches on 32 well-known uni-
objective global problems, are reported. The majority
of the problems are multi-modal although some
difficult uni-modal problems are also included in the
test set. In Table 1 we enumerate the test functions
and list the number of variables , the number of
global minimizers

()n
()∗x
N , and the known global

minimum ()∗f .
Both algorithms were implemented in the C

programming language and connected with AMPL
] to provide the coded problems. The second

column of Table 1 provides the file names of the
problems used in the numerical experiments. These
problems are well-known in the literature of multi-
local and global optimization, and for the sake of

[5
In the second stage, the neighborhood of x is

stretched upwards, as follows

() () () ()()
() ()(())xfxf

xfxfsign
xfxf

−
+−

+=
ξ

γ
tanh2

1~
2

 (5)

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp117-122)

brevity we do not fully describe the problems. The
AMPL models can be requested from the first author.

Table 1: Test functions.
 Test functions n ∗x

N ∗f
1 b2 2 1 0
2 bohachevsky 2 1 0
3 branin 2 3 3.979E-01
4 dejoung 3 1 0
5 easom 2 1 -1
6 f1 30 1 -1.257E+04
7 goldprice 2 1 3
8 griewank 6 1 0
9 hartmann3 3 1 -3.863E+00
10 hartmann6 6 1 -3.322E+00
11 hump 2 2 0
12 hump_camel 2 2 -1.0316285
13 levy3 2 18 -1.765E+02
14 parsopoulos 2 12 0
15 rosenbrock10 10 1 0
16 rosenbrock2 2 1 0
17 rosenbrock5 5 1 0
18 shekel10 4 1 -1.054E+01
19 shekel5 4 1 -1.015E+01
20 shekel7 4 1 -1.040E+01
21 shubert 2 18 -1.867E+02
22 storn1 2 2 -4.075E-01
23 storn2 2 2 -1.806E+01
24 storn3 2 2 -2.278E+02
25 storn4 2 2 -2.429E+03
26 storn5 2 2 -2.478E+04
27 storn6 2 2 -2.493E+05
28 zakharov10 10 1 0
29 zakharov2 2 1 0
30 zakharov20 20 1 0
31 zakharov4 4 1 0
32 zakharov5 5 1 0

Initial positions and velocities for the MLPSO and

the initial approximation for the SSA algorithms were
randomly generated. For each problem, 5 runs have
been performed with each technique.

The next two tables report on averaged numbers
of: percentage of frequency of occurrence ()..of ,
number of iterations , number of SA calls

, number of function evaluations

(tN)
)(SAN ()feN ,

number of gradient evaluations ()geN , best function

value ()∗mf , and the best function value attained in

the 5 runs ()*f .

For the SSA we set , , 3max =N 100000max =feN

1001 =γ , 12 =γ , and 310−=ξ 25.0=ε .
For the MLPSO the number of function

evaluations is , where is the swarm

size given by min(. In the stopping rule

tfe NsN ×= s

)1000,6n

01.0=pε and . 100000max =tN

t geN.of N

In Table 2, we report the results obtained with the
MLPSO algorithm.

Table 2: Numerical results obtained by MLPSO.

