
A fault tolerant Connectionist Model for Predicate Logic
Reasoning, Variable Binding: Using Coarse-coded

Distributed Representations
SRIRAM.G. SANJEEVI, Dr. PUSHPAK BHATTACHARYA

Sriram. G. Sanjeevi, Asst.Professor,
Dept. of Comp. Science & Engg.,

N.I.T. Warangal, Warangal 506004
INDIA

91-0870-2430440
Dr. Pushpak Bhattacharya, Professor,

 Dept. of Comp. Science & Engg.,
 I.I.T. Bombay, Mumbai 400076

INDIA
 91-22-5767718

Abstract: - In this paper, we describe a fault-tolerant model for reasoning using forward chaining for predicate
logic rules and facts with coarse-coded distributed representations of instantiated predicates in a connectionist
frame work. Distributed representations are known to give advantages of fault tolerance and graceful
degradation of performance under noise conditions. The system supports usage of complex rules which
involve multiple conjunctions and disjunctions. The system solves the variable binding problem in a novel
way using coarse-coded distributed representations of instantiated predicates without the need to decode them
into localist representations. System’s performance with regard to its ability to exhibit fault tolerance under
noise conditions is studied. The system offers better results of fault tolerance under noise conditions as
compared to a connectionist reasoning system which uses localist representations. It has also exhibited better
fault tolerance as compared to a Hopfield net for error correcting tasks of same magnitude.

Key-Words: - Coarse-coding, Predicate, Connectionist, Reasoning, Fault tolerance, Variable binding.

1 Introduction
 Traditionally reasoning systems using predicate
logic have been implemented using symbolic
methods of artificial intelligence. Connectionist
methods of implementation of reasoning systems
describe an alternative paradigm. Among the
connectionist systems they use two types of
representational schemes. They are 1) localist and 2)
distributed representational schemes.
 Localist representational schemes represent each
concept with an individual unit or neuron. In the
distributed representational schemes each unit or
neuron is used in representation of multiple concepts
and multiple units or neurons are used to represent a
single concept. In the literature, some localist
methods for reasoning using connectionist networks
have been described. The connectionist inference
system SHRUTI [1], [2], [3] described a localist
method where temporal synchrony was used to
create bindings between variables and entities they

represent. A variable x of the predicate give(x, y, z)
is getting bound to an entity d if the nodes
representing them fire during the same phase of time
p1 during the predicate p activation period T. The
time period T is divided into three phases p1, p2 and
p3 during which synchronous firing of variable x, y
and z and entity nodes they bound respectively takes
place. This method has used temporal synchrony as
a mechanism to establish variable binding.
CONSYDERR [4] described a localist method for
variable binding and forward reasoning. It uses an
assembly or a set of interconnected nodes to
represent each predicate p(x1…..xk). Each assembly
contains one C node for storing the confidence value
of the predicate p and k X nodes to store the binding
values for k variables of the predicate p. A separate
node is allocated for each variable of a predicate.
Each such node stores a value representing a
particular object being bound with that variable.
Different objects being bound to a variable will be

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp272-277)

given separate values. Since, these systems use
localist representations, advantages of distributed
representations [5] are not obtainable by them and
hence the motivation for a distributed representation
based reasoning system. It is investigated here in
this work as to what advantages are obtained by a
distributed representation based reasoning system
over their localist counter parts. Further we deal
with the issue of how variable binding may be
accomplished in such a connectionist environment
which uses distributed representations of its
instantiated predicates.

2 Rule and Fact Base
Our system represents and reasons with predicate
logic rules and facts. Following are rules and facts
we use.

