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Abstract: - General framework for hybrid model based identification and optimization of biochemical 
processes is elaborated. An enhanced hybrid model of the fed-batch biosurfactant production process is 
presented. The evolutionary programming techniques are applied for the hybrid model identification and 
optimization of the process. High performance of the applied optimization techniques is reported. The 
perspectives of development of a software package for hybrid model based identification and optimization of 
biochemical processes is discussed. 
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1   Introduction 
Development of operational conditions for fed-batch 
processes in biochemical industry in order to assure 
high performance of these processes is of 
considerable importance. In the face of increased 
competition on the market, process optimization is a 
natural and straightforward choice for reducing 
production costs, fulfilling safety requirements, 
increasing process quality and reducing variability 
[1]. From engineering point of view such 
optimization includes elaboration of optimal starting 
conditions and profiles for control variables. 
Furthermore, the adjustment of the defined control 
policy should be made to assure the process 
variables fall within the range defined during the 
first development stage. This optimization is of 
particular importance in order to meet safety and 
operational constraints [2, 3]. Due to complexity, 
multi-phase and time-varying nature of the 
biochemical processes under consideration [1], this 
task may fail because of the following reasons: 
     1. The mechanistic and first principle models 
alone often can not adequately describe the process 
and must be enhanced. The advantages of the 
application of hybrid models, consisting of first 
principle models combined with mechanistic, ANN 
and fuzzy models are widely discussed [4, 5, 6, 19, 
21] and their successful application in various fields 
of science and technology are presented [7, 8, 9].  
     2. Even if the first part of the problem is solved, 
the application of more complex models for the 
optimization of industrial scale processes with 
considerably big number of free model parameters, 
huge amount of data supplied for the model 

identification and comprehensive requirements to 
fulfill multiple constraints during the optimization 
may lead to poor performance of optimization 
techniques [10]. Therefore, an appropriate high 
performance and robust optimization technique 
should be implemented.  
     3. Optimization of the complex processes 
described by hybrid models proposed in [7, 8, 9] 
using numerical methods may lead to some specific 
problems which limit the range of applicable 
numeric methods. Discontinuities in physiological 
and technological constraints, complexity of the 
hybrid models may inhibit calculation of sensitivity 
functions. Therefore, the preferable optimization 
methods applicable for the class of the processes 
discussed [8, 9, 11, 12, 18] are those which do not 
require calculation of derivatives, e. g. simulated 
annealing, genetic algorithms or evolutionary 
programming [13, 14, 15, 20]. The application of 
such methods for the optimization of biochemical 
processes is widely discussed [12, 16]. 
     4. In order to increase an efficiency of such 
model identification and optimization, general 
framework with user friendly environment should be 
developed and tested. It should include flexible 
description and interconnection of user blocks 
presented as mechanistic models, ANNs or fuzzy 
blocks, similar to those described in [17], powerful 
data management tools and robust problem oriented 
and easy to apply optimization routines.  
     The proposed approach is tackling with the 
bottlenecks and problems mentioned above. 
Nevertheless the further development of suitable 
software solutions is to be made. 
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Fig. 1 General framework of the proposed hybrid model based optimization. 
 
2   General framework of hybrid 
model based optimization 
The proposed general framework is presented on 
Fig. 1 and consists of several distinct interacting 
parts: 
a) The procedure begins with the model 
identification where offline process data is supplied 
to the optimization routines. Furthermore, at this 
stage the model structure should be defined, i.e. 
mechanistic models, engineering correlations, 
structure of the ANN and fuzzy blocks, mass 
balance equations are described by means of user 
friendly routines. The blocks can be interconnected 
between each other in parallel or sequentially and 
form a multilayer structure. At this stage the 
objective function for the procedure is defined as 
well. During the first raw parameter identification 
step only the mechanistic part of the kinetic rate 
expressions is tuned while the gating network is 
switched on and passing the output of the 
mechanistic part to mass balance equations.  
b) Next, the input-output mapping of the state 
variable space should be done to ensure the 

