
Tandem Application of Exploration Factors and Variant 
Spin Mechanism on Steady State Genetic Algorithms for 

Loss Minimisation in Power System 
 

M.F. MOHD KAMAL1, T. K. A. RAHMAN2, I. MUSIRIN3 
1Faculty of Information Technology and Quantitative Science 

2Faculty of Electrical Engineering 
3Faculty of Electrical Engineering 

Universiti Teknologi MARA  
40450, Shah Alam, Selangor 

MALAYSIA  
 

Abstract: - A newly developed computationally enhanced steady state genetic algorithm (CSSGA) for 
optimizing the reactive power planning (RPP) in loss reduction and betterment of voltage profile in the power 
system is presented in this paper. CSSGA is a combined technique between the exploration factors and variant 
spin mechanism on steady state genetic algorithms (SSGA). The conventional genetic algorithm (GA) has the 
drawback of a sluggish convergent rate. Although the steady state genetic algorithm (SSGA) is time efficient but 
tend to produce finding lesser than the desired global solution. In this study, an optimum convergent centred 
SSGA method is implemented for the optimisation of reactive power planning via the combination of reactive 
power dispatch and transformer tap changer setting. The selection and steady state elitism combined with the 
conventional anchor spin techniques are incorporated into the development of the SSGA. The CSSGA is 
conducted by randomised   resettlement of the chromosomes closer to the potential optimum solution. In each 
probing, identical initial population is supplied to the mechanism of SSGA and CSSGA in order to have 
consistency in the initial population. Traditionally, only a single selection is executed for selecting a string of 
variables. A variant spin technique is applied on the CSSGA, whereby the spin is conducted for every population 
of variables to induce further search space exploration. The proposed CSSGA techniques have been tested on the 
IEEE Reliability Test System (IEEE-RTS) and revealed competent performances in respect to the SSGA and 
elitist GA.  
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1 Introduction  
The escalating demand of electrical power has put the 
system network to be in an exerted condition which 
led to transmission loss in the system. Consequently, 
voltage profile of the system deteriorates accordingly 
resulting into unpredictable voltage instability 
phenomenon. Traditional approach in the moulds of 
gradient methods, linear programming, quadratic 
programming, and dynamic programming may be 
prone to failure in finding the global optimum 
solutions due to the non linearity of the problems 
[1,2]. Genetic algorithms (GA) are stochastic search 
technique based on the mechanism of natural 
selection and genetics which are the most popular 
search technique for solving operational problem in 
power system [3]. The GA work by generating a 
population of random chromosomes that evolves to 
an optimum population via the operations of 
stochastic selections and genetic operators.  
   Scheduling of reactive power in an optimum 
practice alleviates circulating VAR while promoting 

flatter voltage profile that lead to appreciable MV 
which in turn reduces system loss [2]. The main 
purpose of RPP is to find the most optimum plan for 
the new reactive source at a selected load bus that 
ensures satisfactory  voltage profile while satisfying 
the operational constraints [4]. This method 
embodies the techniques of transformer tap changer 
setting (TTCS), reactive power dispatch (RPD) and 
compensating capacitor placement (CCP). The 
voltage profiles in the system tend to decrease in 
inverse proportion to the integral loss in transmission. 
The mechanism of TTCS modify the properties of the 
transmission system in order to minimize the total 
loss in the system while the RPD works on the 
injection of the reactive power destined for the 
generator buses. The CCP technique concentrates on 
boosting the voltage profile at the local bus towards   
loss minimization in the system. Various literatures 
on optimisation techniques have reported work on 
RPP [4-9]. These optimisation techniques include the 
Tabu Search, linear programming, nonlinear 
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programming, Simulated Annealing (SA), Genetic 
Algorithm (GA), Evolutionary Programming (EP), 
Evolutionary Strategy (ES) and Genetic 
Programming (GP). References [2, 4-9] report on the 
GA based optimisation technique in the RPP 
procedures. Lee et al. [4] presents a comparative 
study on the techniques of EP, ES and GA against the 
linear programming method in solving the RPP. 
These evolutionary computation techniques perform 
better than the linear programming method in 
minimising the power loss while enduring the 
imposing limits of the system. 
      This paper presents the deployment of CSSGA in 
comparison to the standard SSGA for the application 
of optimal RPP in power system. The RPP is 
delivered by implementing the techniques of RPD 
and TTCS for the purpose of minimising the total line 
loss in power system. The technique was tested on the 
IEEE 30-bus Reliability Test System. Results showed 
that the CSSGA optimisation technique have 
significantly minimised the total transmission loss in 
the system. 
 
