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Abstract: - Building an ensemble of classifiers is an useful way to improve the performance. In the case of neural 
networks the bibliography has centered on the use of Multilayer Feedforward (MF). However, there are other 
interesting networks like Radial Basis Functions (RBF) that can be used as elements of the ensemble. In a 
previous paper we presented results of different methods to build the ensemble of RBF. The results showed that 
the best method is in general the Simple Ensemble. The combination method used in that research was averaging. 
In this paper we present results of fourteen different combination methods for a simple ensemble of RBF. The 
best methods are Borda Count, Weighted Average and Majority Voting. 
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1   Introduction 
Probably the most important property of a neural 
network (NN) is the generalization capability. One 
method to increase this capability with respect to a 
single NN consist on training an ensemble of NNs, 
i.e., to train a set of NNs with different weight 
initialization or properties and combine the outputs in 
a suitable manner.  

In the field of ensemble design, the two key 
factors to design an ensemble are how to train the 
individual networks and how to combine the different 
outputs. 

It seems clear from the bibliography that this 
procedure generally increases the generalization 
capability in the case of the NN Multilayer 
Feedforward (MF) [1,2]. 

However, in the field of NNs there are other 
networks besides MF, and traditionally the use of 
ensembles of NNs has restricted to the use of MF. 

Another useful network which is quite used in 
applications is Radial Basis Functions (RBF). This 
network can also be trained by gradient descent [3]. 
So with a fully supervised training, it can be also an 
element of an ensemble, and all methods of 
constructing the ensemble which are applicable to 
MF can now be also used with RBF networks. 

In the paper [4] we obtain the first results on 
ensembles of RBF, we presented a comparison of 
different methods to build the ensemble and we 
concluded that the “Simple Ensemble” was the most 
appropriate. In that case, the combination method was 
one of the simplest: averaging the outputs. 

In this paper we present results of different 
combination methods for the case of a “simple 
ensemble” of RBFs. The number of combination 
methods analyzed is fourteen. With these results we 
can have a hint to select the appropriate combination 
method and improve the performance of RBFs 
ensembles. 
 
 
2   Theory 
In this section, first we briefly review the basic 
concepts of RBFs networks and after that we review 
the different methods of combining the outputs of the 
ensemble. 
 
 
2.1 RBF networks with gradient descent 

training 
A RBF has two layer of networks. The first layer is 
composed of neurons with a Gaussian transfer 
function and the second layer has neurons with a 
linear transfer function. The output of a RBF network 
can be calculated with equation 1. 
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Where Cq,n
k are the centers of the Gaussian 

units, σq
k control the width of the Gaussian functions 

and wq
k are the weights among the Gaussian units and 

the output units. 
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The parameters which are changed during the 
training process [3] are Cq,n

k and wq
k, the width is the 

same for all Gaussian units and fixed before training. 
The equation for the adaptation of the weights is the 
following: 
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Where η is the step size and εk is the difference 
between the target and the output. 

And the equation for the adaptation of the 
centers is number 3. 
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2.2 Ensemble Combination Methods 
 
Average: This approach simply averages the 
individual classifier outputs. The output yielding the 
maximum of the averaged values is chosen as the 
correct class. 
 
Majority Vote: The correct class is the one most 
often chosen by different classifiers. If all the 
classifiers indicate different classes, then the one with 
the overall maximum output value is selected to 
indicate the correct class. 
 
Winner Takes All (WTA): In this method, the class 
with overall maximum value in all the classifiers  is 
selected. 
 
Borda Count:. For any class q, the Borda count is 
the sum of the number of classes ranked below q by 
each classifier. If Bj(q) is the number of classes 
ranked below the class q by the jth classifier, then the 
Borda count for class q is in the following equation.  
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Bayesian Combination: This combination method 
was proposed in reference [5]. According to this 
reference a belief value that the pattern x belongs to 
class i can be approximated by the following 
equation. 
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Where the conditional probability that sample x 
actually belongs to class i, given that classifier k 
assign it to class j (λk(x)=jk) can be estimated from 
the values of the confusion matrix [6]. 
 
Weighted Average: This method introduces weights 
to the outputs of the different networks prior to 
averaging. The weights try to minimize the difference 
between the output of the ensemble and the “desired 
or true” output. The weights can be estimated from 
the error correlation matrix. A full description of the 
method can be found in reference [7]. 
 
Choquet Integral: This method is based in the fuzzy 
integral and the Choquet integral. The method is 
complex and a full description can be found in 
reference [6]. 
 
