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Abstract: - In this paper, we describe a fault-tolerant model for reasoning using forward chaining for predicate 
logic rules and facts with coarse-coded distributed representations of instantiated predicates in a connectionist 
frame work. Distributed representations are known to give advantages of fault tolerance and graceful 
degradation of performance under noise conditions. The system supports usage of complex rules which 
involve multiple conjunctions and disjunctions. The system solves the variable binding problem in a novel 
way using coarse-coded distributed representations of instantiated predicates without the need to decode them 
into localist representations. System’s performance with regard to its ability to exhibit fault tolerance under 
noise conditions is studied. The system offers better results of fault tolerance under noise conditions as 
compared to a connectionist reasoning system which uses localist representations. It has also exhibited better 
fault tolerance as compared to a Hopfield net for error correcting tasks of same magnitude. 
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1   Introduction 
     Traditionally reasoning systems using predicate 
logic have been implemented using symbolic 
methods of artificial intelligence. Connectionist 
methods of implementation of reasoning systems 
describe an alternative paradigm. Among the 
connectionist systems they use two types of 
representational schemes. They are 1) localist and 2) 
distributed representational schemes.    
     Localist representational schemes represent each 
concept with an individual unit or neuron. In the 
distributed representational schemes each unit or 
neuron is used in representation of multiple concepts 
and multiple units or neurons are used to represent a 
single concept. In the literature, some localist 
methods for reasoning using connectionist networks 
have been described. The connectionist inference 
system SHRUTI [1], [2], [3] described a localist 
method where temporal synchrony was used to 
create bindings between variables and entities they 

represent. A variable x of the predicate give(x, y, z) 
is getting bound to an entity d if the nodes 
representing them fire during the same phase of time 
p1 during the predicate p activation period T. The 
time period T is divided into three phases p1, p2 and 
p3 during which synchronous firing of variable x, y 
and z and entity nodes they bound respectively takes 
place. This method has used temporal synchrony as 
a mechanism to establish variable binding.   
CONSYDERR [4] described a localist method for 
variable binding and forward reasoning. It uses an 
assembly or a set of interconnected nodes to 
represent each predicate p(x1…..xk). Each assembly 
contains one C node for storing the confidence value 
of the predicate p and k X nodes to store the binding 
values for k variables of the predicate p. A separate 
node is allocated for each variable of a predicate. 
Each such node stores a value representing a 
particular object being bound with that variable. 
Different objects being bound to a variable will be 

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp272-277)



given separate values. Since, these systems use 
localist representations, advantages of distributed 
representations [5] are not obtainable by them and 
hence the motivation for a distributed representation 
based reasoning system. It is investigated here in 
this work as to what advantages are obtained by a 
distributed representation based reasoning system 
over their localist counter parts. Further we deal 
with the issue of how variable binding may be 
accomplished in such a connectionist environment 
which uses distributed representations of its 
instantiated predicates.  
 
 
2   Rule and Fact Base 
Our system represents and reasons with predicate 
logic rules and facts. Following are rules and facts 
we use. 

1. give(x, y, z) ��  own(y, z); 
2. buy(x,y) —> own(x,y); 

3. own(y, z) ��  donate(y, z); 

4. own(y,z)��wantstobuy(w,z)�

(hasrequiredmoney(w, m)��

hasgoodcreditrating(w)) ��  cansell(y,w,z); 
5. give(John,Mary,Book-1); 
6. give(John,Chris,Book-2); 
7. wantstobuy(Walter,Book-2); 
8. hasrequiredmoney(Walter,Money); 
9. hasgoodcreditrating(Walter); 
Our system uses the above rule base and makes 
inferences shown below. 
1. own(Mary,Book-1); 
2. donate(Mary,Book-1); 
3. own(Chris,Book-2);  
4. cansell(Chris,Walter,Book-2); 
Our task is to start with the above knowledge base 
and obtain the results of inferencing correctly by our 
reasoning system. In this paper we see how to 
accomplish the forward reasoning for predicate 
calculus facts and rules using neural networks which 
operate on coarse coded distributed representations. 
We start with above database consisting of predicate 
logic facts and rules.  Each fact of predicate pi is 
represented by a vector vij.The vector vij is a k 
dimensional vector which stores the coarse coded 
representation of a predicate fact. The different 
instantiations of predicate pi are each represented by 
separate vector vij where j varies from 1 to m. Thus 
the set of instantiated predicates of pi are represented 
by a subset of vector space Rk. The value of i 
depends on the number of predicates in the rule 
base. We then design suitable connectionist frame 