1. give(x, y, z) �� own(y, z);
2. buy(x,y) —> own(x,y);

3. own(y, z) �� donate(y, z);

4. own(y,z)��wantstobuy(w,z)�

(hasrequiredmoney(w, m)��

hasgoodcreditrating(w)) �� cansell(y,w,z);
5. give(John,Mary,Book-1);
6. give(John,Chris,Book-2);
7. wantstobuy(Walter,Book-2);
8. hasrequiredmoney(Walter,Money);
9. hasgoodcreditrating(Walter);
Our system uses the above rule base and makes
inferences shown below.
1. own(Mary,Book-1);
2. donate(Mary,Book-1);
3. own(Chris,Book-2);
4. cansell(Chris,Walter,Book-2);
Our task is to start with the above knowledge base
and obtain the results of inferencing correctly by our
reasoning system. In this paper we see how to
accomplish the forward reasoning for predicate
calculus facts and rules using neural networks which
operate on coarse coded distributed representations.
We start with above database consisting of predicate
logic facts and rules. Each fact of predicate pi is
represented by a vector vij.The vector vij is a k
dimensional vector which stores the coarse coded
representation of a predicate fact. The different
instantiations of predicate pi are each represented by
separate vector vij where j varies from 1 to m. Thus
the set of instantiated predicates of pi are represented
by a subset of vector space Rk. The value of i
depends on the number of predicates in the rule
base. We then design suitable connectionist frame

work for doing reasoning with forward chaining for
the rule and fact base using these vectors.

3 Forward Reasoning using
Connectionist System
We describe here how forward reasoning using
localist representations [6], [7] are made using a
connectionist system. Let us consider the rule
1:give(x,y,z)—> own(y,z) from the knowledge base.
We define how localist representations be made for
the values getting bound to the variables x, y and z
and how the localist connectionist system makes
inference from the rule. We assign values to each
variable on the left hand side of a rule. A value is
allocated to a specific variable and it will represent a
particular object getting bound to that variable. We
assign binary string which is the localist
representation of object getting bound to that
variable. Suppose, we have three different objects
for possible binding to variable x. We encode them
by the localist patterns 001, 010, 100 respectively.
Other variables y and z also get similar localist
patterns for being assigned to them. We need a
pattern code for distinguishing among predicates.
We assign an n bit binary code to distinguish among
n predicates. If n = 4 say then our binary pattern will
be 0001 to designate the predicate under
consideration give. Then we choose pattern 0010 to
represent predicate own. We also need a truth value
allocated for a predicate. We assign a single bit
which could be 1 or 0 denoting predicate fact being
true or false respectively. Then the localist pattern
for the LHS of our rule can be written as: 0001 001
001 001 1.
 The first 4 bit value denotes the predicate give,
the next 3 bit value denotes an object getting bound
to variable x and the next 3 bit value denotes an
object getting bound to variable y and so on. The last
bit indicates the truth value of predicate give.
We assigned values ‘001’, ’001’ and ‘001’ to
variables x, y and z respectively. These values
represent objects which are getting bound to these
variables, say, John, Mary and Book-17. We have
instantiated thereby the variables x, y and z of the
LHS of the rule 1.
 This will activate rule 1 and make variables on
the right hand side of the rule ‘y’ and ‘z’ be assigned
the values ‘001’ and ‘001’ representing the objects
Mary and Book-1 respectively. This asserts the right
hand side of the rule 1, which is own(Mary, Book-
1).

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp272-277)

Because of the rule activation the localist pattern
representation for RHS will be after the rule firing
0010 001 001 1.
When a number of such rules are cascaded we
continue the process of forward chaining to do the
forward reasoning. When RHS of rule 1 is asserted
it activates rule 3 and part of rule 4. Rule 3 gets
activated and fires and own of rule 4 gets activated
and provided other parts wantstobuy and
hasrequiredmoney or hasgoodcreditrating of rule 4
also get activated then rule 4 fires.

3. own(y, z) �� donate(y, z);

4. own(y,z)��wantstobuy(w,z)�

(hasrequiredmoney(w, m)��

hasgoodcreditrating(w)) �� cansell(y,w,z);
 The binding information is similarly passed on in
these rules for the variables. This way forward
reasoning is accomplished using localist
representations. In Table 1 and 2 below we show
samples of localist vectors for some of the
predicates in the rule base.