Combination by Fuzzy Integral with Data 
Dependent Densities (Int. DD): It is another method 
based on the fuzzy integral and the Choquet integral. 
But in this case, prior to the application of the method 
it is performed a partition of the input space in 
regions by k-means clustering or frequency sensitive 
learning. The full description can be found in 
reference [6]. 
 
Weighted Average with Data Dependent weights 
(W.Ave DD): This method is the weighted average 
described above. But in this case, a partition of the 
space is performed by using k-means clustering and 
the weights are calculated for each partition. We have 
a different combination scheme for the different 
partitions of the space. The number of partitions of 
the space is determined by cross-validation. 
 
BADD Defuzzification Strategy: It is another 
combination method based on fuzzy logic concepts. 
The method is complex and the description can be 
found in [6]. 
 
Zimmermann’s Compensatory Operator: This 
combination method is based in the Zimmermann’s 
compensatory operator described in [8]. The method 
is complex and can be found in [6]. 
 
Dynamically Averaged Networks (DAN), version 
1 and 2: It is proposed in reference [9]. In this 
method instead of choosing static weights derived 
from the network performance on a sample of the 
input space, we allow the weights to adjust to be 
proportional to the certainties of the respective 
network output. In the reference two different 
versions of the method are described and we have 
included both. 
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Nash Vote: In this method each voter assigns a 
number between zero and one for each candidate 
output. The product of the voter’s values is compared 
for all candidates. The higher is the winner. The 
method is reviewed in reference [10]. 
 
 
3   Experimental Results 
We have applied the combination methods to nine 
different classification problems. They are from the 
UCI repository of machine learning databases. Their 
names are Balance Scale (Bala), Cylinders Bands 
(Band), Liver Disorders (Bupa), Credit Approval 
(Credit), Glass Identification (Glass), Heart Disease 
(Heart), the Monk’s Problems (Monk 1, Monk 2) and 
Voting Records (Vote). A full description can be 
found in the UCI repository (http://www.ics.uci.edu 
/~mlearn/ MLRepository.html). 

We have constructed ensembles of 3 and 9 
networks. 

For the training of the ensembles, we repeated 
the process of training ten times for different 
partitions of data in training, cross-validation and test 
sets. With this procedure we can obtain a mean 
performance of the ensemble for each database (the 
mean of the ten ensembles) and an error in the 
performance calculated by standard error theory. The 
results of the performance are in table 1 for the case 
of ensembles of three networks and in table 2 for the 
case of nine. 

As we can see in table 1 and 2 the improvements 
by the use of an ensemble are problem dependent. 
We get an improvement in problems Bupa, Credit, 
Glass, Heart, Monk 1 and Vote. This result was 
already known in the bibliography for the case of 
Multilayer Feedforward. 

The results of tables 1 and 2 show that the 
improvement in performance of training nine 
networks (instead of three) is low. Taking into 
account the computational cost the best alternative 
might be an ensemble of three networks. 

Comparing the results of the different 
combination methods of tables 1 and 2, we can see 
that the differences are low. The largest difference 
between simple average and other method is around 
0.7% in the problem Heart. 

However, we should point out that the 
computational cost of any combination method is 
very low in comparison with the computational cost 
of training the ensemble of networks. So the selection 
of an appropriate combination method allows an 
improvement in the performance without extra 
computational cost. 

 
 

Table 1. Results for the ensemble of three networks. 
 Bala Band Bupa 
SingleNetwork 90.2 ± 0.5 74.0 ± 1.1 70.1 ± 1.1 
Average 89.7 ± 0.7 73.8 ± 1.2 71.9 ± 1.1 
Majority V. 89.9 ± 0.7 74.4 ± 1.2 72.0 ± 1.0 
WTA 90.1 ± 0.8 72.9 ± 1.1 71.1 ± 1.2 
Borda 89.8 ± 0.7 74.4 ± 1.2 72.0 ± 1.0 
Bayesian 89.9 ± 0.7 74.4 ± 1.2 72.0 ± 1.0 
W. Average 89.9 ± 0.7 72.9 ± 1.5 72.4 ± 1.2 
Choquet 89.9 ± 0.7 73.1 ± 1.1 71.4 ± 1.0 
Int. DD 89.9 ± 0.7 72.9 ± 1.2 71.9 ± 0.9 
W. Ave DD 89.7 ± 0.7 74.2 ± 1.0 71.9 ± 1.1 
BADD 89.7 ± 0.7 73.8 ± 1.2 71.9 ± 1.1 
Zimmermann 65 ± 5 63 ± 5 62 ± 3 
DAN 89.8 ± 0.8 73.5 ± 1.3 71.9 ± 1.0 
DAN version 
2 89.9 ± 0.8 73.1 ± 1.3 71.7 ± 1.0 

Nash Vote 89.7 ± 0.7 74.0 ± 1.2 72.3 ± 1.1 
 
Table 2. (continuation 1) Results for the ensemble of three 
networks. 

