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Abstract: - This paper solves spatial navigation task inspired by methods of living organisms, especially by 
hippocampus that is responsible for spatial navigation. We attempt to model the behavior of a rodent hippocampus by 
methods of artificial neural networks and reinforcement learning theory. A model of mutual relations among several 
parts of hippocampal formation is suggested. To investigate the behavior of our model a task similar to the well-known 
Morris water maze task is considered [8]. 
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1   Introduction 
A preliminary indication that hippocampus maintains 
spatial information was described in [10]. Abilities of rat 
hippocampus responsibilities for spatial memory and 
navigation (orientation) have been found out on the 
experiments [11], [8]. The discovered place cells [9] of 
the hippocampus are active (firing) when the rat occurs 
in the corresponding particular place of the environment. 
Further research revealed another features of the 
hippocampus, e.g. head direction cells [17], modulation 
of long-term potentiation of synapses by θ rhythm [12], 
independence of CA1 place fields on the goal position 
[16]. More experimental results are to be found in [4]. 
     In recent years, many computer models of spatial 
navigation of animals were published. Also, artificial 
systems, called animats, were designed. One of the first 
complex models was a multi-layer feed-forward neural 
network published in [5]. Sophisticated and detailed 
model of rodent hippocampus was described in [14], 
simulating such phenomena as θ rhythm. A mobile robot 
[1] involves unsupervised growing neural network to 
build up a map of the environment. Recently, RatSLAM 
[7] presented a competitive attractor network and was 
successfully tested within a large indoor environment. 
 
 
2   Model 
2.1 Model concept 
Our model consists of several blocks (fig. 1) represented 
by a single- or multi-layer artificial neural networks. 
Sensory inputs (SI) are used to acquire and process 
information from the environment and to recognize 
actual animat’s position (PR). Position is coded by both 
head direction (HD) system and place cells (PC). The 
path integrator (PI) updates supposed location during 
move. The navigational map (NM) is developed during 

several successful episodes (reward (Rw) is simulated by 
reinforcement learning) and then the animat is capable to 
find out a way to the target starting at an arbitrary 
position. Reading in the navigational map is a role of the 
locomotion control (LC) subsystem. It sends motor 
signals, which are received by the motor (Mo), and 
looped back to the PI and HD systems. 
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Fig. 1: Model structure: sensory inputs (SI), position recognition 
(PR), head direction (HD), place cells (PC), path integrator (PI), 
navigational map (NM), reward (Rw), locomotion control (LC), 
motor (Mo). 
 
2.2 Allothetic sensory inputs 
Sensory inputs (SI) consist of a highly processed signal. 
They detect position of environmental landmarks 
relative to the animat. This is the only allothetic (vision-
based) information from the environment. Arena walls, 
target position or any obstacles in the environment aren’t 
detected. We use several point landmarks [13], so that 
only position, but neither size nor orientation, are 
considered.  
     The sensory inputs are processed by a pre-wired one-
layer RBF (radial basis function) neural network. Two 
types of neurons code relative position of the landmark. 
Activity of distance-sensitive neurons is given by 
distance of the landmark, whereas egocentric-bearing-
sensitive neurons respond to the heading of the animat. 
For each landmark, a group of both egocentric-bearing-
sensitive and distance-sensitive neurons exists. Similar 
information is supposed to come into the rodent’s 
hippocampus [13]. 
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      Our animat detects all landmarks in the arena 
simultaneously, independently of their position or 
direction of the animat’s heading. We can consider this 
as the animat stops moving and looks around. However, 
in a real world, it might be a time-consuming operation. 
We later describe mechanism based on the PI to reduce 
computational effort using the SI as much as possible. 
 
