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Abstract 

` Model Predictive Control (MPC) is an online open-loop optimal control and is an advanced 
control strategy widely used in many process industries now a days. This paper focuses on the use of non-
derivative optimization in MPC for a LTI system. The algorithm for the development of such a non-
derivative optimization algorithm is also given for bound constraints along with the proof for asymptotic 
stability. The results of this paper are illustrated with a simple example. 
Keywords: Model Predictive Control (MPC), non-derivative optimization, asymptotic stability. 
 
 
1. Introduction  
 

Model Predictive Control (MPC) or 
Receding horizon control is widely used 
nowadays for control of many complex 
processes in many industries since 1970’s 
[2, 5, 6]. MPC being a form of control in 
which the current control action is obtai-
ned by solving online, at each sampling 
instant, a finite horizon open-loop optimal 
control problem, using the current state of 
the plant as the initial state; the optimiza-
tion yields an optimal control sequence 
and the first control in this sequence is 
applied to the plant [3, 4, 9]. Sequential 
Quadratic Programming (SQP) is the most 
widely used optimization technique in 
MPC, as mostly the performance index  
being quadratic subject to equality and/or 
inequality constraints. There are well 
known methods for quadratic program- 
ming (QP): BFGS, Newton-Rapson 
method, etc. These are all derivative based 
methods. An excellent theory of these 
methods is given in [2, 5, 6]. Of course, 

non-derivative methods of optimization  
are also discussed in [2, 6]. 

 The paper is arranged as follows: 
in section 2, the non-derivative 
algorithm is discussed. The above 
algorithm is used for MPC in section 3. 
The result obtained by non-derivative 
method is compared and discussed in 
section 4. 

In this paper any parameter 
mentioned after; inside the parenthesis is 
to be taken as for the given value of the 
parameter. 

 
2. The MPC algorithm 
Prediction and Optimization: 

Model Predictive Control (MPC) is 
an open-loop optimal control problem, 
minimizing a cost function, J: 

Jmin ∆u =∑
=

1-N

1k
y(k) yr(k) )( TQ (yr(k)– ŷ(k)) 
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+∆uT(k-1)R∆u(k-1) (2.1) 
subject to 
 
∆ymin ≤  ∆y ≤ ∆ymax                               (2.2) 
∆umin ≤  ∆u ≤ ∆umax                               (2.3) 

 
where, 
 yr - set point 
 ŷ  - predicted output from the model 
 ∆u- rate of change of control move 

Q, R- output and control input  
weighing parameters, respectively. 
 

From the above cost function (2.1), it is 
evident that the controller, MPC, needs to 
minimize the error,e; 
 

e = yr – ŷ                      (2.4) 
 

with minimal rate of change of control 
effort, ∆u, which is piecewise constant. 
 The prediction of the plant’s 
behavior in the future over a finite time 
horizon (prediction horizon) is achieved 
by making use of the plant’s model. The 
model could be anyone as transfer 
function, state space model, Matrix 
Fraction Description (MFD) etc., which 
are all mathematical models that depicts 
the dynamics of the plant under 
consideration. The model could also be 
obtained as a neural network, which plays 
a significant role in modeling nonlinear 
systems [1,8,11], which is a kind of 
empirical modeling.  
 The system to be considered here 
is a linear stable system, so the prediction 
and control horizon are so selected, N and 
M(=N-1), respectively, and the principle 
of linearity, i.e., super position theorem, 
also holds good. 
 The objective or cost function 
could be rewritten, from (2.4), as, 
 
Jmin ∆u =∑eTQ e+∆uTR∆u                     (2.5) 
 

where Q and R are positive symmetric 
weighing parameters.      
 
i.e., Jmin ∆u =∑e2Q + ∆u2R                   
(2.6) 
 
subject to constraints, 
 

-e ≤  e ≤ e                                 
(2.7) 
∆u min ≤  ∆u ≤ ∆umax                 (2.8) 

For convenience, some error tolerance is 
allowable in the system’s performance. 
A strong assumption is made such that 
the optimum value lie in the interior in 
the region Ry× Ru , as the objective 
function and the constraints are closed 
and convex [2]. So the weighing 
parameter, Q, is so selected: 
                          

