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Abstract: This paper proposes a Neuro-Fuzzy Controller to Thyristor Controlled Series Capacitor (TCSC), which might 

have a significant impact on power system dynamics. We tune the scaling factors of neuro-fuzzy controller using adaptive 

critic. The proposed method is used for damping the low frequency oscillations caused by disturbances such as a sudden 

change of small or large loads or an outage in the generators or transmission lines. To evaluate the usefulness of the 

proposed method, the computer simulation for single machine infinite system is performed. Simulation results show that 

this control strategy is very robust, flexible and alternative performance. Also it could be used to get the desired 

performance levels. The response time is also very fast despite the fact that the control strategy is based on bounded 

rationality. Obtain results that have been compared with fuzzy PD controller show that our method has the better control 

performance than fuzzy PD controller. 
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1 Introduction 
 
Series capacitive compensation in AC transmission 

systems can yield several benefits, such as increased 

power transfer capability and enhanced transient stability. 

Thyristor controlled series capacitors (TCSC) are 

beginning to find applications as adjustable series 

capacitive compensators, as they provide a continuously 

variable capacitance by controlling the firing angle delay 

of a thyristor controlled reactor (TCR) connected in 

parallel with a fixed capacitor. Besides controlling the 

power flow, TCSCs have a potential to provide other 

benefits, such as transient stability improvement, damping 

power swing oscillations, mitigating subsynchronous 

resonance (SSR) and fault current reduction. Hence, 

effective firing control strategies are required to exploit all 

advantages that a TCSC installation might offer. Several 

different control and intelligent strategies have been 

developed in recent years to achieve the stated goals fully 

or partially. Among them, PID controllers, DDC methods, 

optimal, nonlinear and robust control strategies, adaptive 

and neural and/or fuzzy approaches are to be mentioned. 

Though they show a good controller performance in a 

specific operating point because they are designed using 

the linearlized system, it is difficult to obtain a good 

controller performance in a different operating condition. 

In particular, because the dynamic characteristic of power 

system with the reactive power compensator has a strong 

nonlinearity, the controller designed based on linear 

control can not show an optimal control performance. 

The purpose of this paper is to suggest another control 

strategy, based on adaptive neuro-fuzzy controller, for 

damping the low frequency oscillations caused by 

disturbances such as a sudden change of small or large 

loads or an outage in the generators or transmission lines. 

Simulation results show that, the proposed method is very 

robust and the response time can achieve satisfactory 

performance. To evaluate the usefulness of the proposed 

method, we perform the computer simulation for a single 

machine infinite system. We compare the response of this 

method with fuzzy PD controller. Obtain results show that 

the performance of the proposed method is better than 

fuzzy PD controller. In the subsequent sections, we discuss 

the mathematical model of power system, our proposed 

controller, and its application in the closed loop control 

system, simulation and some concluding remarks. 

 

2 Mathematical Model of Generator 

and TCSC 
In this section we give some explanation about 

mathematical model of generator and TCSC which we 

have used. 

 

2.1. Mathematical Model of Generator 

 
The differential equations of a single-Machine Infinite 

System are expressed in (1)-(3), which is for designing 

TCSC controller to maximize the usage rate of power 

transmission facilities and power increase of delivery 

capacity. If a rapid response typed exciter is used, we can 

model the generator sufficiently using only automatic 

voltage regulator (AVR) removing the exciter as shown in 

(4). The turbine/regulator characteristic of the 

synchronous machine is not considered because of its long 
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time constant, relatively slight variation. A nomenclature 

is added to appendix. 
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2.2. Mathematical Model of TCSC 
 
The conventional series compensator using a breaker is 

restricted to the usage frequency owing to abrasion and can 

not compensate dynamically because its compensator 

speed is slow and include an abnormal oscillation such as 

subsynchronous resonance (SSR) But TCSC can control 

promptly and precisely by using a high speed switching 

thyristor and be operated all time with not restricted to 

usage frequency and contributes to the improvement of the 

transient stability. 