Table 1. Shows a sample of localist tuples used by
predicate give

S.No of Tuple 215

Predicate ‘id’ code 00001000000

Localist Value of x 0000100000
Localist Value of
y 0000100000

Localist Value of
z

0000010000

Truth Value of
Predicate

00001

Table 2. Shows a sample of localist tuples used by
predicate Cansell

S.No of Tuple 46

Predicate ‘id’ code 00000001000

Localist Value of y 0000000010
Localist Value of
w

0000100000

Localist Value of z 0000010000
Truth Value of
Predicate

00001

3.1 Obtaining Coarse-coded Distributed
Representations from Localist
Representations
Consider the following tuple from the localist
representation table of predicate give(x, y, z),

‘00001000000 0000000001 0000000010
0000000010 00001’.
 We view the above vector as being kept in
overlapping coarse zones of length of 4 consecutive
bits and encode the zone as 1 if there is at least one 1
bit in that zone or else as 0. We then consider next
coarse zone and encode it as 1 or 0 following the
above method. We do this process left to right
starting from the left most bit. We do this encoding
process for above localist tuple to get the following
coarse-coded tuple
‘ 01111000000 0000001111 0000011110
0000011110 01111’.
Coarse-coding can be applied when the number of
1’s in the original string is sufficiently sparse. If the
number of 1’s in the original string is not
sufficiently sparse then coarse-coded string when
decoded will not yield the original string. This is the
reason we have chosen a 5 bit string to denote the
truth value of predicate(in which first 4 bits were
kept as zeros). The reason the coarse-coding could
be applied successfully to our reasoning problem is
that localist representations of instantiated
predicates were sufficiently sparse with regard to
distribution of 1’s. Coarse-coding increases the
information capacity [5] by increasing the number
of units active at a time compared to localist codes
which have sparsely populated 1’s. The amount of
information conveyed by a unit that has a
probability p of being ‘1’ is

– plog (p) – (1 – p) log(1 – p).
We obtain the coarse-coded representations of tuples
for all the predicates in the rule base using the
above described method. We show here a sample of
coarse-coded representations of the tuples for
predicates give and cansell in the rule base.

Table 3. Shows a sample of Coarse-code
Representation of data tuples used by predicate give

S.No of Tuple 215

Predicate ‘id’ code 01111000000

Value of x 0111100000

Value of y 0111100000

Value of z 0011110000
Truth Value of
Predicate 01111

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp272-277)

Table 4. Shows a sample of Coarse-code
Representation of Data Tuples used by predicate
cansell

S.No of Tuple 46

Predicate ‘id’ code 00001111000

Value of x 0000011110

Value of y 0111100000

Value of z 0011110000
Truth Value of
Predicate

01111

3.2 Organization of Neural Networks in the
Connectionist Reasoning System
 The neural networks accomplish the forward
reasoning using the coarse-coded tuples. They
generate inferences by firing rules from the rule
base. Consider the neural networks shown in figure
1. When impressed on its inputs with one of the
vectors vg from the predicate table give the network
1 generates on its outputs a vector vo from the
predicate table own. This way the rule give(x,y,z)

�� own(y,z) was processed. This in turn impresses
on the inputs of network 2 to generate a vector vd
on its outputs. This processed the rule own(y,z)���
donate (y,z). These vectors are in coarse-coded
form and denote a predicate fact. So we see the rules
1 and 2 are getting activated in a forward chaining
fashion .

Fig. 1. Neural Networks for processing rules 1 and 2

 Similarly impressing a vector vb on the inputs of
network 3 generates vector vo on its outputs and this
in turn gets impressed on inputs of network 4
generating on its outputs vector vd from the
predicate table donate. This way the rules buy (y,z)

�� own (y,z) and own (y,z)���donate (y,z) get
processed in a forward chaining fashion generating
new inferences . The networks 3 and 4 are shown in
figure 2 accomplishing this activity.

Fig. 2. Neural Networks for processing rules 3 and 4

3.3 Variable Binding during processing of the
Complex Rule
 Consider the following complex rule which
involves multiple conjunctions and a disjunction.

 own(y,z)��wantstobuy(w,z)��

(hasrequiredmoney(w,m)�� hasgoodcreditrating(w))

�� cansell(y,w,z)
 This rule is processed by the connectionist
architecture shown in figure 3. We use the vectors
vo,vw, vh and vg from the predicate tables own,
wantstobuy, hasrequiredmoney and
hasgoodcreditrating respectively. Though these are
coarse-coded tuples their structure has the format of
predicate code p, value of variable 1, value of
variable 2,….value of variable n and predicate truth
value T / F. These constituents are distinguishable
and hence they can be used directly. These
constituents are in coarse- coded form. We use these
constituents to implement the complex rule under
consideration. Component z is taken from both vo
and vw and given as inputs to network 5.

