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Abstract: - The selection  of features for classifying a pattern by means a fuzzy reasoning, is fundamental in order to obtain a 

reliable and significative response. The scope of this work is to compare three methods specialized for the extraction of features 

from images and, consequently, to study the ability of classification performed by applying a fuzzy inference system. The 

methods to be compared were: Fourier descriptors, Zernike moments and Wavelet coefficients. The best result, in terms of the 

best performances obtained both as classification reliability and computational time, was represented by the application of 

wavelet transform. 
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1   Introduction 
The feature extraction is a typical problem of Pattern 

Recognition (PR), in which the events to be classified  are 

represented by means of images where, in general, the 

information is distorted for the presence of noise [1]. 

Sometimes the information is extracted by performing 

algorithms of Image Analysis (IA) in the case of system based 

on the vision [2]. 

Generally,  the problem of PR consists of two sub-problems: 

 

• to provide an inner representation of input data 

(i.e., pattern);   

• to perform a decisional process as well as to 

assign the pattern to its belonging dominion. 

 

In this way, the first problem is to find the pattern, starting 

from the input data (e.g., image, data stream produced by 

sensors, etc.) and to produce an inner representation of the 

pattern as output.  

This inner representation (often a lot of features extracted 

from the input data), have to be classified into  belonging 

classes (if there exists).  

The problem of recognition, as said before, is faced by means 

of techniques of IA. 

The activity of interpretation and analysis of images is a 

complex operation indeed; in fact the image is simply like a 

table of gray values (i.e., the gray levels, represented as a 

matrix of pixel), with added disturbs, called noise, due to 

electrical instruments. 

Usually, the activity of interpreting an image is influenced by 

the typology of the image to be recognized, consequently the 

choice of algorithms, specifically designed, must take into 

account such a problem. 

The aim of this work is to compare three different methods 

for the calculation of the features to be submitted to a neural 

network for its training. 

The data set was composed of 270 images (i.e., 200 pins and 

70 nuts) of several dimensions and superficial characteristics 

(i.e., zinced and burnished), placed in various positions. The 

70% of original images, randomly selected, were used for the 

training set, while 30% for testing set. The images have been 

made by a digital camera with 3.2 million of pixel, without 

the use of flash and filter, with a dimension of 640x480 pixel. 

Calculations were made using Matlab 7.0, The MathWorks, 

Inc, Natick, Mass. 
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2   Image Analysis 
The scope of the Image Analysis is to execute quantitative 

measures on image in order to obtain a description and, 

starting from that description, to interpret its content [3]. 

In general, an image can be thought as a two-dimensional 

continuous function that associates to a scene its two-

dimensional representation. For instance, a monochromatic 

B/W photo can be associated to a function ( , )f x y ; the value 

assumed by the function in a point, represents the gray level 

of the image in that point. By means the technique of 

digitalization to each pixel is associated a value, that 

corresponds to the average value of gray in the corresponding 

area (i.e., quantization). 

The aim of PR is to represent a digitalized image by a finite 

set of features extracted from the same image. 

A feature, as said before, could be an object of high level: a 

geometrical descriptor of a region of the image or a 

geometrical object in 3D.  The features can be represented as 

continuous, discrete or binary functions. 

However it must notice:  

 

• the process of feature extraction requires time 

consuming for the calculation;   

• the extracted features could contain errors, due to 

noise or an erroneous application of algorithms. 

 

The process of selection of features is one of the key 

problems for every system dedicated to the pattern 

recognition and it consists to decide which features to use, 

among all those available ones, for a specific problem. 

It is important, for a reliable solution of such systems, to 

choose (and therefore to extract) features such that they: 

   

• are important for the problem; 

• are computing realizable;  

• give the minimum number of misclassifications;  

• reduce the problem to a minimum number of data 

without loss of information. 

Sometimes a mathematical approach can help us to choose the 

most appropriate features, in other cases it could be more 

useful to perform some simulations. However, many times the 

choice is based on  the experience. 

 As the features are grouped in array of n dimensions the 

space, in which the problem is involved, is represented by 
nR . 