TCSC function as a fixed capacitor in the steady state, so 

that it can control the power flow and improve the steady 

state stability by increasing voltage stability margin. It can 

increase the dynamic stability of power system by 

controlling a capacity value in disturbances and protect 

devices from over voltage and/or over current by 

bypassing the capacity with adequate protection device in 

fault and reinstall the capacity promptly in fault 

restoration. 
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Figure 1. Single-Machine infinite system used in performance evaluation 

 
The line reactance in a conventional PSS analysis model is 

a fixed, constant value, but the line reactance in the model 

including TCSC can no longer be considered as a fixed 

value because of its variation. So, in this paper, we use the 

modulation control changing the reactance of TCSC 

continuously by a firing angle control. The fundamental 

wave of TCSC reactance is (5). 
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3.1. BEL Algorithm and Its Application in 

Signal Fusion 
 

Sensor failures are a major cause of concern in many 

industrial systems such as engine-performance 

monitoring. In this and similar applications the quantity 

which must be measured may be physically difficult to 

access, e.g. temperature. Moreover, the sensors utilized in 

these situations are susceptible to changes in physical 

parameters. For instance, the time constant of the sensors 

may change over time. This fact, may affect the 

performance of the closed-loop control system whose 

signals are based on the feedback signals measured from 

the sensors. Multiple measurements of the same parameter 

with more than one sensor can be helpful in decreasing the 

impact of the unfavorable effects, while the correlation 

between the different sensors can result in a less vulnerable 

signal. In other words, through a combination of 

distributed sensing and measurement, deficiencies in any 

of the parameters of the sensing system can be addressed. 

Industrial applications of sensory signal fusion algorithms 

makes the subject important from the standpoint of safety 

and robust performance. Thus, enhancing the ability of the 

system to compensate for time delays in the feedback loop 

is highly motivated. To ameliorate the effects of faults of 

the sensor fusers, in non-deterministic and novel situation, 

some stochastic and probabilistic methods have been 

proposed, while some traditional filtering methods and 

soft computing intelligent algorithms have also been put 

forward. This paper demonstrates utilization of an 

emotional learning algorithm as a signal fuser in the 

feedback loop which has made the control system capable 

of being stabilized in the presence of sensor time delays. 

 

 

 

 
Figure 2. The Schematic Structure of the BEL Model 

 

 
Algorithms based on models of human emotional 

processing, is increasingly being utilized by control 

engineers, robotic designers and decision support systems 

developers with excellent results. Although, for a long 

time, emotion was considered as a negative factor 

hindering the rational decision making process, it has now 

become clear that far from being a negative trait, emotions 

are important positive forces crucial for intelligent 

behavior in natural as well as artificial systems. The 

emotional model we have studied is a structural 

node-by-node neural network that mimics those parts of 

the brain responsible for processing emotions as originally 

introduced in [10]. The schematic architecture of the 

model, termed BEL, is demonstrated in Fig. 2. The more 

cognitive aspects of the model can be found in while the 

learning strategy as well as detailed adaptation of the 

model in engineering applications is given in [7] where the 

algorithm has been utilized as a controller as well as a 

time-series predictor. For more convenience, we repeated 

a brief explanation of relations inside the BEL depicted in 

Figure 2: 

( )iAMiAMi AMECkG −=∆ ,0max.  (6) 

 

).( ECMOkG OCiOCi −=∆  (7) 

 

∑ ∑−=
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iOCii SGOC .=  (11) 

 

where AMiG∆ s are the gains in the amigdala; AMik s are the 

learning steps of the gains in the amygdala; EC  is the 

emotional cue; iAM s are the amygdale outputs; OCiG∆  

are the gains in the orbitofrontal cortex; Oik  are the 

learning steps of the gains in the orbitofrontal cortex; MO  

is the output of the whole model (here fused signal) ; iOC  

are the orbitofrontal outputs and iS  are the sensory signals 

(here the signals are supposed to be fused). Generally, the 

aforementioned model needs to be fed by some sensory 

inputs and an emotional cue, which reflects the desirability 
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of the current state of the system. Basically, to utilize the 

model, one must appropriately choose the sensory signals 

as well as emotional cue signal, and subsequently tune the 

learning parameters of the relevant blocks. In this 

connection, it is important to note that the source of the 

emotional cue signal depends on the application domain. 

