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Abstract: - In the present work a methodology useful for the identification and classification of anomalies showed by an 
aleatory mechanical system was developed. In order to perform the study, more than 1000 tests, each with predefined 
characteristics and goals, have been carried out by means a dynamical test-bed based on a two circular-arc cam-follower 
mechanism. The acceleration of the follower and the applied torque were sampled electronically. The signals obtained have 
been grouped into 4 main  families and, for each family, into 4 groups according to their features; each signal was processed 
by applying the Discrete Wavelet Transform (DWT). Therefore, the signals were identified through 10 energetic variables 
deriving from the decomposition of each signal into 10 orthogonal components obtained by the application of  DWT.  
Afterward, the results of their classification, obtained by applying a multivariate statistical analysis (i.e., discriminant 
analysis), were compared to the ones obtained by applying a fuzzy algorithm.  
 
Key-words:- Fuzzy logic, fuzzy classification, complex signal processing, wavelet analysis, diagnostics. 

 
1   Introduction 
 
A cam is mechanical element, which is used to transmit a 
desired motion to another mechanical element by direct 
contact. Specifically, the purpose of the cam is the 
transmission of power, motion or information. Usually, a 
cam is composed of three different parts: a driving element 
called itself cam, a driven element called follower and a 
fixed frame. Cam mechanisms are usually used in most 
modern applications, especially in automatic machines and 
instruments, internal combustion engines and control 
systems. Generally, the design of cam profile is based on 
well note simple regular curves such as circles, parabolas 
cycloids, sinusoidal or trapezoidal curves, polynomial 
functions and Fourier series curves.  
In the recent literature, many studies have been addressed 
to circular-arc cams [1].[2] have studied the motion 

equation of an equivalent system model of an automotive 
valve train.   
On the other side, the Wavelet Transformation (WT) 
represents a time-scale analysis of the smoothness of a 
signal [3] or, more in general, a time series of a curve 
profile. The Wavelet analysis, unlike the Fourier one, is 
very useful when one analyzes and decompose signal with 
a not constant frequency [4]. Let us consider the simple 
case in which we want to find the Fourier expansion of a 
signal, defined from 0 to 2, that assumes a linear form 
from 0 to 1 and it is sinusoidal from 1 to 2. In this case, in 
order to obtain an appraisable approximation of the signal, 
we must evaluate many coefficients of the Fourier 
expansion. 
Qualitatively, the difference between the usual sine wave 
and a wavelet can be described from the localization 
property: the sine wave is localized in frequency domain, 
but not in time domain, while a wavelet is localized both 
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in the frequency and time domain. Furthermore, the 
duration of its maximum oscillation is relatively small. 
One can regard a wavelet as a shape of wave of limited 
duration and zero moments of a given order. The choice of 
a wavelet and of signal decomposition level depends on 
the shape of signals and on the experience of the analyst. 
For its versatility, the wavelet analysis is diffused in many 
fields, such as Acoustics, Electrodynamics [5], Finance 
[6], Medicine and Statistics [7]. Furthermore, in [8] was 
proposed the methodology of wavelet analysis in order to 
investigate the anomalies in a vibrating system. In this 
paper, we study the acceleration of both the follower and 
torque sampled by a specific electronic instrumentation. 
Consider that the response is also due to the smoothness of 
the cam profile, which is composed of subsets of circular 
arcs as explained, in more details, in the following 
paragraph.  
 
