
Non-Derivative
Optimization using Neural Network Model Based

 Predictive Control
P. Aadaleesan*, K. Ramkumar1, S.Nithya2, S.M.GiriRajkumar3

School of Electrical and Electronics Engineering,
SASTRA Deemed University, Thanjavur-613 402,

Tamil Nadu, India.

Abstract

` Model Predictive Control (MPC) is an online open-loop optimal control and is an advanced
control strategy widely used in many process industries now a days. This paper focuses on the use of non-
derivative optimization in MPC for a LTI system. The algorithm for the development of such a non-
derivative optimization algorithm is also given for bound constraints along with the proof for asymptotic
stability. The results of this paper are illustrated with a simple example.
Keywords: Model Predictive Control (MPC), non-derivative optimization, asymptotic stability.

1. Introduction

Model Predictive Control (MPC) or
Receding horizon control is widely used
nowadays for control of many complex
processes in many industries since 1970’s
[2, 5, 6]. MPC being a form of control in
which the current control action is obtai-
ned by solving online, at each sampling
instant, a finite horizon open-loop optimal
control problem, using the current state of
the plant as the initial state; the optimiza-
tion yields an optimal control sequence
and the first control in this sequence is
applied to the plant [3, 4, 9]. Sequential
Quadratic Programming (SQP) is the most
widely used optimization technique in
MPC, as mostly the performance index
being quadratic subject to equality and/or
inequality constraints. There are well
known methods for quadratic program-
ming (QP): BFGS, Newton-Rapson
method, etc. These are all derivative based
methods. An excellent theory of these
methods is given in [2, 5, 6]. Of course,

non-derivative methods of optimization
are also discussed in [2, 6].

 The paper is arranged as follows:
in section 2, the non-derivative
algorithm is discussed. The above
algorithm is used for MPC in section 3.
The result obtained by non-derivative
method is compared and discussed in
section 4.

In this paper any parameter
mentioned after; inside the parenthesis is
to be taken as for the given value of the
parameter.

2. The MPC algorithm
Prediction and Optimization:

Model Predictive Control (MPC) is
an open-loop optimal control problem,
minimizing a cost function, J:

Jmin ∆u =∑
=

1-N

1k
y(k) yr(k))(TQ (yr(k)– ŷ(k))

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp278-283)

+∆uT(k-1)R∆u(k-1) (2.1)
subject to

∆ymin ≤ ∆y ≤ ∆ymax (2.2)
∆umin ≤ ∆u ≤ ∆umax (2.3)

where,
 yr - set point
 ŷ - predicted output from the model
 ∆u- rate of change of control move

Q, R- output and control input
weighing parameters, respectively.

From the above cost function (2.1), it is
evident that the controller, MPC, needs to
minimize the error,e;

e = yr – ŷ (2.4)

with minimal rate of change of control
effort, ∆u, which is piecewise constant.
 The prediction of the plant’s
behavior in the future over a finite time
horizon (prediction horizon) is achieved
by making use of the plant’s model. The
model could be anyone as transfer
function, state space model, Matrix
Fraction Description (MFD) etc., which
are all mathematical models that depicts
the dynamics of the plant under
consideration. The model could also be
obtained as a neural network, which plays
a significant role in modeling nonlinear
systems [1,8,11], which is a kind of
empirical modeling.
 The system to be considered here
is a linear stable system, so the prediction
and control horizon are so selected, N and
M(=N-1), respectively, and the principle
of linearity, i.e., super position theorem,
also holds good.
 The objective or cost function
could be rewritten, from (2.4), as,

Jmin ∆u =∑eTQ e+∆uTR∆u (2.5)

where Q and R are positive symmetric
weighing parameters.

i.e., Jmin ∆u =∑e2Q + ∆u2R
(2.6)

subject to constraints,

-e ≤ e ≤ e
(2.7)
∆u min ≤ ∆u ≤ ∆umax (2.8)

For convenience, some error tolerance is
allowable in the system’s performance.
A strong assumption is made such that
the optimum value lie in the interior in
the region Ry× Ru , as the objective
function and the constraints are closed
and convex [2]. So the weighing
parameter, Q, is so selected:

 Q = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
toleranceerror

error
_

2

 (2.9)