2.3 Head-direction system 
The head-direction (HD) system codes heading of the 
animat. It emulates head-direction cells [17] observed in 
the rodents’ hippocampus. Activity of the HD neurons is 
tuned by heading of the animal. The HD neuron fires 
only when the animal is heading in neuron’s preferred 
direction, regardless of the animal’s location. Activity of 
HD cells forms an activity packet – an ensemble of 
neurons firing altogether [18]. 
     We model HD system as a recurrent (Hopfield-like) 
neural network. Synaptic weights between HD neurons 
are pre-wired and aren’t affected by learning process, but 
they’re modulated by locomotion. When the animat is 
stopped, weights values between HD neurons are 
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where θi, θj are preferred angles of neurons i,j and g(.) is 
a distribution weight function. This function is requested 
to link two neurons the strongly the preferred angles are 
closer. For much different angles, we request the 
function to create inhibition or none link. We’ve chosen 
a simple Gaussian-like function; however, the form of 
this function is not critical for our model and it is also 
possible to use a linear function with saturations. 
     During locomotion, heading of the animat is changed. 
To shift coded direction left or right, respectively, we 
need to modulate synaptic weights by both heading and 
angular speed of the animat.  Modulation is simulated by 
synaptic matrices WHD-L and WHD-R, respectively: 
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Synaptic matrix composing NHD HD neurons consists of 
both static and modulating elements: 
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Modulation coefficient vHD is proportional to the angular 
speed of the animat. The HD system is capable to 
integrate the angular speed during locomotion. This 
information is supplied by vestibular (motor) signals. 
Hence, our animat doesn’t need the sensory (allothetic) 
information to update the coded heading during move. 

     The output of the HD system is given by 
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where σ(.) is a modified sigmoid function, WHD is a 
synaptic matrix of the network, VHD represents influence 
of the SI (and is zero most of the time). Parameter KHD 
has similar function as a gain in a loop-back system. The 
equation (4) provides a simple mechanism to control 
activity of the network: when the activity of the network 
is too high, the denominator of (4) becomes high and it 
effects attenuation in the network, and vice versa. 
     To get the most possible stable representation of the 
HD, we found a value of the parameter KHD as a 
minimum of quadratic norm of difference between 
several (nc) cycles of the network: 
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     A modified sigmoid function σ(.) was used similar to 
those presented in [18]: 
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The reason of using the sigmoid function in this form is 
the better accordance of the resulting neural activity than 
in case when using sigmoid or hyperbolical functions. 
 
2.4 Place cells 
Our model simulates function of place cells (PC) [9] in 
the hippocampus. PC is a neuron which is active 
whenever the animal is situated in a specific part of the 
space. Set of positions where the cell is active is referred 
as a “place field”. 
     We design a recurrent neural network analogous to 
those in the HD system. The idea to extend HD system 
to create a two-dimensional spatial map is presented in 
[18]. For each place cell i, we define a center of the place 
field as a 2D vector of coordinates Xi. Coordinates of the 
place field centers are aligned to a grid. Like in the HD 
system, we create a synaptic matrix WPC-0 which is 
constructed analogously in the 2D space. 
 
2.5 Path integrator 
PC store animat’s supposed position. Our animat is 
capable to update its supposed position in the 
environment during locomotion. This provides the path 
integrator (PI) (fig. 2). The animat doesn’t need the 
sensory (allothetic) inputs to determine its actual 
location in each moment. Instead, it moves as it would 
be blind most of the time (see fig. 7). This is because the 
processing of the sensory inputs is a time-consuming 
operation. The latter is done only once in a while to 
correct differences between real and supposed positions 
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that rise from bad estimates of the heading and speed 
and integration errors. 
     We define matrices WPC-N, WPC-S, WPC-E and WPC-W to 
move the coded location to the four cardinal points: 
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Symbols BN,S,E,W represent unit vectors in directions of 
north, south, east and west. These matrices present PI 
neurons with activity correlated with both heading and 
actual position. The PI neurons get signals from three 
sources: HD, PC and their activity is triggered by motor 
signals. To activate a PI neuron, the animat must move. 
     In contrast to the HD system, where synaptic weights 
between HD neurons are modulated by locomotion, PI is 
a complex subsystem composed by many neurons. 
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Fig. 2: Schema of the path integrator (PI). The PI consists of 4 groups 
of neurons to move supposed position to the east, west, north and 
south. Synapses between HD system and the PI system select one or 
two of these groups; so that it’s possible to shift the supposed 
position to an arbitrary direction. In each group, only cells 
corresponding to actual location are activated by PC, and the activity 
of these cells is triggered by vestibular motor (Mo) signals. 
 