2   The two-circular cam profile 
 
Referring to Fig.1, a cam profile can be composed by the 
following curves. The first two curves are the circle Γα, (α 
∈ {1, 2}), whose radius and center are, respectively, ρα 
and Cα. The third and the four circle, named respectively 
Γ3 and Γ4, are centered on the cam rotation axis O; their 
radiuses are, respectively, r and r + h1. If one assumes a 
fixed frame OXY, three characteristic points can be 
identified: A, which joins Γ2 with Γ3; F, which is the point 
joining Γ1 with Γ2; D which joins Γ1 with  Γ4. In these 
points, the relative circles have the same tangential vector 
[9]  

 
Fig.1. A roller follower two circular-arc cam 
 

3  Mathematical and statistical background 
 
3.1 Discrete Wavelet Transform 
Mother wavelets are special functions, whose first h 
moments are zero. Note that, if ψ is a wavelet whose all 
moments are zero, also the function ψik is a wavelet, where 

)2(2)( 2/ kxx jj
jk −= − ψψ   (1) 

Wavelets, like sinusoidal functions in Fourier analysis, are 
used for representing signals. In fact, consider a wavelet ψ 

and a function φ (father wavelet) such that  {{ kj0
ϕ }, {ψjk}, 

k ∈ Z, j = 0, , 2,…} is a complete orthonormal system. By 
Parseval theorem, for every signal s ∈ L2(R), it follows 
that 
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In particular, the decomposition of a signal s(t) by the 
Discrete Wavelet Transform (DWT) is represented by the 
detail function  coefficients djk = <s, ψik> and by 
approximating scaling coefficients >=< kjkj sa

00
,ϕ . 

Observe that djk can be regarded, for any j, as a function of 
k. Consequently, it is constant if the signal s(t) is a smooth 
function, having considered that a wavelet has zero 
moments. 
Lemma 5.4 in [10] implies the recursive relations 
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where λ = (–1)k+1h1-k; { hk, k ∈ Z} are real-valued 
coefficients such that only a finite number is not zero and 
they satisfy the relations 
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For evaluating the features of the signal, a parameter 
(entropy) was defined [8]. Given a set S: = {xi,  I ∈ 
{1,2,…,n}} and a function  c: xi ∈ S → c(xi) ∈ R, the 
entropy H( c ) of c is defined as follows: 
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M: = max ( ){ }{ }nixc i ,...,2,1, ∈    and 

 m: = min ( ){ }{ }nixc i ,...,2,1, ∈ , 
 
The entropy measures the best ratio between the maximum 
dynamic showed by signal and the smallest uniformity of 
signal. Given |S| = n, the entropy, as before defined, riches 
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its maximum value at ln(n) iff, for any i ∈ S, c(xi) = const. 
Finally H(c) = 0 iff, for any i ∈{1, 2,…,n}, c(xi) = S and, 
for any j∈{1, 2,…,n}-{i}, c(xj) = 0. 
 
3.2 Multivariate analysis 
Discriminant analysis with a stepwise elimination was 
performed [11]. The variables included into the model 
were the entropic values showed by the signal after the 
wavelet decomposition into its 10 levels. The amount of 
explained variance was calculated by co linearity 
diagnostics and multivariate methods [12]. All the 
analyses were carried out by means of statistical software 
and statistical significance was accepted at pr < 0.05. 
For each type of sample a “Group” was created by 
repeating the experiment. 
The resulting vector (i.e., entropic measurements) was 
normalized to length 1 to compensate for arbitrary scaling 
differences. Spearman correlation coefficients were 
calculated for each measurement and Group to identify the 
most related variable to the characteristics of Group. 
Discriminant analysis was carried out on all Groups. The 
Wilks’ lambda method was used for selecting the test set 
to assess the success of the discriminant function, and also 
for choosing the discriminant variables [13]. 
Since the classification functions are appropriate when it 
can be assumed that the populations under study have a 
multivariate normal distribution and equal variance-
covariance matrices, the Box's Test of Equality of 
Covariance Matrices was performed to test the last 
assumption. 
To explain the identification process more precisely, let p 
be an observed signal and ( )ρ,W  be a specified 
representation/metric pair. The closest candidate index k* 
(i.e., the index of the representation in the database that is 
closest to the observed representation in the sense of  ρ ) 
is 
 