2   Problem Formulation 
In this study, the objective function for the reactive 
power planning is to minimize the active power in the 
transmission network, which can be described as 
follows: 
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where, ns is the slack (reference) bus number; Qi and 
Qj are the reactive power on the sending and receiving 
buses respectively, Qg is the generated reactive 
power, Vi and Vj are respectively the voltage 
magnitude at the sending and receiving buses and 
PKLoss is the total active power loss in the system.  

 
3.1 Elitist Genetic Algorithm (EGA) 
     This paper engages into the concept of binary 
genetic algorithms that reflects the nature of 
chromosomes in genetic engineering.The EGA 
performed on power systems has to toil against the 
restriction produced by the fitness function namely 
the voltage profiles, which is unpredictable. The load 
flow program serves as the fitness function that 
calculates the total line losses and voltage profile at 
the particular loaded bus. The complexity is 
heightened by having 9 variables representing the 
transformer tap changers and generated reactive 
power. For each generation, their genetically created 

values must concur with their respective limit ranges 
corresponding to the requirement of the chosen 
system. These characteristics are blended together to 
form a segmented chromosome which reflects the 
nine parameters. A large number of fitness function 
invocation which is time taxing  and convergence 
problem pose as  prominent disadvantages inherent in 
GA applied on power system. 
    The EGA operates with a 20 bits chromosome in 
every variable representation for better accuracy in 
the solutions and encouraging extensive exploration 
via mutation and cross breeding. An effectively 
sample of the fitness surface can be obtained by 
having an adequately large population of 
chromosome. This objective can be achieved by 
implementing a fully randomised initial population 
with no duplication of chromosomes and double the 
size of the standard generational population. If the 
optimization problem is N dimensional and the 
chromosome has N parameters given by A1, A2,.., 
AN, then the chromosomes A1,A2,..,AN   can be 
physically represented by linking the sub 
chromosome adjacently. Whenever a selection spin 
opts for a particular jth  row of population A1 then the 
whole stretch of  jth row is chosen ,namely the 
chromosomes of Aj1,Aj2,..,AjN. This kind of 
selection mode is referred as anchor spin. However, 
this particular scheme does not allow the flexiblity 
of choice for not selecting the adjacent 
chromosomes when the need arises.  
    The selection mode constitutes the pivot in a 
genetic algorithm. Higher selection pressure implies 
that more copies of best chromosome are assigned 
into the population [10]. The ranking and binary 
tournament selection methods are preferred for 
administering the appropriate selection pressure and 
countering the syndrome of super chromosomes. 

There is a possibility that the genetic operation 
may subdue the fittest chromosome due to the 
probabilistic nature of the generation process.  The 
elitist strategy guarantees that the fittest solution is 
regenerated in the subsequent generation. Only the 
top 10% (α value) of the present population is 
duplicated into the next generation. A sub 
population with the dimension of 100-α percentage 
of the population total is stochastically spun from 
the top 80% (β value) of the current population. The 
recently chosen sub population will undertake the 
typical cross breeding and mutation operations in 
order to create the other 90% of the next population. 
The uniform (mask) cross breeding is the preferred 
cross breeding scheme which theoretically 
performed better than other techniques in 
diversifying the population and improving the local 
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search [10]. The β% coordination automatically 
excludes the bottom (100-β)% of the current 
population from competing in the next generation. 
An acceptably high mutation probability is 
suggested in the early generation as to encourage 
further exploration and diversification of the 
existing population. However, a reasonably low 
mutation rate is recommended in the later 
generations for minimising the undesired random 
distortion in the chromosome and consequently will 
hasten the search convergence. 
 

3.2  Steady State Genetic Algorithm 
    The notion  of engaging elitism mechanism in the 
cross breeding and mutation operations is referred as 
the steady state elitism. This concept of elitism can 
be implemented by pitting every member of the 
newly created sub group against the parental sub 
group. Consequently only the best member of these  
sub  groups are selected to merge with the elite of the 
previous population. This approach ensures that the 
quality of the subgroup does not deteriorate as only 
the best members are allowed to survive into the 
next generation. In other words, the average fitness 
of the sub group and the whole population should 
never degenerate as the search progress. The 
application of elitism in the selection and 
reproduction methods secures the best bracket of the 
population from being distorted by unfavourable 
cross breeding or mutation processes. With the 
privilege of having multiple elitism in the selection 
and reproduction mechanisms, higher crossbreeding 
and mutation probabilities are suggested for 
improving the local probing in the search space.  