work for doing reasoning with forward chaining for 
the rule and fact base using these vectors.  
 
 
3   Forward Reasoning using 
Connectionist System  
We describe here how forward reasoning using 
localist representations [6], [7] are made using a 
connectionist system. Let us consider the rule 
1:give(x,y,z)—>  own(y,z) from the knowledge base. 
We define how localist representations be made for 
the values getting bound to the variables x, y and z 
and how the localist connectionist system makes 
inference from the rule. We assign values to each 
variable on the left hand side of a rule. A value is 
allocated to a specific variable and it will represent a 
particular object getting bound to that variable. We 
assign binary string which is the localist 
representation of object getting bound to that 
variable. Suppose, we have three different objects 
for possible binding to variable x. We encode them 
by the localist patterns 001, 010, 100 respectively. 
Other variables y and z also get similar localist 
patterns for being assigned to them. We need a 
pattern code for distinguishing among predicates. 
We assign an n bit binary code to distinguish among 
n predicates. If n = 4 say then our binary pattern will 
be 0001 to designate the predicate under 
consideration give. Then we choose pattern 0010 to 
represent predicate own. We also need a truth value 
allocated for a predicate. We assign a single bit 
which could be 1 or 0 denoting predicate fact being 
true or false respectively. Then the localist pattern 
for the LHS of our rule can be written as: 0001  001  
001  001  1. 
     The first 4 bit value denotes the predicate give, 
the next 3 bit value denotes an object getting bound 
to variable x and the next 3 bit value denotes an 
object getting bound to variable y and so on. The last 
bit indicates the truth value of predicate give. 
We assigned values ‘001’, ’001’ and ‘001’ to 
variables x, y and z respectively. These values 
represent objects which are getting bound to these 
variables, say, John, Mary and Book-17. We have 
instantiated thereby the variables x, y and z of the 
LHS of the rule 1. 
     This will activate rule 1 and make variables on 
the right hand side of the rule ‘y’ and ‘z’ be assigned 
the values ‘001’ and ‘001’ representing the objects 
Mary and Book-1 respectively. This asserts the right 
hand side of the rule 1, which is own(Mary, Book-
1).  
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Because of the rule activation the localist pattern 
representation for RHS will be after the rule firing 
0010 001 001 1. 
When a number of such rules are cascaded we 
continue the process of forward chaining to do the 
forward reasoning. When RHS of rule 1 is asserted 
it activates rule 3 and part of rule 4. Rule 3 gets 
activated and fires and own of rule 4 gets activated 
and provided other parts wantstobuy and 
hasrequiredmoney or hasgoodcreditrating of  rule 4 
also get activated then rule 4 fires. 

3. own(y, z) ��  donate(y, z); 

4. own(y,z)��wantstobuy(w,z)�

(hasrequiredmoney(w, m)��

hasgoodcreditrating(w)) ��  cansell(y,w,z); 
 The binding information is similarly passed on in 
these rules for the variables. This way forward 
reasoning is accomplished using localist 
representations. In Table 1 and 2 below we show 
samples of localist vectors for some of the 
predicates in the rule base. 
   