( )( )ppkk WWavgk ,,.minarg* ρ= , 
 
where avg is an averaging operator, and 

( ) ( ) ( )∞→Η×Η ,0: WWρ  is a metric. 
To determine if this candidate is indeed the signal’s Group 
a threshold-based decision function may be formulated. 
Such a decision function is specified with a closeness 
threshold δ  for which candidates with distances greater 
than the threshold are deemed outside the database. More 
precisely, we define a decision function   δd  as: 
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If all members from the same Group generate sufficiently 
close representations and members from different Groups 

generate sufficiently separated representations then this 
decision will provide perfect identification [14]. 
Calculations were made using multivariate statistical 
software (SPSS 10.0 for Windows). 
 
3.3 Fuzzy analysis 
The fuzzy logic allows intermediate values of certainty to 
be defined between conventional deterministic two-valued 
logic, such as yes/no, high/low or true/false. 
According to [15] a fuzzy set A in the universal space X is 
characterized by a membership function fA(x) at X 
representing the ‘membership grade’ of x in A. Thus, the 
nearer the value of fA(x) to unity, the higher the grade of 
membership of x in A. 
For each signal we can define a smaller feature vector, 
which contains much of the information from the original 
signal. This is where wavelets come in, because the 
entropy, calculated by (3) and belonged to detail wavelet 
decomposition coefficients, can be used for that 
information. If we define distance between these vectors, 
then the distance between signals that are similar to each 
other will be relatively small. 
In general, for two vectors u and v in 80R , the distance 
would be defined by: 
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Where w1 and w2 are weights that can be chosen 
arbitrarily. 
Because there were 4 families, 4 membership grades for 
each of the 10 input entropy variables was used for 
inference as described below. In particular, for each fuzzy 
set, the fuzzy sigmoidal function was employed to 
construct the membership functions, with equation as 
follows: 
 

ση /)(1
1)(
−−+
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where µ  is the average showed by the signal and σ  the 
standard deviation. 
The process of aggregation was the operation by which 
multiple fuzzy sets were combined to produce a single 
fuzzy set. Thus, for a given input data set of a signal, the 
inference system was designed so that it could calculate 
degrees of certainty for the group family appurtenance of 
each signal by means of membership grades 
In objective function based clustering algorithms, each 
cluster is usually represented by a prototype, and the sum 
of distances from the feature points to the prototypes is 
used as the objective function. This method has been 
traditionally used to detect “compact” or “filled” clusters 
in feature spaces, whose prototypes are typically 
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represented by clusters centers and cluster covariance 
matrices. The Fuzzy C-Means (FCM) algorithm [16], [17] 
may be used to find clusters that resemble filled hyper 
spheres or filled hyper ellipsoids.  
Let { }NjxX j L1, == be a set of feature vectors in n-
dimensional feature space with coordinate-axis labels 

[ ]nxxx ,,, 21 L , where [ ]Tjnjjj xxxx ,,, 21 L= . Let 

( )CB ββ ,,1 L= represent a C-tuple of prototypes each of 

which characterizes one of the C clusters. Each iβ consist 

of a set of parameters. In the following, we use iβ to 

denote both cluster i and its prototype. Let iju represent the 

grade of membership feature point jx in cluster iβ . The 

CxN matrix [ ]ijuU =  is called a constrained fuzzy C-
partition matrix if it satisfies the following conditions: 
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The problem of fuzzily partitioning the feature vectors into 
C clusters can be formulated as the minimization of an 
objective function [18]: 
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In the above equation, [ )∞∈ ,1m  is a weighting exponent 
called the fuzzifier, and ),(2

ijxd β  represents the 

distance from a feature point jx  to the prototype iβ . 
Minimization of the objective function with respect to U 
subject to the constraints in (5) gives us [17]: 
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where ( ){ }0,,1, 2 =≤≤= jjj xdCiiI β . Minimization 