Fig. 3. Neural Networks for processing rule 3

 This network generates truth value T or F
depending on whether the values of variable z given
to it are equal or unequal respectively. Similarly
component w is taken both from vectors, vw and vh

buy

 y

 z

Network 3

Network 4

own

 y

 z

don-
ate

 y

 z

Own
y
z

Wantsto-
buy

w
z

Hasrequired-
money
 w
 m

Hasgoodcredit-
rating
 w

Network
5
z
z

Net-
work

6
w
w

w
Network 7

w

Net-
work

8

Net-
work

9

Net-
work

10

z

y
w

T/F

p

give
 x

 y

 z

Network 1

Network 2

own

 y

 z

Don-
ate

 y

 z

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp272-277)

and given as inputs to network 6. This network
generates truth value of T or F depending upon
whether the values of variable w given to it are equal
or unequal. Similarly component w is taken both
from vectors, vw and vg and given as inputs to
network 7. This network generates truth value of T
or F depending upon whether the values of variable
w given as inputs to it are equal or unequal. These
truth values from outputs of network 6 and network
7 are given as inputs of network 8 which outputs T
if either or both (inclusive or) of the truth values on
its inputs are true else outputs F. The truth values
from outputs of network 5 and network 8 are given
as inputs to network 9 which outputs T if both of
the truth values on its inputs are true else outputs F.
The predicate code components of the vectors vo, vw,
vh and vg are given as inputs to neural network 10
which outputs predicate code p for cansell. The
values of y, w and z are passed on to the output lines
as shown in figure 3 from the vectors vo, vw and vo
respectively. If network 9 output is ‘T’ the values of
y, w and z are accepted as belonging to vector vc of
the predicate table of cansell. Using this method we
had processed a complex rule. The variable binding
problem has been solved as described above while
processing the above complex rule which is
involving multiple conjunctions and a disjunction.
The disjunction was meaning an inclusive OR
operation. Our task was to check whether the
variable w belonging to vw and either or both of vh
and vg are binding to same value. We had
accomplished these with networks 6, 7 and 8
respectively. Similarly, we had to check whether
variable z belonging to vo and vw are bound to same
value. We had accomplished this with network 5.
 We have solved the variable binding problem
faced while implementing multiple conjunctions and
a disjunction in a complex rule using coarse-coded
representations without the need to decode them
into localist representations. We have accomplished
the variable binding task here using a divide and
conquer strategy and distributed the total task to a
set of neural networks which together accomplished
the same. This approach enables us to perform easily
variable binding in more complex rules which
involve more number of conjunctions and
disjunctions in them.

4 Testing
Following are the details of neural networks used to
do the above mentioned work. The neural networks
in table 5 are feed forward neural networks using
back-propagation algorithm.

Table 5. Shows the details of neural networks used

Network No. of

input units
No.of
hidden
units

No.of
output
units

1 46 40 36

2 36 25 36

3 36 25 36

4 36 25 36

5 20 10 5

6 20 10 5

7 20 10 5

8 10 7 5

9 10 7 5

10 44 22 11

11 66 56 52

12 52 35 52

The reasoning task was successfully accomplished
to give the expected results.

Table 6. Shows the details of tests 1 and 2

 No. of
Training
Patterns

No. of
Test
Patterns

No. of
Patterns
Corrected

No. of
Patterns
not
Corrected

216 108 60 48 Localist
reasoning
system 750 300 207 93

216 108 89 19
Coarse-
coded
reasoning
system 750 300 274 26

 Secondly, the performance of the above coarse-
coded reasoning system was compared for error
tolerance under noise conditions with a localist
representation based reasoning system (which was
having identical number of input, hidden and output
units for its neural networks). In the test 1, neural
network 1 with 46 input units, 40 hidden units and
36 output units was trained with 216 patterns. 108
of these training patterns were made test patterns
after introducing 1 bit error at a random location in
each of these patterns. In the test 2, neural network
11 (implementing rule 1 for larger data) with 66
input units, 56 hidden units and 52 output units was
trained with 750 patterns. 300 of these training

