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Abstract: - As shown in the bibliography, training an ensemble of networks is an interesting way to improve the 
performance with respect to a single network. The two key factors to design an ensemble are how to train the 
individual networks and how to combine the different outputs of the networks to give a single output class. In 
this paper, we focus in the combination methods. We study the performance of fourteen different combination 
methods for ensembles of the type “simple ensemble” and “decorrelated”. In the case of the “simple ensemble” 
and low number of networks in the ensemble, the method Zimmermann gets the best performance. When the 
number of networks is in the range of 9 and 20 the weighted average is the best alternative. Finally, in the case of 
the ensemble “decorrelated” the best performing method is averaging over a wide spectrum of the number of 
networks in the ensemble. 
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1   Introduction 
Probably, the most important property of a neural 
network is the generalization capability. The ability 
to correctly respond to inputs which were not used in 
the training set. 

One technique to increase the generalization 
capability with respect to a single neural network 
consist on training an ensemble of neural networks, 
i.e., to train a set of neural network with different 
weight initialization or properties in the training 
process and combine the outputs of the different 
networks in a suitable manner to give a single output 
for the whole ensemble. 
It is clear from the bibliography that this procedure in 
general increases the generalization capability [1,2] 
for the case of Multilayer Feedforward and other 
classifiers. 

The two key factors to design an ensemble are 
how to train the individual networks and how to 
combine the different outputs to give a single output. 

Among the methods of training the individual 
networks there is an important number of 
alternatives. Our research group has performed a 
comparison detailed in paper [3], which shows that 
the best performing method among the eleven 
methods analyzed is called “Decorrelated”. 

In paper [3], it is also shown that the “simple 
ensemble” also provide a reasonable performance 
with a lower computational cost, because in the case 
of “Decorrelated” we should tune a parameter by trial 

an error. In this paper, we focus on both methods of 
building an ensemble. 

In the other aspect, (the combination methods 
for the outputs) there are also several different 
methods in the bibliography, and we can also find a 
comparison of twelve different methods in paper [4]. 

In paper [4], the authors conclude that the 
combination by the weighted average with data 
dependent weights is the best method. 

However, the comparison of paper [4], under 
our point of view, lacks of two problems. The method 
CVC was used to construct the ensemble, and 
according to our results, this method performs worse 
than the “simple ensemble” in several situations. 
Beside that, the experimental results were obtained in 
only four databases, so the generality of the results 
might not be clear. 

In this paper, we present a comparison of 
fourteen different method of combining, the outputs 
for a total of ten databases. So the results are more 
complete that the ones of paper [4]. 

Furthermore, we present results for two different 
methods of building the ensemble: “Simple 
ensemble” and “Decorrelated”. According to our 
results of paper [3], “Simple Ensemble” is a 
reasonable alternative with a good performance and 
low computational cost and “Decorrelated” was the 
best performing method of the eleven methods 
analyzed in that paper, at the expense of a higher 
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computational cost because we should tune a 
parameter by trial and error. 
 
 
2   Theory 
In this section, first we briefly review the methods 
“Decorrelated” and “Simple Ensemble” of building 
the ensemble and then the fourteen methods of 
combination that are used to obtain experimental 
results. 
 
 
2.1 Simple Ensemble and Decorrelated 
 
Simple Ensemble: A simple ensemble can be 
constructed by training different networks with the 
same training set, but with different random weight 
initialization. We hope that the different networks 
will converge to different local minima and the errors 
of the networks will be uncorrelated. 
 
Decorrelated (Deco): This ensemble method was 
proposed in [5]. It consists on introducing a penalty 
added to the usual error function of Backpropagation. 
The penalty term for network j is: 

))·()(,(· ji fyfyjidPenalty −−= λ  (1)

Where λ determines the strength of the penalty 
term and should be found by trial and error, y is the 
target of the training pattern and fi and fj are the 
outputs of networks number i and j in the ensemble. 
The term d(i,j) is in equation 2. 
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2.2 Combination Methods 
 
Average: This approach simply averages the 
individual classifier outputs across the different 
classifiers. The output yielding the maximum of the 
averaged values is chosen as the correct class. 
 
Majority Vote: Each classifier provides a vote to a 
class, given by its highest output. The correct class is 
the one most often voted by the classifiers. 
 
Winner Takes All (WTA): In this method, the class 
with overall maximum output across all classifier and 
outputs is selected as the correct class. 
 