 Credit Glass Heart 
SingleNetwork 86.0 ± 0.8 93.0 ± 0.6 82.0 ± 1.0 
Average 87.2 ± 0.5 93.2 ± 1.0 83.9 ± 1.6 
Majority V. 87.1 ± 0.6 93.2 ± 1.0 84.6 ± 1.5 
WTA 87.2 ± 0.6 93.2 ± 1.0 83.9 ± 1.6 
Borda 87.1 ± 0.6 93.2 ± 1.0 84.6 ± 1.5 
Bayesian 87.1 ± 0.6 93.2 ± 1.0 84.6 ± 1.5 
W. Average 87.2 ± 0.5 93.0 ± 1.2 83.6 ± 1.6 
Choquet 86.9 ± 0.6 93.2 ± 1.0 83.6 ± 1.6 
Int. DD 86.9 ± 0.6 93.0 ± 0.9 83.6 ± 1.4 
W. Ave DD 87.2 ± 0.5 93.2 ± 1.0 83.9 ± 1.6 
BADD 87.2 ± 0.5 93.2 ± 1.0 83.9 ± 1.6 
Zimmermann 70 ± 5 87.2 ± 1.5 75 ± 4 
DAN 87.3 ± 0.5 93.6 ± 1.1 83.6 ± 1.3 
DAN version2 87.2 ± 0.5 93.8 ± 1.1 83.4 ± 1.5 
Nash Vote 87.2 ± 0.5 93.2 ± 1.0 84.1 ± 1.7 

 
Table 3. (continuation 2) Results for the ensemble of three 
networks. 

 Monk 1 Monk 2 Vote 
SingleNetwork 98.5 ± 0.5 91.3 ± 0.7 95.4 ± 0.5 
Average 99.6 ± 0.4 91.5 ± 1.2 96.3 ± 0.7 
Majority V. 99.6 ± 0.4 90.9 ± 1.1 96.4 ± 0.6 
WTA 99.6 ± 0.4 91.4 ± 1.3 96.3 ± 0.7 
Borda 99.6 ± 0.4 90.9 ± 1.1 96.4 ± 0.6 
Bayesian 99.4 ± 0.4 90.1 ± 1.1 96.4 ± 0.6 
W. Average 99.8 ± 0.3 92.0 ± 1.2 96.3 ± 0.6 
Choquet 99.6 ± 0.4 91.5 ± 1.2 96.3 ± 0.7 
Int. DD 99.6 ± 0.4 91.1 ± 1.3 96.3 ± 0.7 
W. Ave DD 99.6 ± 0.4 92.0 ± 1.2 96.3 ± 0.7 
BADD 99.6 ± 0.4 91.5 ± 1.2 96.3 ± 0.7 
Zimmermann 90 ± 5 82 ± 3 92 ± 3 
DAN 99.5 ± 0.4 90.8 ± 1.3 96.0 ± 0.6 
DAN version2 99.6 ± 0.4 90.6 ± 1.4 96.1 ± 0.6 
Nash Vote 99.6 ± 0.4 91.6 ± 1.1 96.3 ± 0.7 
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Table 2. Results for the ensemble of nine networks. 
 Bala Band Bupa 
SingleNetwork 90.2 ± 0.5 74.0 ± 1.1 70.1 ± 1.1 
Average 89.7 ± 0.7 73.3 ± 1.4 72.4 ± 1.2 
Majority V. 89.7 ± 0.7 74.0 ± 1.5 72.1 ± 1.1 
WTA 89.8 ± 0.8 73.6 ± 1.7 72.0 ± 1.3 
Borda 89.6 ± 0.7 74.0 ± 1.5 72.1 ± 1.1 
Bayesian 90.2 ± 0.7 74.2 ± 1.5 72.3 ± 1.1 
W. Average 89.5 ± 0.7 73.1 ± 1.6 71.6 ± 1.3 
Choquet 89.8 ± 0.8 74.0 ± 1.5 72.0 ± 1.4 
Int. DD 89.8 ± 0.8 74.0 ± 1.5 72.1 ± 1.5 
W. Ave DD 89.7 ± 0.7 73.3 ± 1.4 72.3 ± 1.2 
BADD 89.7 ± 0.7 73.3 ± 1.4 72.4 ± 1.2 
Zimmermann 69 ± 5 66 ± 3 62 ± 4 
DAN 89.8 ± 0.8 72.7 ± 1.7 71.6 ± 1.3 
DAN version2 89.8 ± 0.8 73.3 ± 1.7 71.4 ± 1.3 
Nash Vote 89.6 ± 0.7 73.1 ± 1.4 72.6 ± 1.2 

 
Table 2. (continuation 1) Results for the ensemble of nine 
networks. 