Table 1. Shows a sample of localist tuples used by 
predicate give 
 

S.No of  Tuple 215 

Predicate ‘id’ code 00001000000 

Localist Value of  x 0000100000 
Localist Value of   
y 0000100000 

Localist Value of   
z 

0000010000 

Truth  Value of 
Predicate 

00001 

 
Table 2. Shows a sample of localist tuples used by 
predicate Cansell 
 

S.No of  Tuple 46 

Predicate ‘id’ code 00000001000 

Localist Value of  y 0000000010 
Localist Value of   
w 

0000100000 

Localist Value of  z  0000010000 
Truth  Value of 
Predicate 

00001 

 
 
3.1 Obtaining Coarse-coded Distributed 
Representations from Localist 
Representations 
Consider the following tuple from the localist 
representation table of predicate give(x, y, z),  

‘00001000000  0000000001  0000000010  
0000000010  00001’. 
     We view the above vector as being kept in 
overlapping coarse zones of length of 4 consecutive 
bits and encode the zone as 1 if there is at least one 1 
bit in that zone or else as 0. We then consider next 
coarse zone and encode it as 1 or 0 following the 
above method. We do this process  left to right 
starting from the left most bit. We do this encoding 
process for above localist tuple to get the following 
coarse-coded tuple 
‘ 01111000000   0000001111  0000011110   
0000011110   01111’. 
Coarse-coding can be applied when the number of 
1’s in the original string is sufficiently sparse. If the 
number of 1’s in the original string is not 
sufficiently sparse then coarse-coded string when 
decoded will not yield the original string. This is the 
reason we have chosen a 5 bit string to denote the 
truth value of predicate( in which first 4 bits were 
kept as zeros). The reason the coarse-coding could 
be applied successfully to our reasoning problem is 
that localist representations of  instantiated 
predicates were sufficiently sparse with regard to 
distribution of 1’s.  Coarse-coding increases the 
information capacity [5] by  increasing the number 
of units active at a time compared to localist codes 
which have sparsely populated 1’s. The amount of 
information conveyed  by a unit that has a 
probability p of being ‘1’ is   

– plog (p) – (1 – p) log(1 – p).  
We obtain the coarse-coded representations of tuples 
for all the  predicates in the rule base using the 
above described method. We show here a sample of 
coarse-coded representations of the tuples for 
predicates give and cansell in the rule base.  
 
Table 3. Shows a sample of Coarse-code 
Representation of data tuples used by predicate give 
 

S.No of  Tuple 215 

Predicate ‘id’ code 01111000000 

Value of  x 0111100000 

Value of  y 0111100000 

Value of  z 0011110000 
Truth  Value of 
Predicate 01111 
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Table 4. Shows a sample of Coarse-code 
Representation of Data Tuples used by predicate 
cansell 
 

S.No of  Tuple 46 

Predicate ‘id’ code 00001111000 

Value of  x 0000011110 

Value of  y 0111100000 

Value of  z 0011110000 
Truth  Value of 
Predicate 

01111 

 
3.2 Organization of Neural Networks in the 
Connectionist Reasoning System 
   The neural networks accomplish the forward 
reasoning using the coarse-coded tuples. They 
generate inferences by firing rules from the rule 
base. Consider the   neural networks shown in figure 
1. When impressed on its inputs with one of the 
vectors vg  from the predicate table give the network 
1 generates on its outputs a vector vo from the 
predicate table own. This way the rule   give(x,y,z) 

�� own(y,z) was processed. This in turn  impresses 
on the inputs of network 2  to generate a vector vd  
on its outputs. This processed the rule own(y,z)��� 
donate (y,z).   These vectors are in coarse-coded 
form and denote a predicate fact. So we see the rules 
1 and 2 are getting activated in a forward chaining 
fashion .   
 

 
Fig. 1. Neural Networks for processing rules 1 and 2 
 
     Similarly impressing a vector vb on the inputs of  
network 3 generates  vector vo on its outputs and this 
in turn  gets impressed on inputs of network 4  
generating on its outputs vector  vd from the 
predicate table donate. This way the rules  buy (y,z) 

�� own (y,z)  and own (y,z)���donate (y,z)  get 
processed in a forward chaining fashion generating 
new inferences . The networks 3 and 4 are shown in 
figure 2 accomplishing this activity. 
 