 . ∗
mf ∗f

 1 100% 68851 1124 1.839E-10 3.143E-11
 2 100% 26811 1546 3.808E-11 1.393E-14
 3 100% 16386 2425 3.979E-01 3.979E-01
 4 100% 14187 45659 5.668E-14 2.603E-16
 5 0% Flat problem
 6 0% Non differentiable
 7 0% 100000 56 1.206E+02 2.341E+01
 8 67% 29873 1217700 5.008E-03 9.745E-09
 9 80% 100000 913 -3.789E+00 -3.846E+00
10 0% 100000 3530 -2.901E+00 -3.086E+00
11 100% 24600 996 4.653E-08 4.65E-08
12 100% 22548 944 -1.032E+00 -1.032E+00
13 1% 100000 565 -1.471E+02 -1.722E+02
14 85% 46086 1520 5.144E-17 9.375E-21
15 0% 100000 2126 1.182E+04 7.74E+03
16 0% 100000 46 1.080E+01 1.585E+00
17 0% 100000 3178 3.033E+02 8.516E+01
18 100% 100000 14977 -8.279E+00 -1.008E+01
19 100% 100000 19100 -7.634E+00 -1.001E+01
20 100% 100000 16596 -8.420E+00 -1.003E+01
21 7% 100000 253 -1.422E+02 -1.801E+02
22 100% 24297 3148 -4.075E-01 -4.075E-01
23 90% 68360 451 -1.806E+01 -1.806E+01
24 60% 84587 218 -1.999E+02 -2.278E+02
25 60% 100000 161 -2.277E+03 -2.429E+03
26 40% 100000 4222 -2.388E+04 -2.476E+04
27 10% 100000 46 -1.175E+05 -2.361E+05
28 0% 100000 1829 6.249E+01 4.626E+01
29 100% 21401 3820 1.391E-11 2.948E-14
30 0% 100000 1901 2.016E+02 1.330E+02
31 0% 100000 2362 4.698E+00 2.397E+00
32 0% 100000 1454 9.394E+00 3.132E+00

In Table 3, we report the obtained numerical

results with the SSA algorithm.
Both algorithm performances depend on the

problem dimension and on the size of the feasible
region. In particular, for problems with greater or
equal to 10 both methods failed to detected a global
minimum in the specified maximum number of
function evaluations, except for problem 28 with the
SSA method.

n

Due to the use of derivative information, the
MLPSO algorithm is not able to detect a global
minimum in problems with many local minima, as
the used swarm size is not large enough.

Although the main goal of this work was to
address the multi-global optimization problem, the
MLPSO detects global as well as local minima. The
SSA algorithm only detects some local minima in
particular problems.

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp117-122)

5 Conclusions
In this paper, we consider two different stochastic
optimization methods for computing all global

Table 3: Numerical results obtained by SSA.
 . .of

SAN feN ∗
mf ∗f

 1 100% 5 24066 2.045E-06 3.86E-11
 2 100% 6 34411 5.461E-08 1.817E-09
 3 100% 6 10529 3.979E-01 3.979E-01
 4 100% 4 10606 9.593E-07 9.373E-08
 5 100% 4 17422 -1.000E+00 -1.000E+00
 6 0% 4 100000 -1.312E+04 -1.336E+04
 7 100% 4 26197 3.000E+00 3.000E+00
 8 0% 16 100000 1.183E-02 9.858E-03
 9 100% 4 13379 -3.863E+00 -3.863E+00
10 100% 5 78301 -3.322E+00 -3.322E+00
11 100% 5 20200 1.349E-07 4.657E-08
12 100% 5 17531 -1.032E+00 -1.032E+00
13 37% 11 18217 -1.765E+02 -1.765E+02
14 100% 15 16542 3.210E-09 2.683E-10
15 0% 4 100000 6.975E-01 7.230E-02
16 80% 10 66902 1.898E-02 1.169E-03

 17 60% 6 111073 1.023E-02 6.433E-03
18 80% 7 32961 -1.054E+01 -1.054E+01
19 80% 6 29745 -1.015E+01 -1.015E+01
20 80% 5 22206 -1.040E+01 -1.040E+01
21 99% 32 51684 -1.867E+02 -1.867E+02
22 100% 5 5850 -4.075E-01 -4.075E-01
23 100% 5 39877 -1.806E+01 -1.806E+01
24 100% 5 63510 -2.278E+02 -2.278E+02
25 100% 5 59841 -2.429E+03 -2.429E+03
26 100% 5 101864 -2.478E+04 -2.478E+04
27 100% 5 103191 -2.493E+05 -2.493E+05
28 100% 4 80004 5.765E-03 3.900E-04
29 100% 4 3775 3.368E-07 1.246E-10
30 0% 5 100000 2.567E+00 2.216E+00
31 100% 4 24747 1.807E-06 2.336E-07
32 100% 4 44203 6.72E-06 2.289E-06

solutions of a single objective function problem (1).
The experiments carried out on a set of test problems
show that the simulated annealing algorithm when
equipped with the function stretching technique is
capable of avoiding local minima and locate the
global minimizers with light computational costs and
acceptable success rates.