 Credit Glass Heart 
SingleNetwork 86.0 ± 0.8 93.0 ± 0.6 82.0 ± 1.0 
Average 87.2 ± 0.5 93.0 ± 1.0 83.9 ± 1.5 
Majority V. 87.1 ± 0.5 93.2 ± 1.0 84.6 ± 1.6 
WTA 87.2 ± 0.5 93.4 ± 1.0 83.6 ± 1.7 
Borda 87.1 ± 0.5 93.2 ± 1.0 84.6 ± 1.6 
Bayesian 87.2 ± 0.5 92.6 ± 1.0 84.6 ± 1.6 
W. Average 86.9 ± 0.5 92.8 ± 1.2 83.7 ± 1.4 
Choquet 87.3 ± 0.5 93.4 ± 1.0 83.4 ± 1.6 
Int. DD 87.2 ± 0.5 93.4 ± 1.0 83.4 ± 1.6 
W. Ave DD 87.2 ± 0.5 93.0 ± 1.0 83.9 ± 1.5 
BADD 87.2 ± 0.5 93.0 ± 1.0 83.9 ± 1.5 
Zimmermann 75 ± 5 80 ± 3 73 ± 4 
DAN 87.2 ± 0.5 92.8 ± 1.0 84.4 ± 1.7 
DAN version2 87.3 ± 0.5 92.8 ± 1.0 84.1 ± 1.8 
Nash Vote 87.2 ± 0.5 93.0 ± 1.0 83.9 ± 1.5 

 
Table 2. (continuation 2) Results for the ensemble of nine 
networks. 

 Monk 1 Monk 2 Vote 
SingleNetwork 98.5 ± 0.5 91.3 ± 0.7 95.4 ± 0.5 
Average 99.6 ± 0.4 91.4 ± 1.2 96.3 ± 0.7 
Majority V. 99.6 ± 0.4 91.5 ± 1.2 96.4 ± 0.6 
WTA 99.8 ± 0.3 90.8 ± 1.2 96.0 ± 0.6 
Borda 99.6 ± 0.4 91.5 ± 1.2 96.4 ± 0.6 
Bayesian 99.5 ± 0.3 90.9 ± 1.1 96.4 ±  0.6 
W. Average 99.8 ± 0.3 91.8 ± 1.4 96.6 ± 0.7 
Choquet 99.6 ± 0.4 90.6 ± 1.2 96.0 ± 0.6 
Int. DD 99.6 ± 0.4 90.8 ± 1.2 96.1 ± 0.6 
W. Ave DD 99.6 ± 0.4 91.3 ± 1.2 96.3 ± 0.7 
BADD 99.6 ± 0.4 91.4 ± 1.2 96.3 ± 0.7 
Zimmermann 92 ± 2 76 ± 5 81 ± 6 
DAN 99.4 ± 0.4 88.9 ± 1.6 96.0 ± 0.6 
DAN version2 99.5 ± 0.4 88.9 ± 1.5 96.0 ± 0.6 
Nash Vote 99.6 ± 0.4 91.5 ± 1.1 96.3 ± 0.7 

To appreciate the results more clearly, we have 
also calculated the percentage of error reduction of 

the ensemble with respect to a single network. We 
have used equation 6 for this calculation. 

networkgle

ensemblenetworkgle
reduction PorError

PorErrorPorError
PorError

sin

sin·100
−

=
(6)

The value of the percentage of error reduction 
ranges from 0%, where there is no improvement by 
the use of a particular ensemble method with respect 
to a single network, to 100%. There can also be 
negative values, which means that the performance of 
the ensemble is worse than the performance of the 
single network. 

We have the full results of percentage of error 
reduction for the ensemble of three networks in table 
3. 

Also, this new measurement is relative and we 
can calculate a mean value across all databases. The 
result is under the column header “MEAN” in table 3 
for the case of three networks and in table 4 for the 
case of nine networks. 
 
Table 3. Relative Performance with respect to a Single 
Network for the case of three networks in the ensemble. 