application limits of the black box parts of the 
model. As far as the target data for the training of 
kinetic rates usually is not available, the outputs of 
the integration routine will be used to evaluate the 
objective function of the identification procedure. 
As far as neural networks are mode flexible and can 
better describe complex phenomena as compared to 
mechanistic models, the weighting of the neural 
network sub-model will constantly increase with the 
increasing amount of training data obtained after 
each experimental run.  
c) Fuzzy subsystem is primarily intended to 
detect and switch between different partial models 
depending on the physiological state of the culture, 
which can be analyzed from the calculated vector of 
the state variables at each integration step.  
d) After identification of separate parts of the 
kinetic model, the gating network should be trained. 
At this stage the weighting parameters are 
identified. It is important to stress that the weighting 
of particular parts of the model by the gating 
network and parameter values of the sub-models do 
not remain constant and are changed by the training 
procedure as soon as the new training data is 
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available. After the model identification is 
completed, one can move to the following phase- 
offline optimization. 
e) During the offline optimization procedure 
the control profiles and/or initial conditions are 
optimized with respect to the objective function. 
The latter includes functions of the state variables 
and stoichiometric expressions. The calculation of 
control profiles is done by means of standard or user 
defined functions, e. g. sigmoid ANNs, exponential 
or radial basis functions (RBF). The profiles can be 
explicit functions of time or divided into time grid, 
where switching time instants depend on the process 
phase or another relevant time event. The 
optimization is performed each time the new 
experimental data is added into training database in 
the way described in [11, 18]. 
f) The last stage of the framework is online 
optimization. The whole procedure should run 
online, receive the data available online, perform 
local retuning of the model and optimize the control 
actions for the next time horizon.  
The framework is under development using Matlab® 
programming environment and standard routines as 
well as user defined blocks and functions.   
 
 
3   Case study: fed-batch biosurfactant 
production process 
The process of biosurfactant synthesis in fed-batch 
culture Azotobacter vinelandii 21 given as an 
example in this paper is related to the development 
of a complex cleaning technology of soil 
contaminated by oil pollutants. More details about 
the bacterial strain, cultivation conditions, medium 
composition, experimental setup and analytical 
methods can be found elsewhere [8]. The aim of this 
optimization is to determine technological regime of 
the fed-batch cultivation process in order to 
maximize the yield of produced biosurfactant. 
 
 
3.1 Hybrid model of the process 
The hybrid model of the process consists of 
differential mass balance equations that can be 
written down in the following generalized form: 
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   (1), 

where Ci , qi, Cis, and Fis is the concentration, 
specific reaction rate, concentration in feed and 
feeding rate of the i-th component respectively. V is 
culture broth volume in reactor, and F is total flow 
in the reactor. 
     The resulting values of the reaction rates q=f(C) 
are supplied by gating network and their current 
values depend on the state of the gating network and 
can be equal to the output of one of the sub-models 
or a combination of some of them.  
     Usually we deal with only one flow Fi 
corresponding to a single feeding substrate, but 
nevertheless it is advisable not to loose generality. 
Considering that for an accurate modeling it is 
important to account all the significant mass flows 
in the reactor [18], e. g. alkali or acid flow, 
evaporation, sampling etc., we distinguish between 
total flow F and flow Fi of a particular component.  

 
 

3.2 Model identification 
Performance index of the model identification is 
formulated as follows:  

2
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where l, m, and n are the numbers of experimental 
runs, data points, and variables. The values of the 
weights w(i,j,k) depend on the collected experimental 
data Cexp and reflect the differences in physical 
range of these variables, importance/reliability of 
each experiment or data point.  
     In this particular case, the set of data for 
identification consists of 3 experiments, 6 state 
variables and 45 measurement points each. The 
model includes 15 adjustable parameters.  
     The evolutionary programming approach was 
used to determine the parameter values. The 
iteration number was set to 10000, and the number 
of populations was set to 100. After identification 
the model was tested on new validation data. The 
validation results for one of the experiments are 
depicted on Fig. 2. 
 
3.3 Process optimization 
Performance index for the process optimization is 
formulated as follows:  

5 ( ) ( ) max,J C t V t= →   when t=T  (3), 
where C5 corresponds to the biosurfactant activity 
per volume unit and T is the fixed process time. 
Additionally, the following constraints on the 
control variables Fi are applied: 

max0 i iF F≤ ≤   (4). 
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     The evolutionary programming approach was 
used to determine the feeding profile, and the 

concentrations of two components in the feeding 
solution. 
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  Fig. 2 Hybrid model validation results.    Fig. 3 Process optimization results. 
 
     The total number of 13 parameters (11 for the 
RBF network of the feeding rate profile, and 2 for 
the concentrations in feed) was used during the 
optimization procedure. The number of iterations 
was set to 2000, and the number of populations was 
set to 50. The optimized control strategy was 
validated experimentally and led to an improvement 
of 11% as compared to the average process 
performance achieved in historical data [8]. The 
predicted and practically achieved process 
optimization results are depicted on Fig. 3. 
 
 
5   Conclusions 
The application of the proposed approach on a 
laboratory scale fed-batch biochemical process 
showed an improvement in process performance. 
The optimization procedure proved to be able to 

tackle with strong nonlinearities of the model and 
presented robust behavior. 
     The further investigation includes software 
performance tests on more complex optimization 
tasks, incorporation of fuzzy and online optimization 
subsystems. Also the implementation of more 
optimization and integration routines would be of 
advantage, while dealing with more different classes 
of the models. The development of user friendly 
modeling environment is another challenging task to 
be solved in future. 
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