This makes this weighing matrix always
be selected dynamically, according to
the error, the difference between the set
point, yr, and the predicted outputs, ŷ,
instead of having a fixed value like Q =
0.1,1,etc., as did conventionally.
 The inputs, ∆u, for every
iteration until the prediction horizon (N)
is found out by line search within the
feasible (or admissible) region in other
methods like BFGS method or other
gradient based methods of optimization.
In this method some finite number of
discrete units are made within the bound
constraints ∆u min and ∆u max. This is
made to reduce the computational
burden, but it is to be noted that smaller
the difference between two discrete
units, more precise the convergence
towards the set point.
 All the possible finite inputs
{∆u} made between the bound

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp278-283)

constraints, are supplied to the model
sequentially and their corresponding
output values, {ŷ}, are stored. These inputs
{∆u} and their corresponding outputs, {ŷ},
are substituted in the cost function (2.6).
Before substituting { ŷ} in the cost
function, the output values that violate the
given constraints are discarded. Only those
outputs within the feasible region are
substituted in (2.6).
 The corresponding set of cost
values, {J}, for the given allowable
outputs and its inputs are found out. The
minimal cost value of the set obtained is
identified. The control inputs ∆u,
corresponding to the minimal cost value
i.e., ∆Jmin, is taken as the optimal control
move (∆u*) for that instant.
 The optimal value of the control
move, (∆u*), is again applied to the model
to get the optimal output, y*, for the given
optimal control move, and the above
process repeats until the end of the
prediction horizon.

3. Stability
 Stability could also be ensured in
an asymptotic manner, with the proof of
monotonicity property of {J*(⋅)} [9], if the
performance gives a result so as the cost
function value always decreases i.e.,
J1*(⋅)≤ J0*(⋅). The above proof of stability
by the monotonicity of {J*(⋅)} could
always be ensured as the optimal point lies
in the interior of Ry× Ru, which implies
that the system is asymptotically stable.
Once the system state reaches the terminal
constraint region i.e., the error tolerance
(=Xf, subset of Rn

) value selected, which
is in the neighbourhood of the origin of
Rn, it could be taken to the origin by a
local controller u=κf (⋅). This form of
model predictive control called dual mode
control, was proposed in [Michalska &
Mayne 1993], interested reader may refer
[9, 10].

4. Experimental result
4.1. System identification with neural
network:
 In model predictive control,
model plays a vital role of predicting the
future response of the system, with the
current measurement from the actual
plant. Here it is achieved using a neural
network, as did conventionally. No
special emphasis is given here to say
about the system identification using
neural network, as an excellent literature
is available on this [1, 7, 8, 12].
 The network is trained with a set
of input-output data, for the network to
capture the dynamics of the system. As
here only a linear system is taken, the
network could capture the linearity very
easily.
 A pseudo random binary
sequence (PRBS) is used to train the
network, with the output being feedback
after delayed by one time unit. See
Fig.3.1.

 u(t)
 y(t-1) y(t)

Fig.3.1. Recurrent type neural network

4.2. Model Predictive Control design:

The above said non-derivative
algorithm for MPC is illustrated here
with a simple example, by taking a
stable linear time invariant (LTI), SISO
system:

Y(s) = 5.9_ (3.1)

 U(s) 50s+1

which must satisfy the performance
index,

Jmin ∆u =∑(yr – ŷ)TQ (yr – ŷ)+∆uTR∆u
 (3.2)
subject to constraints,

Neural
network

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp278-283)

0 ≤ ŷ ≤ 0.5 (3.3)

 -0.5 ≤ ∆u ≤ 0.5 (3.4)

where the set point, yr , is to be tracked by
the closed loop system. The equation (3.2),
thereafter takes the form (2.6), as the
weighing matrices (Q and R) are positive
symmetric and the error, e=yr-ŷ. The
weighing matrix Q is so selected for an
error tolerance = 0.001:

Q = ⎟
⎠
⎞

⎜
⎝
⎛

0.001
e 2

 (3.5)

where R = 1 (identity matrix) i.e., there is
no dynamically changing control move
suppression made. The performance of
this dynamically changing weighing
matrix (only Q here) is shown in Fig.3.2.
 The Fig.3.2 shows that the control
move is somewhat a deadbeat like
performance. It could also be noted that
there is some error in the response, which
is because of the error tolerance that is
been accepted in the beginning.

Fig.3.2. Response of the NN-MPC with no control

move suppression, R =1

 This performance is not a
satisfactory as with a deadbeat like
control. So the dynamically changing
weighing matrix is also used for the
control move suppression:

R = (∆umax /δ)2 (3.6)

where δ is the discretization step size
between ∆umax and ∆umin, which could
be chosen as small as possible. As
already mentioned, smaller the
difference between two discrete units,
more precise the convergence towards
the set point. But this so a trade off is to
be made between the
will obviously increase the computation,
final error and the computational burden
by the proper selection of the value of δ.