 Q = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
toleranceerror

error
_

2

     (2.9) 

 
This makes this weighing matrix always 
be selected dynamically, according to 
the error, the difference between the set 
point, yr, and the predicted outputs, ŷ, 
instead of having a fixed value like Q = 
0.1,1,etc., as did conventionally. 
 The inputs, ∆u, for every 
iteration until the prediction horizon (N) 
is found out by line search within the 
feasible (or admissible) region in other 
methods like BFGS method or other 
gradient based methods of optimization. 
In this method some finite number of 
discrete units are made within the bound 
constraints ∆u min and ∆u max. This is 
made to reduce the computational 
burden, but it is to be noted that smaller 
the difference between two discrete 
units, more precise the convergence 
towards the set point. 
 All the possible finite inputs 
{∆u} made between the bound 
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constraints, are supplied to the model 
sequentially and their corresponding 
output values, {ŷ}, are stored. These inputs 
{∆u} and their corresponding outputs, {ŷ}, 
are substituted in the cost function (2.6). 
Before substituting { ŷ} in the cost 
function, the output values that violate the 
given constraints are discarded. Only those 
outputs within the feasible region are 
substituted in (2.6). 
 The corresponding set of cost 
values, {J}, for the given allowable 
outputs and its inputs are found out. The 
minimal cost value of the set obtained is 
identified. The control inputs ∆u, 
corresponding to the minimal cost value 
i.e., ∆Jmin, is taken as the optimal control 
move (∆u*) for that instant. 
 The optimal value of the control 
move, (∆u*), is again applied to the model 
to get the optimal output, y*, for the given 
optimal control move, and the above 
process repeats until the end of the 
prediction horizon.  
 
3. Stability 
 Stability could also be ensured in 
an asymptotic manner, with the proof of 
monotonicity property of {J*(⋅ )} [9], if the 
performance gives a result so as the cost 
function value always decreases i.e.,  
J1*(⋅ )≤ J0*(⋅ ). The above proof of stability 
by the monotonicity of {J*(⋅ )} could 
always be ensured as the optimal point lies 
in the interior of Ry× Ru, which implies 
that the system is asymptotically stable. 
Once the system state reaches the terminal 
constraint region i.e., the error tolerance 
(=Xf, subset of Rn

 ) value selected, which 
is in the neighbourhood of the origin of 
Rn, it could be taken to the origin by a 
local controller u=κf (⋅). This form of 
model predictive control called dual mode 
control, was proposed in [Michalska & 
Mayne 1993], interested reader may refer 
[9, 10]. 

  
4. Experimental result 
4.1. System identification with neural  
network: 
 In model predictive control, 
model plays a vital role of predicting the 
future response of the system, with the 
current measurement from the actual 
plant. Here it is achieved using a neural 
network, as did conventionally. No 
special emphasis is given here to say 
about the system identification using 
neural network, as an excellent literature 
is available on this [1, 7, 8, 12].  
 The network is trained with a set 
of input-output data, for the network to 
capture the dynamics of the system. As 
here only a linear system is taken, the 
network could capture the linearity very 
easily.  
 A pseudo random binary 
sequence (PRBS) is used to train the 
network, with the output being feedback 
after delayed by one time unit. See 
Fig.3.1. 
 
          u(t)  
        y(t-1)                             y(t)       

 
Fig.3.1. Recurrent type neural network 

 
4.2. Model Predictive Control design:  

The above said non-derivative 
algorithm for MPC is illustrated here 
with a simple example, by taking a 
stable linear time invariant (LTI), SISO 
system: 

 
Y(s) =   5.9_                               (3.1)    

      U(s)     50s+1 
 
which must satisfy the performance 
index, 
 
Jmin ∆u =∑(yr – ŷ)TQ (yr – ŷ)+∆uTR∆u        
                                                          (3.2) 
subject to constraints, 

Neural 
network 
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0 ≤  ŷ ≤  0.5          (3.3) 