The key point of IA is the automatic recognition of an object 

in a scene, independently from its position, dimension and 

direction. Learning Vector Quantisation (LVQ) is a 

supervised version of vector quantisation, similar to Self-

Organizing Maps (SOM) based on work of [4], [5] and[6] for 

a comprehensive overview). It can be applied to pattern 

recognition, multi-class classification and data compression 

tasks, e.g. speech recognition, image processing or customer 

classification. As supervised method, LVQ uses known target 

output classifications for each input pattern of the form . The 

main idea is to cover the input space of samples with 

‘codebook vectors’ (CVs), each representing a region labelled 

with a class. A CV can be seen as a prototype of a class 

member, localized in the centre of a class or decision region 

(‘Voronoї cell’) in the input space. As a result, the space is 

partitioned by a ‘Voronoї net’ of hyperplanes perpendicular to 

the linking line of two CVs (mid-planes of the lines forming 

the ‘Delaunay net’. A class can be represented by an 

arbitrarily number of CVs, but one CV represents one class 

only. In terms of neural networks a LVQ is a feed-forward net 

with one hidden layer of neurons, fully connected with the 

input layer. A CV can be seen as a hidden neuron (‘Kohonen 

neuron’) or a weight vector of the weights between all input 

neurons and the regarded Kohonen neuron respectively  

 

 

3   Mathematical background 
 

 

3.1 Zernike moments 
The moments and functions of moments have been used in 

order to obtain features in numerous PR applications applied 

to two-dimensional images [7]. Since 1961 the moment 

invariants were introduced by using a linear combination of 

regular moments [8]. These not linear functions have the 

property of being invariant for translation, rotation and scale. 

Since such features capture total information on the image, 

than they have to be applied to the entire image. 

Let be ( , )f x y  a continuous intensity function of the image in 

a point ( , )x y ;  the regular moments pqm  of order ( )p q+  are 

defined as [7]: 

  

( , )p q

pqm x y f x y dxdy

∞ ∞

−∞ −∞

= ∫ ∫    (1) 

 

where 
{ }, 0,1, 2, ,p q = ∞K

. 

In order to make the moments invariant to translation, central 

moments are defined as follows: 

 

( ) ( ) ( , )p q

pq x x y y f x y dxdyµ
∞ ∞

−∞ −∞

= − −∫ ∫  (2) 

 

where  
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( )10 01

00 00

, , , 0,1,2, ,
m m

x y p q
m m

= = = ∞K

. 

 

The point ( , )x y , calculated with (1), is the centroid of the 

image. By means of linear combination of moments several 

not linear functions can be derived, invariant for translation, 

scale and rotation [9]. The central moments normalized 

become invariant for scale [8], [9]: 

  

00

, 1
1

pq

pq

p q
γ

µ
η γ

µ
+

= = +
 

 

where { }3,4,5, ,p q+ = ∞K . 

  

A non linear set of functions, invariant for rotation, translation 

and scale, are the following [8]: 

 

( )
( ) ( )
( ) ( )

1 20 02

2
2

2 20 02 11

2 2

3 30 12 21 03

2 2

4 30 12 21 03

4

3 3

ζ η η

ζ η η η

ζ η η η η

ζ η η η η

= +

= − +

= − + −

= − + +

 . 

 

In many applications, in order to avoid the overflow, the 

logarithm is assumed: ( ){ }log , 1, ,4
i

iζ = K . 

On the base of Jain Theorem [3] the moments 

{ }, 0,1, ,pqm p q = ∞K show  the property to represent 

uniquely the image. 

Teague [10] suggested the use of orthogonal moments, based 

on the theory of orthogonal polynomials in order to eliminate 

the problem associated with regular moments, which show a 

redundancy due to the fact that the basis 
p qx y is not 

orthogonal.  He introduced the Zernike Moments as: 

 

( ) ( )
2 1

0 0

1
, cos , sinnm nm

n
Z V r f r r rdrd

π

θ θ θ θ
π
+

 = ∗ ∫ ∫
 

   

where  

 

 
2 2 1, tan , 1 , 1

y
r x y x y

x
θ −  = + = − < < 

 
 , 

with ,m n  integer values;  

 

 
0 , , 0m n n m even n≤ ≤ − = >

. 

 

3.2 Fourier descriptors 
In the other side, the Fourier descriptors [3], are applied 

exclusively to the contour of the object to be recognized; it 

makes more sensitive to the noise and the perturbations 

showed by the contour. Based on a Fourier analysis technique 

applied to the boundary coordinates of an object expressed as 

complex numbers, Fourier descriptors are widely used in 

image processing to describe and classify shapes. The shape 

descriptors generated from the Fourier coefficients 

numerically describe shapes and can be normalised to make 

them independent of translation, scale and rotation. 