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp272-277)

patterns were made test patterns after introducing 1
bit error at a random location in each pattern.
Results are as shown in table 6. The coarse-coded
reasoning system was found to be much more fault
tolerant to errors compared to localist reasoning
system as was indicated by tests performed.
 In tests 3 to 6, the performance of Coarse-coaded
reasoning system was compared with that of a
Hopfield net for error correction tasks of same
magnitude. In the tests 3 to 6, neural network 12
having 52 input units, 35 hidden units and 52 output
units was used. It implements auto-association of
predicate donate with itself. It was trained with 250
coarse-coded patterns for auto-association of each
pattern with itself. Some of the patterns were drawn
from training set and converted to test patterns after
introducing a 1bit error in each pattern at a random
location to form the test set. These artificially
introduced errors were simulating noise conditions.
For each test pattern vts in the test set there is a
corresponding pattern vtr in the training set. Network
12 was tested for its ability to generate the correct
pattern vtr on its outputs given the corresponding
test pattern vts (with a single bit error) on its inputs.
Results are as shown in table 7. For each of the tests
conducted Hopfield net was designed to store all the
patterns drawn from the training set which were
used to obtain test patterns. Results of the tests
indicate that the coarse-coded reasoning system
exhibits better fault-tolerance than the Hopfield net
for generating the correct pattern vtr on its outputs
given a test pattern vts on its inputs.

Table 7. Shows the details of tests 3, 4, 5 and 6

Test
No.

 No.of
test
patterns

No. of correct
 patterns
generated

 3

Coarse-coded
reasoning
System

100

 78

 3 Hopfield net 100 64

 4

Coarse-coded Coded
reasoning
System

150

 117

 4 Hopfield net 150 101

 5

Coarse-coded Coded
reasoning
System

200

 155

 5 Hopfield net 200 114

 6

Coarse-coded Coded
reasoning
System

225

 172

 6 Hopfield net 225 129

5 Conclusion
We have tested a connectionist forward chaining
reasoning system using distributed coarse-coded
representations on a given reasoning task. The
system has successfully performed the given
reasoning task. The coarse-coded reasoning system
exhibited better fault tolerance over the localist
reasoning system. The Coarse-coded reasoning
system was found to be more fault-tolerant than a
Hopfield net for the given error correcting tasks of
the same magnitude. We have solved the variable
binding problem faced in a novel way while
implementing multiple conjunctions and a
disjunction in a complex rule, using coarse-coded
representations without the need to decode them into
localist representations.

References:
[1] L. Shastri, Advances in SHRUTI: a neurally

motivated model of relational knowledge
representation and rapid inferencing using
temporal synchrony, Applied Intelligence, 11(1),
1999, pp. 79-108.

[2] C. Wendelken and L. Shastri, Multiple
instantiation and rule mediation in SHRUTI,
Connection Science, 16, 2004, pp. 211-217.

[3] L. Shastri, C. Wendelken, Seeking coherent
explanations --- a fusion of structured
connectionism, temporal synchrony and
evidential reasoning. Proceedings of Cognitive
Science 2000, Philadelphia, PA, August 2000

[4] R. Sun, On variable binding in connectionist
networks. Connection Science, 4, 1992, pp. 93-
124.

[5] G.E. Hinton, J.L. McClelland and D.E.
Rumelhart, Distributed representations. In
D.E.Rumelhart and J.L.McClelland, editors,
Parallel Distributed Processing, Vol.1.
Cambridge, MA. MIT Press, 1986

[6] A. Browne, R. Sun, Connectionist inference
models, Neural Networks 14, 2001, pp.1331-
1355.

[7] A. Browne, R. Sun, Connectionist variable
binding. Expert systems: The International
Journal of Knowledge Engineering and Neural
Networks, 16(3), 1999, pp. 189- 207.

[8] S. Haykins, Neural Networks, a comprehensive
foundation, Second edition, New Jersey: Prentice
hall, 1999

[9] S. Russel & P. Norvig, Artificial Intelligence a
Modern Approach, Second Edition, Delhi:
Pearson Education, 2003

Proceedings of the 6th WSEAS Int. Conf. on NEURAL NETWORKS, Lisbon, Portugal, June 16-18, 2005 (pp272-277)