Borda Count:. For any class q, the Borda count is 
the sum of the number of classes ranked below q by 
each classifier. If Bj(q) is the number of classes 

ranked below the class q by the jth classifier, then the 
Borda count for class q is in the following equation.  
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Bayesian Combination: This combination method 
was proposed in reference [6]. According to this 
reference a belief value that the pattern x belongs to 
class i can be approximated by equation (4).  
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Where the conditional probability that sample x 
actually belongs to class i, given that classifier k 
assign it to class j (λk(x)=jk) can be estimated from 
the values of the confusion matrix [4]. 
 
Weighted Average: This method introduces weights 
to the outputs of the different networks prior to 
averaging. The weights try to minimize the difference 
between the output of the ensemble and the “desired 
or true” output. The weights can be estimated from 
the error correlation matrix. A full description of the 
method can be found in reference [7]. 
 
Choquet Integral: This method is based in the fuzzy 
integral and the Choquet integral. The method is 
complex and a full description can be found in 
reference [4]. 
 
Combination by Fuzzy Integral with Data 
Dependent Densities (Int. DD): It is another method 
based on the fuzzy integral and the Choquet integral. 
But in this case, prior to the application of the method 
it is performed a partition of the input space in 
regions by k-means clustering or frequency sensitive 
learning. The full description can be found in 
reference [4]. 
 
Weighted Average with Data Dependent weights 
(W.Ave DD): This method is the weighted average 
described above. But in this case, a partition of the 
space is performed by using k-means clustering and 
the weights are calculated for each partition. We have 
a different combination scheme for the different 
partitions of the space. The number of partitions of 
the space is determined by cross-validation. 
 
BADD Defuzzification Strategy: It is another 
combination method based on fuzzy logic concepts. 
The method is complex and the description can be 
found in [4]. 
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Zimmermann’s Compensatory Operator: This 
combination method is based in the Zimmermann’s 
compensatory operator described in [8]. The method 
is complex and can be found in [4]. 
 
Dynamically Averaged Networks (DAN), version 1 
and 2: It is proposed in reference [9]. In this method 
instead of choosing static weights derived from the 
network performance on a sample of the input space, 
we allow the weights to adjust to be proportional to 
the certainties of the respective network output. In the 
reference two different versions of the method are 
described and we have included both. 
 
Nash Vote: In this method each voter assigns a 
number between zero and one for each candidate 
output. The product of the voter’s values is compared 
for all candidates. The higher is the winner. The 
method is reviewed in reference [10]. 
 
 
3   Experimental Results 
We have applied the fourteen combination methods 
in ten different classification problems. They are 
from the UCI repository of machine learning 
databases. Their names are Cardiac Arrhythmia 
Database (Aritm), Dermatology Database (Derma), 
Protein Location Sites (Ecoli), Solar Flares Database 
(Flare), Image Segmentation Database (Image), Johns 
Hopkins University Ionosphere Database (Ionos), 
Pima Indians Diabetes (Pima), Haberman’s survival 
data (Survi), Vowel Recognition (Vowel) and 
Wisconsin Breast Cancer Database (Wdbc). 

We have constructed ensembles of a wide 
number of networks, in particular 3, 9, 20 and 40 
networks in the ensemble. In this case we can test the 
results in a wide set of situations. 

First, we trained the ensembles of 3, 9, 20 and 
40 networks. We repeated this process of training an 
ensemble ten times for different partitions of data in 
training, cross-validation and test sets. With this 
procedure we can obtain a mean performance of the 
ensemble for each database (the mean of the ten 
ensembles) and an error in the performance 
calculated by standard error theory.  

The results of the performance for an ensemble 
of the type “Simple Ensemble” are in table 1 for the 
case of ensembles of three networks and in table 2 for 
the case of nine. For the ensemble of type 
“Decorrelated” the results are in table 3 for the case 
of three networks. The rest of results are omitted by 
the lack of space, but a resume of the performance 
can be found below. 

 

 
Table 1. Results for the ensemble of three networks, 
different combination methods with an ensemble of the 
type “Simple Ensemble”. 