2.6 Place recognition 
Most of the time, the animat moves in the environment 
as it would be blind and it uses PI to obtain its position. 
From time to time, the animat stops moving and “looks 
around”. Then, it updates its supposed position in the 
arena. The SI affect both HD and PC systems to correct 
an inaccuracy cumulated by PI. But this is possible only 
when the animat remains in a known environment. On 
the other hand, when the actual position is supposed to 
be unknown, the animat should associate actual sensory 
information with the currently supposed position. 
Unfortunately, this supposed position contains the 
inaccuracy cumulated by PI. 
     Animals solve this problem by iterative returning to 
known positions [13]. It helps to maintain the inaccuracy 
cumulated by PI small. It was not our aim to solve these 
problems so we avoided it by pre-wiring a neural layer 
from SI downstream to the HD and PC systems, referred 
as place recognition (PR) system. It conforms to the 
concept that the animal moves in a well-known 
environment, as it was in Morris water maze [8]. 
 
2.7 Navigational map 
Now, we describe, how our animat solves a simple 
navigational task. Consider two grids of neurons. The 

first is the formerly presented PC system. The second is 
a duplicate of the first one where the navigational map 
(NM) will be created. Before starting of solving of the 
task, the neurons in the latter grid code actual animat’s 
location, as the PCs do. During the learning process, 
after a couple of successful retrievals of the target, the 
position coded by the NM grid will shift towards the 
target. Whereas the PC code animat’s actual location, 
our NM cells code location closer to the target and the 
difference between these locations determines direction 
of the further move. 
     We use a similar approach to that presented by [3], 
based on the long-term potentiation (LTP) and the 
reinforcement learning. In each step, we compute a 
“potential” of every cell by equation 
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where kd-NM is the decay factor in the range 0÷1, and 
ANM(t) is an activity of the NM-cells, analogous to the 
activity of PC and similar to activity of HD in (4). 
     There is a difference between the PC and the NM 
cells. Whereas the PC-to-PC synapses (matrix W-PC) 
remain fixed, the NM-to-NM synapses (analogous 
matrix W-NM) change by the learning process in the 
following manner: 
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Consider i to be an index of the postsynaptic cell and j 
index of the presynaptic one. Change of the synapse 
between two NM cells is proportional to the potentials of 
the both cells. The synapse reinforces, if potential of the 
presynaptic cell is bigger then the potential of the 
postsynaptic one (fig. 3). It happens, if the presynaptic 
one fires sooner then the postsynaptic one. In a reverse 
case, the synapse weakens, but this influence is β-times 
smaller (we choose values of the β parameter in range 
0÷1). This parameter is more comprehensively discussed 
in [3]. The last term in (9) is a function r(t) – the 
reinforcement signal well known from the reinforcement 
learning theory. The learning process described above 
has effect only in the case of the non-zero r(t). This 
signal is zero most of the time, so the learning process 
isn’t running. The signal is set up to the positive value in 
the case of reaching the target or a familiar environment 
(it means a place from where the path to the target is 
well known). This approach is known as delayed reward. 
 
2.8 Locomotion control 
Locomotion control (LC) subsystem is used to read data 
stored in the NM. Direction of the next animat’s step is 
computed by comparing NM cells activity with PC 
activity. In the case that NM map is learned enough, 
both activities significantly differ and right movement 
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direction can be determined; animat is exploiting its NM. 
If both activity maps coincide, the map is not suitable for 
the navigation and the movement direction is not 
changed so that exploration is performed. 

A B 

Direction of move 

+ 

– 
 

Fig. 3: The LTP when building the navigational map. Consider two 
NM-cells, A and B, with place fields as shown at the picture. When 
the animat moves, the cell A fires before B, and the A-to-B synapse 
reinforces, and the B-to-A synapse reduces. 
 
 
3   Simulations 
We used our animat to solve a simple navigational task 
in both convex and non-convex environments. The task 
was similar to Morris water maze [8]. An “invisible” 
circular target was placed in the arena. When the animat 
reached the platform, the task was accomplished and the 
animat received positive reward signal. 
     The animat evaluated direction of the further move in 
each step. If the animat’s NM had been learned enough, 
where to go, the animat followed its supposed direction. 
Otherwise, it continued in the current direction. When it 
bumped into the arena wall, direction of the next step 
was randomly chosen towards the arena. 
     In some cases, static rectangle-shaped obstacles were 
also present in the environment. Bumping into an 
obstacle was similar to bumping into the wall: a random 
feasible direction was chosen. Hence, the animat also 
had to learn how to by-pass the obstacles. It made the 
task more difficult: the shortest trajectory to the target 
was not simply the direct one, but more complex 
trajectories had to be chosen. 
 