of );,( XUBF  with respect to B varies according to the 
choice of the prototypes and the distance measure. For 

example, in the FCM algorithm, the clusters are usually 
assumed to be compact and spherical in shape, and each of 
the prototypes is described by the cluster center ic . If the 
distance measure is Euclidean or an inner product norm 
metric, these centers may be updated in each iteration 
using [Bezdek, 1981]: 
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For each Group we set aside 10 of the original signal  as 
checking data. Since we did not use this data to create our 
model, it was a useful measure of how good our model 
was. 
The values concerning the features of the aforesaid set of 
signals were calculated with the same modalities applied 
to training set. 
Calculations were made using fuzzy logic Toolbox 
(MATLAB 5.3, The Math Works, Inc, Natick, Mass). 
 
4   Test-bed description 
Referring to Fig. 2, one accelerometer S1 [19], has been 
installed on the free extremity of the follower to monitor 
the acceleration of the follower motion. In addition, 
dynamic properties can be experimentally evaluated by 
using a dynamic torsion meter S2 [20], which has been 
installed on the actuator shaft of the motor. A signal 
conditioner and amplifier U2 has been used in order to 
provide suitable power supply to S2 and to reduce the 
noise in the measured signal. One tachymeter S3 [21] and 
one encoder S4, [22] have been installed also on the cam 
shaft. In particular, the encoder gives the possibility to 
monitor the angle of the cam shaft, whereas the 
tachymeter is used to monitor the angular velocity of the 
cam shaft. Three different power supply sources A1, A2 
and A3 have been used in order to provide different input 
voltage for the sensors S1, S3 and S4 and motor M.  
The cam follower system is mounted on a frame, which is 
fixed to the test-bed plate. The radius of the base circle of 
tested cam is equal to 40 mm. The diameter of the roller is 
24 mm. The roller follower moves horizontally along a 
fixed grooved shaft. The roller is maintained in contact 
with the profile of the cam by using a suitable spring. In 
addition, Lab View software [23], and AT-MIO-16F-5 
Acquisition Card [24], have been used to acquire and 
manipulate the data from the accelerometer.  
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Fig.2. A general scheme of test-bed 
 
5   Results 
Since our study is performed by applying the Discrete 
Wavelet Transformation, we concentrate our analysis on 
the point where the profile of the cam changes. 
The statistical results were significative and showed the 
existence of 16 clusters/groups (belonging to 4 families). 
The 82.5% of original grouped cases was correctly 
classified. In Tab. 1 are reported the tests performed on the 
group and their meaning. They could be classified as 
functional variables, in the sense that they influenced cam 
angular velocity, sense of rotation, tribological conditions 
and cam deviations. 
The eigenvalues, the percentage of explained variance and  
canonical correlations obtained for each of the canonical 
discriminant functions used in the analysis are shown in 
Tab. 2. 
As expected, not all the variables (i.e., 10 orthogonal 
entropies) employed were used for the best data 
classification for assigning each signal to the belonging 
group/family . 
It is evident the capability of discriminating when signals 
are processed by decomposing into several orthogonal 
spaces their intrinsic characteristics, in this case, their 
energetic contents. 
 
 

Family Group 
signals 

1 3, 4, 11, 12 
2 7, 8, 15, 16 
3 5, 6, 13, 14 
4 1, 2, 10, 11 
  

 
 

Group Characteristics 
 OF0 L0 V5- 

4 OF0 L0 V5+ 
11 OF0 L0 V6- 
12 OF0 L0 V6+ 

Group Characteristics 
7 OF0 L1 V5- 
8 OF0 L1 V5+ 

15 OF0 L1 V6- 
16 OF0 L1 V6+ 

Group Characteristics 
5 OF1 L0 V5- 
6 OF1 L0 V5+ 

13 OF1 L0 V6- 
14 OF1 L0 V6+ 

Group Characteristics 
1 OF1 L1 V5- 
2 OF1 L1 V5+ 
9 OF1 L1 V6- 

10 OF1 L1 V6+ 
 
Legend: OF0 = no off-centre; OF1 = presence off-centre. 
L0 =  no lubrication; L1 = presence of lubrication. 
V5+ = 60 rpm and clockwise  V5- = 60 rpm and 
anticlockwise.  
V6+ = 80 rpm and clockwise  V6- = 80 rpm and 
anticlockwise.  