     -0.5 ≤  ∆u ≤  0.5                (3.4) 
 
where the set point, yr , is to be tracked by 
the closed loop system. The equation (3.2), 
thereafter takes the form (2.6), as the 
weighing matrices (Q and R) are positive 
symmetric and the error, e=yr-ŷ. The 
weighing matrix Q is so selected for an 
error tolerance = 0.001: 
 

Q = ⎟
⎠
⎞

⎜
⎝
⎛

0.001
e 2

                        (3.5) 

 
where R = 1 (identity matrix) i.e., there is 
no dynamically changing control move 
suppression made. The performance of 
this dynamically changing weighing 
matrix (only Q here) is shown in Fig.3.2. 
 The Fig.3.2 shows that the control 
move is somewhat a deadbeat like 
performance. It could also be noted that 
there is some error in the response, which 
is because of the error tolerance that is 
been accepted in the beginning. 
 

 
Fig.3.2. Response of the NN-MPC with no control 

move suppression, R =1 
 
 This performance is not a 
satisfactory as with a deadbeat like 
control. So the dynamically changing 
weighing matrix is also used for the 
control move suppression: 
 

R = (∆umax /δ)2                      (3.6) 
 
where δ is the discretization step size 
between  ∆umax and ∆umin, which could 
be chosen as small as possible. As 
already mentioned, smaller the 
difference between two discrete units, 
more precise the convergence towards 
the set point. But this so a trade off is to 
be made between the 
will obviously increase the computation, 
final error and the computational burden  
by the proper selection of the value of δ. 

The result of the performance of 
the system by selecting the control move 
suppression (or weighing matrix), R, as 
above, for δ = 0.025, is shown in Fig.3.3 
It could be noted that the performance is 
with a smooth control action, not as 
dead-beat type of control as in Fig.3.2. 
But this is achieved at the cost of a 
longer settling time. A trade off could be 
made between the faster settling time 
and the smoother control move, by 
proper selection of the value of δ. 
 
5.    Comparative result 

The result obtained by the new 
algorithm could be well compared with 
the conventional derivative type of 
optimization, like Sequential Quadratic 
Programming (SQP), to show the comp-
arative performance between the two. 

 

 
Fig.3.3. Response of NN-MPC with dynamic 

move suppression. 
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 The above novel method of 
optimization by dynamically changing the 
weighing parameters is compared with a 
standard SQP optimization method, 
namely BFGS method [2, 6]. The BFGS 
method is basically a quasi-Newton 
gradient-based method in which the 
Hessian matrix of the objective function is 
also included. The Hessian matrix to be 
positive definite is the sufficient condition 
for optimality (minimization). But with 
other methods that incorporate Hessian 
matrix, needs calculation of the Hessian 
and an inverse of the Hessian at each 
iteration. This may be impossible always, 
where the quasi-Newton method proves its 
success by avoiding direct calculation of 
Hessian and its inverse. So BFGS is one of 
the famous and widely used quasi-Newton 
method. In this method an easy way to 
update the Hessian matrix is also provided 
with the use of the objective function and 
its Jacobian itself. 
 This newly developed optimization 
algorithm is compared with the result 
obtained using the BFGS method to show 
the comparative performance of the two in 
Fig.4. 
 

 
Fig.4. Comparison of the new algorithm (solid 

line) and BFGS method (dashed) 
 
6.   Discussion 

It could be found that the new 
algorithm provides a better move 
suppression than that of the BFGS method. 

But the BFGS method converges faster 
than that of the new method, but some 
thing like a deadbeat controller. So it 
could be said that a trade off is to be 
made between the faster convergence 
and the lesser control move at each time 
instant. 
 
7. Conclusions 

The non-derivative method of 
optimization provides a better 
performance than the conventional 
optimization method(s). This method 
greatly reduces the computational 
complexity of differentiating the 
objective function subject to constraints. 
This approach is developed only for a 
linear stable system, taking the 
advantage of the properties of linearity. 
This approach could be easily extended 
to a MIMO (Multiple input multiple 
output) linear system. 
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