The general idea, however, is to reflect the performance of 

the system. Regarding these, BEL has been adapted 

accordingly for the sake of sensory signal fusion task [9]. 

The overall system as well as the input/output 

configurations, is given in Fig. 3. As observed in the 

figure, the emotional cue signal is generated as follow: 

 

 

 
Figure 3. Model of the BEL Signal Fuser 
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where FS  is the returned fused signal; and 1K  and 2K  are 

also two gains that must be properly selected so as to have 

a reasonable relative assessment of the input signals for 

evaluation. So the algorithm tries to adjust its learning 

parameters in a way improving the emotional signal cue 

and consequently, moving toward the desired response. It 

is noteworthy to mention that the most important learning 

occurs in the orbitofrontal cortex (OC) and amygdala 

(AM) [8]. Thus, the next step is applying the BEL signal 

fuser module in the feedback loop of a control system, 

which is done in the next section. 

 

3.2. Using Signal Fuser in Control Systems 
 
Figure 4 presents the configuration of the closed-loop 

control system including the BEL signal fuser. As 

observed in the figure, the BEL block is placed in the 

feedback loop and provides the controller with the more 

accurate error signal based on receiving the different 

measured  output signals. The measured output signals  

may contain different values of time delays depending on 

the changes in the sensors’ physical parameters.  

 

 

 

 
Figure 4. Using BEL Signal Fuser in the Feedback Loop of a Closed-Loop Control System 

 
These time delays may have unfavorable effects on the 

performance measures of the control system and even may 

lead to its instability. So the main task of the BEL block is 

ameliorating such effects and keeping the system stable in 

the case of unstable conditions.  

 

3.3. Neurofuzzy Controller 
Two major approaches of trainable neurofuzzy models can 

be distinguished. The network based Takagi-Sugeno fuzzy 

inference system and the locally linear neurofuzzy model. 

It is easy to see that the locally linear model is equivalent 

to Takagi-Sugeno fuzzy model under certain conditions, 

and can be interpreted as an extension of normalized RBF 

network as well. 

The Takagi-Sugeno fuzzy inference system is based on 

fuzzy rules of the following type: 
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Thus the output of this model can be calculated by 
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The out put of controller is in the following form: 
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PL: Positive Large 

PM: Positive Medium 

PS: Positive Small 

ZE: Zero 

NS: Negative Small 

NM: Negative Medium 

NL: Negative Large 

 
Where n is number of controller fuzzy rules, 

iµ  is the 

firing strength of ith rules, u1 is the first and u2 is the 

second one for two input type controller (for example error 

and its derivative). In this paper we choose eu =1  and 

eu &=2 . The neurofuzzy controller applied in this paper, 

is a standard Sugeno fuzzy controller composed of four 

layers. In the first layer, all inputs are mapped into the 

range of [-1, +1]. In the second layer, the fuzzification 

process is performed using gaussian membership functions 

with five labels for each input. In layer 3, decision-making 

is done using Max-Product law and defuzzification is 

carried out in the fourth layer in order to calculate the 

proper control input using previous equation, ai, bi, ci are 

parameters to be determined via learning mechanism. 
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4. Simulation Results 
To evaluate the usefulness of the proposed method, we 

have performed the computer simulation for a 

single-machine infinite system and then compared it with 

Fuzzy PD controller in terms of the control performance. 