 
3.3 Computationally Enhanced Steady 

State Genetic Algorithm (CSSGA) 
   The EGA may produce considerable good solution 
but lingers too long before arriving to a convergent 
point. On the other hand , the SSGA tends to work 
faster than EGA at the expense of the accuracy of the 
solution. The main thrust of CSSGA  concerns about 
finding the best possible solution comparative to 
EGA and SSGA by committing extra explorative 
search around the best chromosome in each 
generational population while avoiding the local 
minimum  at a fairly fast convergent rate. In an effort 
to hasten the search convergence, Wong improvises 
the concept of crossbreeding in real genetic 
algorithms and concocts the idea of  artificially 
clumping the chromosomes closely around the best 
chromosome in the most recent  population[1].After a 
typically good cycle of genetic algorithm, the newly 

generated chromosomes are numerically relocated 
close to Vbest which is the best chromosome of the 
population. If V is a chromosome in the newly 
developed population and V’ is the relocated V then 
the resettlement is conducted by activating the 
equation V’ = Vbest + λ(Vbest - V). The parameter λ is 
the acceleration factor which takes the value within 
the range of 0 and 1 [1]. The numerical acceleration 
can be designed to accelerate not too close to Vbest in 
order to reduce the chance of trapping in a local 
optimum point [1].  Thus the parameter λ should not 
hold any value within the close proximity of zero 
otherwise the relocated point will land immediately 
too close to Vbest and adversely trigger a premature 
search convergence. The parameter λ can also be 
programmed to accommodate value within the range 
of –1 and 1 excluding the close neigbourhood of zero 
for enhancing the dispersion of the repositioned 
points. Should the reposition scheme takes on a multi 
dimensional optimization problem, then the 
computational complexity is amplified in proportion 
to the dimension of the problem. The particular 
scheme has to be applied on every individual variable 
of the given fitness function. The search convergence 
accelerator works based on the following flow chart 
demonstrated by Figure 1. 

 
Fig. 1: Search convergence accelerator  
 
    For executing further extensive exploration of the 
solution space, a variant formation of population can 
also be organised by locating each population of 
variable into an individual virtual cell. Whenever a 
particular jth row of population A1 is nominated, 
another selection procedure takes place at population 
A2 and the result may be different from the previous 
selected row which in turn produces more possible 
choices of chromosomes. This form of structure is 
referred as population spin which is presented in Fig. 
2. Moreover, population spin can also be deployed as 
an extra measure for evading premature convergence.  
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Fig. 2: Population formation and population spin. 

 

4   Results and Discussions 
    The proposed CSSGA technique RPP has been 
evaluated on the IEEE 30-bus Reliability Test 
System. The system consists of 6 generator buses, 24 
load buses,41 interconnected lines and 4 transformer 
tap changers.  Only five generator buses are 
accounted since the slack bus is considered as the 
reference bus and negligible. The five generators and 
four transformer tap changers are designated as the 
control variables for minimizing the total loss in the 
system for the optimal combination of RPD and 
TTCS. The RPP  is  administered on a few  load buses 
in the IEEE 30-bus RTS, but only the results of bus 
29 are presented in this paper. This is acceptable as to 
interpret the analysis of results obtained from the RPP 
techniques for this system. The results of the optimal 
combination of RPD and TTCS for loss minimization 
using various EGA, SSGA and CSSGA techniques 
are tabulated in Table 1. The optimized TTCS values 
are denoted by the variables of T1, T2, T3 and T4, while 
the variables of Qg2, Qg5, Qg8, Qg11 and Qg13 represent 
the favourable reactive powers that need to be 
dispatched by the generators at buses 2, 5, 8, 11 and 
13 respectively for minimizing the total loss in the 
system.  
From Table 1, it is observed that the EGA and SSGA 
indicate reduction of the total line losses from 
21.4731 MW to 5.7115 MW and 5.7012 MW 
respectively. Furthermore, the graph in Fig. 3 
demonstrates the SSGA surpasses the EGA in 
managing the line loss, while portraying a faster 
convergence within 12 generations and 183.56 
seconds as compared to the EGA with 100 
generations and 827.64 computer seconds. All of the 
CSSGA produce better accuracy in the area of loss 
minimization as compared to the SSGA. With the 
exception of the anchor spun-positive lambda 
CSSGA, each CSSGA performs better than the 
SSGA in enhancing the voltage profile in the system. 
However, in the process of relocating the 
chromosomes around the best chromosome, all of the 
CSSGA consume a lot of computer time in order to 
meet the requirement of the voltage limitation in the 
systems.  
     Taking a closer look at the positive lambda 
CSSGA, the graph in Fig. 4 reveals that the 

population spin gets the better of the anchor spin in 
term of voltage improvement and accuracy in loss 
management. On the hand, the population spin with 
the readings of 5.6777 MW and 402.87 seconds spent 
more time as compared to anchor spin. The Fig.5 
shows the conducts of the various positive-negative 
lambda CSSGA whereby the population spin 
performances better than the anchor spin with the 
respective reading of 5.6679 MW and 5.6742 MW. 
 