Classification is performed by comparing descriptors of the 

unknown object with those of a set of standard shapes, finding 

the closest match [11]. [12] introduced Fourier descriptors 

using complex representation in 1972. This method ensures 

that a closed curve will correspond to any set of descriptors. 

The shape is described by a set of N  vertices 

{ }( ) : 1, ,z i i N= K  corresponding to N  points of the outline. 

The Fourier descriptors { }( ) : / 2 1, ,c k k N N= − + K  are the 

coefficients of the Fourier transform of  z :  
   

 
2

1
2

exp 2

N

i k
N

k

ki
z c j

N
π

=− +

 =  
 

∑  

The inverse relationship exists between ( )c k  and ( )z i :  

   

1

1
exp 2

N

k i

i

ik
c z j

N N
π

=

 = − 
 

∑  

 

The range of k can be restricted to { }72 1, / 2N N− + : 

according to Shannon’s theorem, the highest frequency is 

obtained for / 2k N= , and any ( )c k  with k  greater than 

/ 2N  would be redundant since we use a discrete 

representation of the outline.  

 

 

3.3 Continuous Wavelet Transform 
The wavelets used in this paper are those proposed by [12] 

She constructed a series of mother wavelets (indexed by N 

and denoted by dbN) with each mother in the series having 

regularity proportional to N [14]. Each Daubechies' wavelet 

are compactly supported in the time domain. Typically 

wavelets of class mr are specifically constructed so that some 

properties are verified [15]. 
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A mother wavelet ψ is a function of zero h-th moment:   

 

( ) 0
h

x x dxψ
+∞

−∞

=∫ ,     h ∈ N. 

 

From this definition, it follows that, if ψ is a wavelet whose 

all moments are zero, also the function ψjk is a wavelet, where 

 

)2(2)( 2/ kxx jj

jk −= ψψ . 

 

In fact, we have 

=−∫
+∞

∞−

dxkxx jhj )2(2 2/ ψ
 

∫
+∞

∞−

=






 +
= dyy

ky
h

jj

j )(
22

1
2 2/ ψ  

( )∫
+∞

∞−
+

=+= dyyky
h

hj

j

)(
2

2
)1(

2/

ψ  

 

.0)(
2

2

0
)1(

2/

∑ ∫
=

+∞

∞−

−
+

=







=

h

m

mmh

hj

j

dyyyk
m

h
ψ  

 

Moreover, consider a wavelet ψ and a function φ such that  

{{
0j kϕ }, {ψjk}, k ∈ Z, j = 0, , 2,…} is a complete 

orthonormal system. By Parseval theorem, for every f∈ L
2
(R), 

it follows that 

 
1

0 0

0

( ) ( ) ( )
j

j k j k jk jk

k j j k

f t a t d tϕ ψ
=

= +∑ ∑∑
. 

 

The decomposition of a function ( )f t  by wavelet (i.e., the 

CWT) is represented by the following detail function  

coefficients: 

 

∫
+∞

∞−








 −
⋅= τ

τ
ψτ d

k
sd

jj
jk

22

1
)(  

 

and by the approximating scaling coefficients 

 

( )∫
+∞

∞−

−⋅= ττψτ dksa kj )(
0

 

Note that djk can be regarded, for any j, as a function of k. 

Consequently, it is constant if the function ( )f t  is a smooth 

function, having considered that a wavelet has zero moments. 

To show the above mentioned property, it is sufficient to 

expand the function in Taylor series. 

An example of wavelets is given by Daubechies’ family 

{dbN, N = 1, 2, …} [16]). It is 

 

supp φ ⊆ [0, 2N − 1] ,  supp ψ ⊆ [0, 2N − 1] 
 

and 

 

( ) 0hx x dxψ
+∞

−∞

=∫ ,     h = 0, 1,…, N − 1. 

 

Moreover, there is the following smoothness property: for any 

N > 2, the D2N wavelets verify 

 

φ, ψ ∈ HλN,    0.1936 ≤ λ ≤ 0.2075, 
 

where HλN is the Hölder smoothness class with parameter λ. 