The result of the performance of
the system by selecting the control move
suppression (or weighing matrix), R, as
above, for δ = 0.025, is shown in Fig.3.3
It could be noted that the performance is
with a smooth control action, not as
dead-beat type of control as in Fig.3.2.
But this is achieved at the cost of a
longer settling time. A trade off could be
made between the faster settling time
and the smoother control move, by
proper selection of the value of δ.

5. Comparative result

The result obtained by the new
algorithm could be well compared with
the conventional derivative type of
optimization, like Sequential Quadratic
Programming (SQP), to show the comp-
arative performance between the two.

Fig.3.3. Response of NN-MPC with dynamic

move suppression.

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp278-283)

 The above novel method of
optimization by dynamically changing the
weighing parameters is compared with a
standard SQP optimization method,
namely BFGS method [2, 6]. The BFGS
method is basically a quasi-Newton
gradient-based method in which the
Hessian matrix of the objective function is
also included. The Hessian matrix to be
positive definite is the sufficient condition
for optimality (minimization). But with
other methods that incorporate Hessian
matrix, needs calculation of the Hessian
and an inverse of the Hessian at each
iteration. This may be impossible always,
where the quasi-Newton method proves its
success by avoiding direct calculation of
Hessian and its inverse. So BFGS is one of
the famous and widely used quasi-Newton
method. In this method an easy way to
update the Hessian matrix is also provided
with the use of the objective function and
its Jacobian itself.
 This newly developed optimization
algorithm is compared with the result
obtained using the BFGS method to show
the comparative performance of the two in
Fig.4.

Fig.4. Comparison of the new algorithm (solid

line) and BFGS method (dashed)

6. Discussion

It could be found that the new
algorithm provides a better move
suppression than that of the BFGS method.

But the BFGS method converges faster
than that of the new method, but some
thing like a deadbeat controller. So it
could be said that a trade off is to be
made between the faster convergence
and the lesser control move at each time
instant.

7. Conclusions

The non-derivative method of
optimization provides a better
performance than the conventional
optimization method(s). This method
greatly reduces the computational
complexity of differentiating the
objective function subject to constraints.
This approach is developed only for a
linear stable system, taking the
advantage of the properties of linearity.
This approach could be easily extended
to a MIMO (Multiple input multiple
output) linear system.

References

[1] Andreas Draeger, Sebastin Engell &
 Horst Ranke (1995). “Model predictive
 Control using neural networks”. IEEE
 Control Systems Magazine. pp. 61-66.
[2] Bazaraa, M. S., Sherali, H. D., & Shetty, C.
 M.(2004). Nonlinear programming-Theory
 and algorithms. 2e,John-Wiley & Sons,
 Inc.,(Asia).
[3] Camacho, E.F., & Bordons, C.(2004).
 Model Predictive Control, Springer-
 Verlag, 2e, London.
[4] Chen, H., & Allgöwer, F.(1998). A quasi-
 infinite horizon nonlinear model predictive
 control scheme with guaranteed stability.
 Automatica, 34(10), 1205-1218.
[5] Edgar, Himmanbleu.(2001).Optimization of
 chemical processes. McGrqw Hill,2e, Sing-
 apore
[6] Fletcher,R. (1999). Practical methods of
 optimization.John-Wiley,2e, London.
[7] Haykin, S.(1999). Neural Networks-A
 comprehensive foundation. 2e, Prentice-Hall
 Inc., Upper Saddle River, New Jersey.
[8] Ishida, M., & Zhan, J.(1997). The multi-step
 control of nonlinear SISO processes with a
 neural model predictive control method.

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp278-283)

 Comp. Chem.. Engg, 21(2),pp. 201-210.
[9] Mayne, D. Q., Rawlings, J. B., Rao, C. V., &
 Scokaert, P. O. M.(2000). Constrained model
 predictive control: Stability and optimality.
 Automatica, 36,789-814.
[10] Michalska, H., & Mayne, D. Q.(1993).
 Robust receding horizon control of
 constrained nonlinear systems. IEEE Trans.
 on Automatic Control, 38, 1623-1632.
[11] Morari, M., & Lee, J. H.(1999). Model
 predictive control: past, present and future.
 Comp. and Chem.23, 667-682.
[12] Narendra, K.S., & Parthasarathy, K.(1990).
 Identification and control of dynamical
 systems using neural networks. IEEE Trans
 on Neural Netrorks.1(1), pp. 4-27.

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp278-283)