3.1 Parameters 
Consider our arena was a rectangle 100x100 units and 
one landmark in each corner of it. The animat was 
capable to detect relative bearing (distance and angle) of 
all of the landmarks simultaneously. The target was a 
circle 20 units in diameter. Animat’s speed was 
normalized to 3 units per step.  
     Our neural network system consisted of several parts 
containing in sum nearly 6000 neurons. We modeled SI 
by creating 36 egocentric-bearing-sensitive and 16 
distance-sensitive neurons for each of the 4 landmarks in 
the corners of the arena. HD system was made by 
NHD=100 neurons and PC formed grid 30x30 neurons 
(NPC=900). The largest part, PI, consisted of 4x NPC= 
3600 neurons. 1000 neurons were used for PR. 
Additional neurons were used for LC, activity control of 
the network etc. 

     For our modified sigmoid function σ(.) defined by 
equation (6), we chose following parameters: threshold 
b=0.3 and a= ( ) be −− 11ln 1 =0.7733 for normalization 
σ(1)=1 and σ(0)≈0. Other parameter values mentioned 
earlier were: KHD=0.19, KPC=0.039, β=0.7, kd-NM=0.7. 
 
3.2 Individual Subsystems: HD, PC and PI 
The HD system was supposed to form an activity packet, 
which coded animat’s heading. The activity packet had 
to maintain it in the case of zero sensory input without 
any drift. We initialized the network activity AHD(0) by 
uniformly distributed random noise in range 0.0÷0.1. In 
about 5÷10 iterations of (4) the activity packet appeared 
and later, no significant changes nor drift were observed 
during next hundred iterations. In practice, noises in cell 
firing or synapses might cause the packet to drift [18]. 
     We observed how the HD activity packet moved in 
the case of discrepancy of coded heading and sensory 
(allothetic) information. Consider the HD system was 
coding animat’s heading. Suddenly, new inconsistent 
allothetic information was introduced by SI into the HD. 
There’s a discrepancy between supposed and real 
headings. When the discrepancy was low, the activity 
packet continuously moved towards the new position. 
When the discrepancy was too high, the old activity 
packet disappeared and new one currently appeared. 
These results are similar to those published in [18].  
     Analogous results (activity packet appearance and 
remapping) were observed in PC. Compared to HD, 
greater effort and more iteration were necessary. 
     We also measured an accuracy of HD integration 
capabilities (3). By simulations we observed that the 
inaccuracy wasn’t more than 1% for the working range 
vHD=0.1÷1. The results were worse for vHD>1. Another 
solution brings [14]. It contains different groups of 
neurons to shift the activity packet for different angular 
velocities. Mechanism of shifting of the activity packet 
by vestibular signals in brain still remains a question. 
     Function of the PI can be seen in fig. 7. The PI is able 
to predict animat’s position, but it cumulates an 
inaccuracy, mostly caused by bad estimate of heading. 
Iterative recalibration helps to limit the inaccuracy. 
 
3.3 Navigation through the Environment  
The resulting spatial map in the case of convex 
environment can be seen in fig. 4. The animat was 
capable to learn to navigate in a major part of the 
environment in 15÷20 episodes (fig. 5). No significant 
changes in the map were observable after more than 20 
episodes except of arena corners and the most distant 
places from the target. 
     The case of non-convex environment (containing an 
obstacle), can be seen in fig. 6. The number of the 
episodes necessary to certain navigation depended on the 
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shape of the non-convex environment. Although the 
animat was able to solve all exposed situations, problems 
with bypassing of the obstacles were observed. Despite 
of the fact the animat once learned sufficiently to bypass 
the obstacle and not to bump to it, it tried to cut short the 
trajectory in later episodes, which resulted in bumping to 
the obstacle again. Note that the obstacle couldn’t be 
detected by any sensor and that the only information 
stored in the memory was a file of recently passed 
trajectories coded in the navigational map. 