While the traditional gradient optimization
techniques can be used to compute global and local
minima, only one solution can be located in each
optimization run. The PSO equipped with the
gradient information, as previously shown, is capable
of detecting global as well as local minimizers. The
heavier computational costs of the MLPSO are
balanced by the ability to detect local minimizers.

As future developments we propose to use a
derivative-free procedure to generate an approximate

descent direction, as proposed in [], to replace 6 f∇−
in the velocity equation of the MLPSO algorithm.
This procedure will make the algorithm
computationally lighter. In order to increase the
robustness of the SSA algorithm, in the sense that,
some local (non-global) minimizers are also surely
detected, we propose to include a strategy that
identifies local solutions that satisfy

() () ,** η<− ixfxf for 0>η

where are the desired non-global minimizers and

 is an already detected global solution.

*
ix

*x

Acknowledge
Work partially supported by FCT grant
POCTI/MAT/58957/2004 and by the Algoritmi
research center.

References:
[1] A. Corana, M. Marchesi, C. Martini and S.

Ridella, Minimizing multimodal functions of
continuous variables with the "simulated
annealing" algorithm, ACM Transactions on
Mathematical Software, Vol. 13, No. 3, 1987, pp.
262-280.

[2] A. Dekkers and E. Aarts, Global optimization and
simulated annealing, Mathematical Programming,
Vol. 50, 1991, pp. 367-393.

[3] R. Eberhart and J. Kennedy, New optimizers
using particle swarm theory, Proceedings of the
1995 6th International Sysmposium on Micro
Machine and Human Science, pp. 39-43.

[4] C. Floudas, Recent advances in global
optimization for process synthesis, design and
control: enclosure all solutions, Computers and
Chemical Engineering, 1999, pp. 963-973.

[5] R. Fourer, D.M. Gay and B.W. Kernighan, A
modeling language for mathematical
programming, Management Science, Vol. 36, No.
5, 1990, pp. 519-554. http://www.ampl.com.

[6] A.-R. Hedar and M. Fukushima, Heuristic pattern
search and its hybridization with simulated
annealing for nonlinear global optimization,
Optimization Methods and Software, Vol. 19, No.
3-4, 2004, pp. 291-308.

[7] R. Hettich and K.O. Kortanek, Semi-infinite
programming: Theory, methods, and applications,
SIAM Review, Vol. 35, No. 3, 1993, pp. 380-429.

[8] L. Ingber, Adaptive Simulated Annealing (ASA):
Lessons Learned, Control and Cybernetics, Vol.
25, No. 1, 1996, pp. 33-54.

[9] J. Kennedy and R. Eberhart, Particle swarm
optimization, Proceedings of the 1995 IEEE
International Conference on Neural Networks, pp.

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp117-122)

1942-1948, Perth, Australia. IEEE Service Center,
Piscataway, NJ http://engr.iupui.edu/~shi/
Coference/psopap4.html.

[10] T. León, S. Sanmatías and E. Vercher, A multi-
local optimization algorithm, Top, Vol. 6, No. 1,
1998, pp. 1-18.

[11] K. Parsopoulos, M. Vrahatis, Recent approaches
to global optimization problems through particle
swarm optimization, Natural Computing, Vol. 1,
2002, pp. 235-306.

[12] H. Romeijn and R. Smith, Simulated annealing
for constrained global optimization, Journal of
Global Optimization, Vol. 5, 1994, pp. 101-126.

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp117-122)