The analysis conditions, which are used for comparing 

control performance of Fuzzy PD controller with CBEC, 

are summarized in table 1. Table 1 is classified according 

to the power system operating conditions used in 

designing CBEC and evaluating the robustness of the 

CBEC. As shown in table 1, case-1 is used in designing the 

CBEC and we used case-2 to case-4 in evaluating the 

robustness of the PSS. 

 

 

Table.1 : Simulation cases used in evaluation of 

controller performance 

A: Three phase fault 

B: Mechanical torque was changed as 0.1pu 

 

Simulation 

Cases 

Operating 

condition 

Disturbance Fault 

time 

[msec] 

Case-1 

 

A 45 

Case-2 

Heavy load 

]pu[02.0Q

]pu[5.1P

e

e

=

=  
B _ 

Case-3 

 

A 45 

Case-4 

 

Nominal load 

]pu[02.0Q

]pu[0.1P

e

e

=

=  
B _ 

 

 

4.1. Heavy load condition 

 
Fig .4 shows the generator angle and firing angle when the 

three-phase fault occurs under the Case-1 of table 1. As 

shown fig.4 the CBEC shows the better control 

performance than Fuzzy PD controller in terms of setting 

time and damping effect. To evaluate the robustness of the 

proposed method, fig.5 shows the generator response 

characteristic in case that Fuzzy PD controller and the 

proposed CBEC are applied under the Case-2 of table1 As 

shown in Fig.5, CBEC shows the better control 

performance than Fuzzy PD controller in terms of setting 

time and damping effect. 
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a: Rotor angle of generator b: Firing angle of TCSC 

Figure 4: Generator responses when three-phase fault was occurred (Heavy Load) 

 

4.2. Nominal load condition 
 

To evaluate the robustness of the CBEC, Fig 6-7 show the 

generator response characteristic in Case that Fuzzy PD 

controller and the proposed CBEC are applied under the 

Case-3 and 4 of table1. As shown in Fig 6-7, the CBEC 

shows the better control performance than Fuzzy PD 

controller in terms of setting time and damping effect. 
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Figure 5: Generator responses when mechanical torque 

is changed by 0.2[pu] (heavy load) 

 

 

5. Conclusion  
 

The purpose of this paper, as seen, was to suggest another 

control approach, based on a modified version of Context 

Based Emotional Controller (CBEC), for TCSC for low 

frequency oscillation of power system. Simulation results 

showed that, the proposed method is very robust and the 

response time can achieve satisfactory performance. To 

evaluate the usefulness of CBEC, we performed the 

computer simulation for a single machine infinite system. 

We compared the response of the CBEC with fuzzy PD 

controller. Simulation results showed that the performance 

of the CBEC is better than fuzzy PD controller. Then, To 

evaluate the robustness of the CBEC, we simulated 

dynamic characteristic of generator for a changeable 

mechanical torque and three-phase fault in nominal and 

light load. The CBEC showed the better damping effect 

than fuzzy PD controller 
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Figure 6: generator responses when three-phase fault was 

occurred (Nominal load) 
Figure 7: Generator responses when mechanical torque is 

changed by 0.2[pu] (Nominal load) 
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Nomenclature 

δ : Rotor angle of generator 
fdE : Generator field voltage 

ω : Rotor speed of generator '

doT : d-axis transient time constant of 

generator 

refω : Reference rotor speed of generator 
dI : d-axis current of generator 

H: Inertia constant of generator 
qI : q-axis current of generator 

mT : Mechanical input of generator 
tV : Terminal voltage 

dX : d-axis synchronous reactance of generator 
refV : Reference voltage 

'

dX : d-axis transient reactance of generator 
sV : PSS signal 

qX : q-axis synchronous reactance of generator 
∞V : Voltage of infinite bus 

'

qE : q-axis voltage of generator 
ak : AVR gain 

aT : Exciter time constant 
eR : Equivalent resistance of transmission 

line 
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