 Bala Band Bupa 
Average -5,31 -0,69 5,89 
Majority V. -2,86 1,38 6,35 
WTA -1,22 -4,19 3,48 
Borda -3,67 1,38 6,35 
Bayesian -2,86 1,38 6,35 
W. Average -2,86 -4,19 7,79 
Choquet -2,86 -3,50 4,45 
Int. DD -2,86 -4,19 5,89 
W. Ave DD -5,31 0,69 5,89 
BADD -5,31 -0,69 5,89 
Zimmermann -259,18 -41,27 -28,06 
DAN -4,49 -2,12 5,89 
DAN version2 -2,86 -3,50 5,38 
Nash Vote -5,31 0,00 7,32 

 
Table 3. (continuation 1) Relative Performance with 
respect to a Single Network for the case of three networks 
in the ensemble. 

 Credit Glass Heart 
Average 8,21 2,86 10,56 
Majority V. 7,71 2,86 14,33 
WTA 8,21 2,86 10,56 
Borda 7,71 2,86 14,33 
Bayesian 7,71 2,86 14,33 
W. Average 8,21 0,00 8,67 
Choquet 6,57 2,86 8,67 
Int. DD 6,57 0,00 8,67 
W. Ave DD 8,21 2,86 10,56 
BADD 8,21 2,86 10,56 
Zimmermann -114,86 -82,86 -41,22 
DAN 9,36 8,57 8,67 
DAN version2 8,79 11,43 7,72 
Nash Vote 8,21 2,86 11,50 
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Table 3. (continuation 2) Relative Performance with 
respect to a Single Network for the case of three networks 
in the ensemble. 

 Monk 1 Monk 2 Vote 
Average 75,33 2,30 18,48 
Majority V. 75,33 -4,83 21,30 
WTA 75,33 0,92 18,48 
Borda 75,33 -4,83 21,30 
Bayesian 58,67 -4,83 21,30 
W. Average 83,33 8,05 18,48 
Choquet 75,33 2,30 18,48 
Int. DD 75,33 -1,95 18,48 
W. Ave DD 75,33 8,05 18,48 
BADD 75,33 2,30 18,48 
Zimmermann -574,67 -105,40 -68,48 
DAN 66,67 -6,32 13,04 
DAN version2 75,33 -7,70 15,87 
Nash Vote 75,33 3,79 18,48 

 
 
Table 3. (continuation 3) Relative Performance with 
respect to a Single Network for the case of three networks 
in the ensemble. 

 MEAN 
Average 13,07 
Majority V. 13,24 
WTA 12,26 
Borda 13,24 
Bayesian 11,39 
W. Average 13,89 
Choquet 12,21 
Int. DD 11,50 
W. Ave DD 13,86 
BADD 13,07 
Zimmermann -118,01 
DAN 10,94 
DAN version2 12,00 
Nash Vote 13,58 

 
 
Table 4. Relative Performance with respect to a Single 
Network for the case of nine networks in the ensemble. 

 MEAN 
Average 12,64 
Majority V. 13,93 
WTA 12,63 
Borda 13,84 
Bayesian 12,91 
W. Average 13,62 
Choquet 11,70 
Int. DD 12,10 
W. Ave DD 12,42 
BADD 12,64 
Zimmermann -168,30 
DAN 6,46 
DAN version2 7,45 
Nash Vote 12,68 

 

According to the values of the mean 
performance of error reduction, the best performing 
methods are Majority Vote, Borda Count and 
Weighted Average. 

If we consider the simplicity Majority Vote may 
be the best alternative. 
 
 
4   Conclusion 
In this paper we have presented experimental results 
of fourteen different methods to combine the outputs 
of an ensemble of RBF networks, using ten different 
databases. We trained ensembles of 3 and 9 networks 
in the ensemble. The results showed that in general 
the improvement by the use of the ensemble methods 
depends clearly on the database, in some databases 
there is an improvement but in other there is not 
improvement at all. Also the improvement in 
performance from three to nine networks in the 
ensemble is usually low. Taking into account the 
computational cost, an ensemble of three networks 
might be the best alternative for most of the methods. 
Also the differences among the different combination 
methods are low, but in this case the extra 
performance is obtained without additional 
computational cost, and it can be worthy to select the 
appropriate combination method. Finally, we have 
obtained the mean percentage of error reduction over 
all databases. According to the values of the mean 
performance of error reduction, the best performing 
methods are Majority Vote, Borda Count and 
Weighted Average. If we consider the simplicity 
Majority Vote may be the best alternative. 
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