 

 

 

 
Fig. 5: Comparative performances of positive- 
negative lambda CSSGA using anchor and  
population spins. 

 
Fig. 4: Comparative performances of positive 
lambda CSSGA using anchor and population 
spins.

Fig. 3: Comparative performances of 
EGA and SSGA 
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Table 1: Results for various EGA,SSGA and CSSGA Techniques 
 
Reactive Power Planning Load 28 Mvar at Bus 29 
Elitist Genetic Algorithm Using Ranking Tournament Proportionate Spin,Mask Cross Breeding and Mutation 
Spin Scheme : Population Spin. Fitness Function :Total Line Losses.  Population = 20. Number of genes = 20. 
Cross breeding rate =1.00. Cross breeding scheme : Steady State Elitism with Mask Cross Breeding.  
Early  Mutation rate = 0.05. Later  Mutation rate = 0.01.  Alpha = 90%,Beta= 80 % 
 

After  RPP (Using various GA) 

Features Before 
RPP 

Basic 
Elitism 

 

Steady 
State, 

Anchor 
Spin 

Anchor 
Spin, 

Positive 
λ 

Anchor 
Spin, 

Positive 
& 

Negative 
λ

Population 
Anchor 
Spin, 

Positive 
λ 

Population 
Anchor 
Spin, 

Positive 
& Negative 

λ 
Total Line Losses 21.4731MW 5.7115 5.7012 5.6999 5.6742 5.6777 5.6679 
Generated Voltage 

Range (p.u.) 
[0.7854, 
1.0820] 

(1.0078,   
1.1500) 

(1.0145, 
1.1496) 

(1.0143, 
1.1464) 

(1.0176,    
1.1500) 

(1.0152,    
1.1523) 

(1.0185,    
1.1521) 

Voltage  Reading at 
Bus 29 (p.u.) 0.7854 p.u. 1.0078 1.0145 1.0143 1.0176 1.0152 1.0185 

Generation  100 12 14 32 10 24 
Computation Time  827.64 100.59 183.56 333.35 402.8750 588.71 

bus 6-bus 9 (T1) 0.9583 1.0058 1.0129 1.0035 0.9889 0.9982 
bus 6-bus 10 (T2) 0.9552 0.8581 0.8574 0.8510 0.8761 0.8668 
bus 4-bus 12 (T2) 0.9380 0.9444 0.9558 0.9426 0.9603 0.9640 

Optimised 
transformer tap 

changer 
bus 28-bus 27 (T2) 0.8510 0.8519 0.8513 0.8512 0.8514 0.8502 

Qg2 25.0031 25.3677 25.2252 14.7768 12.3136 13.5462 
Qg5 26.8343 26.1114 21.2088 27.4035 29.0235 27.2625 
Qg8 44.9848 53.5614 52.8836 57.2142 54.1125 53.0473 
Qg11 15.2207 19.0072 19.3627 16.3240 13.2631 17.7561 

Optimised reactive 
power dispatch 

(MVAr) 
 

Qg13 18.7485 14.8094 20.4774 17.7005 23.9627 23.9016 

Pitting the two exploration factors together, the 
graphs in Fig.6 and Fig. 7 display that the 
positive-negative lambda CSSGA fares better than 
the positive lambda CSSGA in minimizing the loss in 
the system for both spin techniques. Thoroughly, the 
CSSGA shows better performance over the EGA and 
SSGA. In short, the combination of positive-negative 
lambda factor and population spin prevailed upon the 
other methods in reducing the transmission loss in the 
power system.   
 
6 Conclusion 
    A study on RPP utilizing the combination of RPD 
and TTCS for reducing the total loss in a system has 
been presented. The technique of CSSGA is deployed 
in finding the optimum values of the control variables 
in the RPD and TTCS. Comparative studies on the 

Table 1 shows that the combination of RPD and 
TTCS using the twin application of the 
positive-negative lambda exploration factor and 
population spin technique superbly surpass the other 
techniques while maintaining the voltage values 
within the acceptable limit. Hence, the proposed 
technique can be practically implemented in a larger 
system for loss minimization scheme. 
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