 
Fig. 2. Neural Networks for processing rules 3 and 4 
 
3.3 Variable Binding during processing of the 
Complex Rule  
     Consider  the following complex rule which 
involves multiple conjunctions and a disjunction.  

 own(y,z)��wantstobuy(w,z)��

(hasrequiredmoney(w,m)�� hasgoodcreditrating(w)) 

��  cansell(y,w,z) 
   This rule is processed by the connectionist 
architecture shown in figure 3. We use the  vectors 
vo,vw, vh and vg from the predicate tables own, 
wantstobuy, hasrequiredmoney and 
hasgoodcreditrating respectively. Though these are 
coarse-coded tuples their  structure has the format of 
predicate code p, value of variable 1, value of 
variable 2,….value of variable n and predicate truth 
value T / F. These constituents are distinguishable  
and hence they can be used directly. These 
constituents are in coarse- coded form. We use these 
constituents to implement the complex rule under 
consideration. Component z is taken from both vo 
and vw  and given as inputs to network 5.  
 

Fig. 3. Neural Networks for processing rule 3 
 
     This network generates truth value T or F 
depending on whether the values of variable z given 
to it are equal or unequal respectively. Similarly 
component w is taken both from vectors, vw and vh 
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and given as inputs to network 6. This network 
generates truth value of T or F depending upon 
whether the values of variable w given to it are equal 
or unequal. Similarly component w is taken both 
from vectors, vw and vg and given as inputs to 
network 7. This network generates truth value of T 
or F depending upon whether the values of variable 
w given as inputs to it are equal or unequal. These 
truth values from outputs of network 6 and network 
7 are given as inputs of network 8 which  outputs T  
if either or both (inclusive or) of the truth values on 
its inputs are true else outputs F. The truth values 
from outputs of network 5 and network 8  are given 
as inputs to network 9 which  outputs T if both of 
the truth values on its inputs are true else outputs F. 
The predicate code components of the vectors vo, vw, 
vh and vg are given as inputs to neural network 10 
which outputs predicate code p for cansell. The 
values of y, w and z  are passed on to the output lines  
as shown in figure 3 from the vectors vo, vw and vo 
respectively. If network 9 output is ‘T’ the values of  
y, w and z  are accepted as belonging to vector  vc of  
the predicate table of cansell. Using this method we 
had processed a complex rule. The variable binding 
problem has been solved as described above while 
processing the above complex rule which is 
involving multiple conjunctions and a disjunction. 
The disjunction was meaning an inclusive OR 
operation. Our task was to check whether the 
variable w belonging to  vw and either or both of vh 
and  vg are binding to same value. We had 
accomplished these with networks 6, 7 and 8 
respectively. Similarly, we had to check whether 
variable z belonging to vo and  vw are bound to same 
value. We had accomplished this with network 5. 
     We have solved the variable binding problem 
faced while implementing multiple conjunctions and 
a disjunction in a complex rule using coarse-coded 
representations without the need to decode them 
into localist representations. We have accomplished 
the variable binding  task here using a divide and 
conquer strategy  and distributed the total task to a 
set of neural networks which together accomplished 
the same. This approach enables us to perform easily 
variable binding in more complex rules which 
involve more number of conjunctions and 
disjunctions in them. 
 
 
4 Testing 
Following are the details of neural networks used to 
do the above mentioned work. The neural networks 
in table 5 are feed forward neural networks using 
back-propagation algorithm. 

 
Table 5. Shows the details of neural networks used 

 
Network No. of 

input units 
No.of 
hidden 
units 

No.of 
output 
units 

1 46 40 36 

2 36 25 36 

3 36 25 36 

4 36 25 36 

5 20 10 5 

6 20 10 5 

7 20 10 5 

8 10 7 5 

9 10 7 5 

10 44 22 11 

11 66 56 52 

12 52 35 52 

 
The reasoning task was successfully accomplished 
to give the expected results. 
  