Tab.1 Characteristics of tests performed by test bed 
 

Eigenvalues

19,609a 81,6 81,6 ,975
4,408a 18,4 100,0 ,903

Function
1
2

Eigenvalue % of Variance Cumulative %
Canonical
Correlation

First 2 canonical discriminant functions were used in the
analysis.

a. 

 
 
Tab. 2  Statistical values obtained for each of the canonical 
discriminant functions 
 
 
In the second part of this work a fuzzy analysis was 
applied to the data in order to improve the response  in 
terms of classification.  
In the Fig. 3 below is depicted, as example, a sigmoidal  
function employed to construct the membership functions. 
It is obtained for each family by using in (3) for µ  the 
average and  for σ  the standard deviation showed by the 
signal for each of 10 decomposition levels obtained by 
applying the wavelet transform. 
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Fig. 3  Sigmoidal membership function 

 
The function is symmetrical around µ , and σ  controls 
the steepness of the function.  
The results of clustering fuzzy process was very 
interesting: the 98% of groups were well classified as 
belonging to the provenience family. In particular, the 
group numbered as 11, belonging  to the family 1, was put  
between the families 1 and 4. The reason was a 
significative low electrical tension, occurred during the 
test, which reduced the rotation speed of cam. For that 
event the test created a new family with new features. 
Moreover, it has been also possible to individuate the 
angular velocity of cam as an important element of 
functional discrimination. 
The Fig. 4 shows the scatter-plot of all groups obtained by 
the application of fuzzy analysis. It is easy to see the 
existence of 4 well defined families, and for each of them 
the presence of 4 groups. 
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Fig. 4  A scatter-plot of all groups 

6   Conclusions 
A fuzzy clustering algorithm such as the Fuzzy C-Mans 
algorithm has been used  to find “compact” or “filled” 
clusters  
In the last ten years the notion of fuzzy classification is 
employed in statistics, but already various methods have 
been proposed for grouping a data set. A fuzzy 
classification of a data set consists in the subdivision of 
the initial data set into groups in order that each unit is 
assigned partially both to a group and more than one 
group. 
Therefore the main difference between classic and fuzzy 
classification consists in the fact that in the classic theory 
each unit is assigned for entire to a group, while in the 
fuzzy theory a function membership is assigned to each 
unit which measures how much the unit belongs to the 
group (or the groups) to which it is assigned; that value is 
in the range [0,1]. 
Because the fuzziness generates also an overlapping of the 
obtained groups, it could provide a more complex 
classification. Such a complexity, in part can easily be 
limited by means  the use of simple options during the 
selection of results, on the other hand it constitutes the real 
wealth of these methods that supply an amount of 
information more advanced with respect to the classical 
statistical methods. 
Moreover these algorithms concur to accept the real 
structure of the data by limiting to the minimum the 
forcing during the creation of the groups: probably an  ' 
imprecise' model (in the sense of fuzzy) of the reality is a 
better representation of it instead of a precise model (in 
the mathematical sense of term). 
This work demonstrates that a powerful discrimination 
level is obtainable by the orthogonal decomposition of 
signals with the application of DWT in conjunction with 
statistical and fuzzy analysis. It is more relevant if we 
consider that in such assessments the coo-presence of 
several stochastic factors can influence the performance 
and the response of experimental models. The proposed 
methodology can be used on a wide range of application 
such as during an analytical development of a mechanical 
system or as a standard maintenance procedure. 
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