 

3.3.1   Two-dimensional Wavelets 

Let us consider a two dimensional function ( , )f x y which are 

square integrable over the real plane: 2 2( , ) ( )f x y L R∈ . A 

wavelet basis for 2 ( )L R  is to take the simple product of one-

dimensional wavelet: 

 

)()(=),(Ψ
22112121

yψxψyx kjkjkkjj . 

 

It is easy to show that Ψ ’s as defined above are indeed 

wavelets and that they form an orthonormal basis for 2 ( )L R . 

It can been show that the “detail space” jW is itself made up 

of three orthogonal subspaces as follows: 

 

).()(),(

);()(),(

);()(),(

3

2

1

yxyx

yxyx

yxyx

ψψ

ϕψ

ψϕ

=Ψ

=Ψ

=Ψ

 
 

Mallat [16] notes that the three sets of wavelets correspond to 

specific spatial orientations: the wavelet 1Ψ  corresponds to 

the horizontal direction, the wavelet 2Ψ  with the vertical 

direction and 3Ψ with the diagonal.  

 

4   Results 
The hardware used for the study was not particularly 

expensive or specialized for the image analysis. For every 

image of training set the features were calculated by applying 

the methods exposed in the previous paragraph. For giving a 
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total appraisal on the reliability of recognition, several testing 

sessions have been executed; the following parameters were  

estimated: 

• recognition factor, denoted with ρ , estimates the 

efficiency of the recognizer, calculated as:  # objects correctly 

recognized/# objects analyzed; 

• computational time: expressed in seconds, the 

time occurring for the identification of the object; 

• memory occupation; 

• number of features necessary for a complete 

inner representation of the pattern, indicated as Ftot. 

Since the first three parameters are depending from Ftot, it is 

important to investigate mainly on Ftot  and to express the 

results of the parameters that we want to estimate by means 

this value. 

An example of grouped objects is shown in the Fig.1. Note 

that the background was black, the objects were randomly 

positioned while their surface was zinced or burnished.  

 

 
 

Fig.1  An example of  grouped pins and nuts 

 

The methods were tested in several conditions: number of 

neurons and learning rate of LVQ; the responses are reported 

in the Fig.2 and 3 respectively. The total percentage of 

recognition for each method is reported in Fig.4. 
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Fig.2 Percentage of recognition for various neurons 
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Fig.3  Percentage of recognition for various learning rate (10 

neurons) 

 

70.00

75.00

80.00

85.00

90.00

95.00

100.00

Methods of recognition

%

Fourier

Zernike

Wavelet

 
Fig.4  Test Set ( 0.1α = ): percentage of recognition  

 

The results presented, were obtained by using a vector 

composed of 10 features.   

In the Tab. 1 below, are compared the computational time 

occurred for the identification of 30 objects, disposed in 

several positions, belonging to the Training Set, with 

reference to the applied method.  

 

Method Computational  

time (s) 

Fourier descriptors 72 

Zernike moments 108 

Wavelet coefficients 215 

 

Tab. 1 Comparison of computational time 

 

5   Conclusions 

A comparative study (both analytical and experimental) on 

the recognition rate for different extraction methods was 

performed. The comparison of three methods for detecting the 

pattern of several objects, showed the reliability and the 

robustness of wavelet coefficients in order to the pattern 

recognition. The wavelet application seems to represent the 
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best compromise among the factors indicating the 

performance of a complete system of  Image Analysis. The 

results reached, compared with the ones obtained by means of 

other methods, demonstrates the validity of this choice. Since 

the training session is fast and easy, the neural networks are 

ideal in order to solve problems of pattern recognition. At this 

stage of the study we considered not important to choose a 

batter neural network, in fact, in particular it should be more 

stimulating and interesting to study, in the future, the problem 

of pattern recognition in the case of imprecise or noised 

images in conjunction with the wavelet transform. The 

response, in terms of percentage of recognition, was also 

experimentally studied for several learning rates and number 

of neurons of LVQ. An application of the proposed net for 

object extraction based on noisy scenes is also tested. The 

recognition rate is quite stable if compared with various 

learning rate and number of neurons employed in the LVQ. 

Probably this is due to the fact that the noise was not added to 

the scenes. A complete investigation will be need in order to 

take into account higher dimensional feature space in 

presence of noised images. 
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