Table 6. Shows the details of tests 1 and 2 
 

 No. of 
Training 
Patterns 

No. of 
Test 
Patterns 

No. of 
Patterns 
Corrected 

No. of 
Patterns 
not 
Corrected 

216 108 60 48 Localist 
reasoning 
system 750 300 207 93 

216 108 89 19 
Coarse-
coded 
reasoning 
system 750 300 274 26 

 
     Secondly, the performance of the above coarse-
coded reasoning system was compared for error 
tolerance under noise conditions with a localist 
representation based reasoning system (which was 
having identical number of input, hidden and output 
units for its neural networks). In the test 1, neural 
network 1 with 46 input units, 40 hidden units and 
36 output units  was trained with 216 patterns. 108 
of these training patterns were made test patterns 
after introducing 1 bit error at a random location in 
each of these patterns. In the test 2,  neural network 
11 (implementing rule 1 for larger data) with 66 
input units, 56 hidden units and 52 output units  was 
trained with 750 patterns. 300 of  these training 
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patterns were made test patterns after introducing 1 
bit error at a random location in each pattern. 
Results are as shown in table 6. The coarse-coded 
reasoning system was found to be much more fault 
tolerant to errors compared to localist reasoning 
system as was indicated by tests performed. 
   In tests 3 to 6, the performance of Coarse-coaded 
reasoning system was compared with that of  a 
Hopfield net for error correction tasks of same 
magnitude. In the tests 3 to 6, neural network 12 
having 52 input units, 35 hidden units and 52 output 
units was used. It implements auto-association of 
predicate donate with itself. It was trained with 250 
coarse-coded patterns for auto-association of each 
pattern with itself. Some of the patterns were drawn 
from training set and converted to test patterns after 
introducing a 1bit error in each pattern at a random 
location to form the test set. These artificially 
introduced errors were simulating noise conditions. 
For each test pattern vts in the test set there is a 
corresponding pattern vtr in the training set. Network 
12 was tested for its ability to generate the correct 
pattern vtr on its outputs given the corresponding 
test pattern vts (with a single bit error) on its inputs. 
Results are as shown in table 7. For each of the tests 
conducted Hopfield net was designed to store all the 
patterns drawn from the training set which were 
used to obtain test patterns. Results of the tests 
indicate that the coarse-coded reasoning system 
exhibits better fault-tolerance than the Hopfield net 
for generating the correct pattern vtr on its outputs 
given a test pattern vts on its inputs. 
 

Table 7. Shows the details of tests 3, 4, 5 and 6 
 

Test 
No. 

 No.of 
test 
patterns 

No. of correct  
   patterns 
generated 

   
  3 

Coarse-coded 
reasoning 
System 

 
100 

 
   78 

  3 Hopfield net 100    64 
  
  4 

Coarse-coded Coded 
reasoning 
System  

 
150 

 
 117 

  4 Hopfield net 150  101 
   
  5 

Coarse-coded Coded 
reasoning 
System  

 
200 

 
 155 

  5 Hopfield net 200  114 
   
  6 

Coarse-coded Coded 
reasoning 
System  

 
225 

 
 172 

  6 Hopfield net 225  129 

 
 
 

5   Conclusion 
We have tested a connectionist forward chaining 
reasoning system using distributed coarse-coded 
representations on a given reasoning task. The 
system has successfully performed the given 
reasoning task. The coarse-coded reasoning system 
exhibited better fault tolerance over the localist 
reasoning system. The Coarse-coded reasoning 
system was found to be more fault-tolerant than a 
Hopfield net for the given error correcting tasks of 
the same magnitude. We have solved the variable 
binding problem faced in a novel way while 
implementing multiple conjunctions and a 
disjunction in a complex rule, using coarse-coded 
representations without the need to decode them into 
localist representations. 
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