 
Fig. 4: A convex environment with landmarks in corners and a 
sample navigational map within this environment. Arrows point 
towards the target. 
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Fig. 5: Learning in a convex environment. Horizontal axis represents 
an index of episode, vertical axis the average number of steps to 
reach the target from an arbitrary position. 
 

 

 
Fig. 6: Sample navigational maps and a sample trajectory produced 
by the animat in non-convex environments. Arrows point towards the 
target. 
 
 
4   Conclusion 
4.1 Biological Plausibility 
Despite of many simplifications, our model implements 
building blocks expected to be presented in neural 
circuits of animals’ hippocampal formation. It models 
such phenomena as place or head direction cells. It also 

incorporates the path integrator. Model inputs, sensory 
and vestibular information, are also modeled by 
biologically plausible way. Our primary aim was to 
model outer behavior rather than internal processes of 
each block. Hence some phenomena are modeled only 
from the outer view or aren’t modeled at all. 
     The sensory information used to locate the animat in 
the environment consists of information about distance 
and direction of the spatial landmarks. It seems to be 
oversimplified but this approach is frequent in many 
models. On the other hand, from the biological point of 
view it is not unreal. Both animals and humans use 
egocentric-bearing related information for navigation 
[15]. It is also generally acknowledged that rodents don’t 
process visual information continuously but only once in 
a while when they look around. Similarly behaves our 
model.   
     PC and HD are modeled by recurrent attractor neural 
networks as in many other works [18], [14]. Some 
models [6] use spiking model of neuron instead of our 
simple mathematical model. However, usage of such a 
neuron models for real-time robot navigation is 
constrained by performance of computers so that looking 
for less demanding approaches is also necessary. 
     Biologically implausible is the regulation mechanism 
of neural activity in HD and PC systems (4). We should 
model inhibitory interneurons rather by a set of inhi-
bitory cells. It would be likewise to real brain circuits. 
 

 
Fig. 7: Function of the PI. Solid line represents animat’s location in 
the arena, dashed one is a trajectory computed by PI cells activity. 
Circles denote places of recalibration of the animat’s position. 
 
4.2 Solving of the Navigational Task 
Our animat is capable to solve a simple navigational task 
in both convex and non-convex environment, although 
the resulting trajectories are far from optimality (fig. 6). 
In a convex environment, a couple of episodes is enough 
to learn to solve the navigational task. This is 
comparable with experiments on rodents in Morris water 
maze [8]. A comparison of our animat’s behavior in a 
non-convex arena is problematic because no 
experimental data with a hidden platform and an 
invisible obstacle are available.  
     Somebody could argue that such a task could be 
solved (excepting path integration) by a small number of 
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neurons. In early eighties several models were published, 
e.g. [2], containing as less as 4 neurons solving similar 
task and using reinforcement learning. The main 
differences between our (and other up-to-date ones) and 
Barto’s models are (i) ability to learn from delayed 
reward instead of continual information about distance to 
the target, (ii) usage of path-integration capabilities to 
make navigation more robust and (iii) capability to avoid 
simple obstacles in the environment. On the other hand, 
nearly 6000 neurons of our model is about hundred times 
less than rodents’ hippocampus is suggested to contain. 
     Let’s compare our model with the others mentioned. 
[14] is a large and sophisticated theoretical work 
containing also proposals for navigation in multiple 
environments. It doesn’t consider interactions between 
the environment and the model nor solving navigation 
tasks. The model in [1] was successfully tested on a real 
robot even in multi-target tasks, but it doesn’t implement 
HD or PI. The learning algorithm totally differs. The 
model in [5] is able to avoid obstacles and tries to clarify 
role of the θ precession, but also doesn’t involve HD or 
PI. The model in [7] extends the classical model of PC 
and HD by developing “pose cells” that code both 
position and heading. Although there is no biological 
justification for it, the system was successfully tested in 
an indoor environment with landmarks. 
     Our model was designed to solve a navigational task 
in a single environment with a single target like most 
experiments do. However, for use in a robotics domain, 
we need our model to learn route to multiple targets and 
to distinguish multiple environments. These will be 
subjects of our future work. 
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