 ARITM DERMA ECOLI FLARE 
SingleNetwork 75.6 ± 0.7 96.7 ± 0.4 84.4 ± 0.7 82.1 ± 0.3
Average 73.5 ± 1.1 97.2 ± 0.7 86.6 ± 0.8 81.8 ± 0.5
Majority V. 73.1 ± 1.0 96.9 ± 0.8 86.0 ± 0.9 81.5 ± 0.5
WTA 73.6 ± 1.0 97.2 ± 0.7 86.3 ± 0.9 81.7 ± 0.5
Borda 73.1 ± 1.0 97.0 ± 0.7 86.5 ± 0.8 81.5 ± 0.5
Bayesian 73.6 ± 0.9 96.9 ± 0.8 86.3 ± 0.9 81.5 ± 0.5
W. Average 73.0 ± 0.9 96.3 ± 0.7 85.9 ± 0.9 81.3 ± 0.6
Choquet 74.1 ± 1.1 97.2 ± 0.7 86.3 ± 0.9 81.7 ± 0.5
Int. DD 74.1 ± 1.1 97.2 ± 0.7 85.9 ± 0.7 81.8 ± 0.5
W. Ave DD 73.5 ± 1.1 97.2 ± 0.7 86.6 ± 0.8 81.8 ± 0.5
BADD 73.5 ± 1.1 97.2 ± 0.7 86.6 ± 0.8 81.8 ± 0.5
Zimmermann 74.7 ± 1.4 97.3 ± 0.7 86.0 ± 1.2 81.5 ± 0.6
DAN 73.2 ± 1.1 96.9 ± 0.6 85.7 ± 1.0 81.4 ± 0.6
DANversion 2 73.2 ± 1.1 96.9 ± 0.6 85.4 ± 0.9 81.4 ± 0.6
Nash Vote 73.5 ± 1.1 97.3 ± 0.7 86.6 ± 0.8 81.8 ± 0.5

Table 1. (continuation 1) Results for the ensemble of three 
networks, different combination methods with an ensemble 
of the type “Simple Ensemble”. 

 IMAGEN IONOS PIMA 
SingleNetwork 96.3 ± 0.2 87.9 ± 0.7 76.7 ± 0.6 
Average 96.5 ± 0.2 91.1 ± 1.1 75.9 ± 1.2 
Majority V. 96.2 ± 0.3 91.3± 1.0 75.9 ± 1.3 
WTA 96.4 ± 0.2 91.1 ± 1.1 75.9 ± 1.2 
Borda 95.7 ± 0.2 91.3± 1.0 75.9 ± 1.3 
Bayesian 96.3 ± 0.3 91.4 ± 1.1 75.8 ± 1.3 
W. Average 96.7 ± 0.3 91.3± 0.9 75.3± 1.3 
Choquet 96.3 ± 0.2 91.3± 1.1 76.1 ± 1.2 
Int. DD 96.3 ± 0.2 91.1 ± 1.1 75.6 ± 1.3 
W. Ave DD 96.5 ± 0.2 91.1 ± 1.1 75.9 ± 1.2 
BADD 96.5 ± 0.2 91.1 ± 1.1 75.9 ± 1.2 
Zimmermann 96.6 ± 0.3 91.9± 1.1 76.0 ± 1.0 
DAN 95.7 ± 0.2 90.0 ± 1.2 75.9± 1.2 
DANversion 2 95.7 ± 0.2 90.0 ± 1.2 75.9± 1.2 
Nash Vote 95.8 ± 0.2 91.3± 1.2 75.9 ± 1.2 

Table 1. (continuation 2) Results for the ensemble of three 
networks, different combination methods with an ensemble 
of the type “Simple Ensemble”. 

 SURVI VOWEL WDBC 
SingleNetwork 74.2 ± 0.8 83.4 ± 0.6 97.4 ± 0.3 
Average 74.3 ± 1.3 88.0 ± 1.0 96.9 ± 0.5 
Majority V. 74.4 ± 1.4 86.9 ± 0.9 96.9 ± 0.5 
WTA 73.9 ± 1.4 86.7 ± 0.8 96.9 ± 0.5 
Borda 74.4 ± 1.4 85.9 ± 1.0 96.9 ± 0.5 
Bayesian 74.3 ± 1.4 86.4 ± 1.0 96.9 ± 0.5 
W. Average 74.1 ± 1.3 87.7 ± 1.0 96.9 ± 0.5 
Choquet 74.1 ± 1.4 86.4 ± 0.7 96.9 ± 0.5 
Int. DD 74.1 ± 1.3 86.3 ± 0.7 96.9 ± 0.5 
W. Ave DD 74.3 ± 1.3 88.0 ± 0.9 96.9 ± 0.5 
BADD 74.3 ± 1.3 88.0 ± 0.9 96.9 ± 0.5 
Zimmermann 74.3 ± 1.3 87.8 ± 1.0 96.9 ± 0.5 
DAN 74.4 ± 1.4 84.6 ± 1.2 96.9 ± 0.5 
DANversion 2 74.4 ± 1.4 84.5 ± 1.2 96.9 ± 0.5 
Nash Vote 74.3± 1.3 86.2 ± 1.0 96.9 ± 0.5 
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Table 2. Results for the ensemble of nine networks, 
different combination methods with an ensemble of the 
type “Simple Ensemble”. 

 ARITM DERMA ECOLI FLARE 
SingleNetwork 75.6 ± 0.7 96.7 ± 0.4 84.4 ± 0.7 82.1 ± 0.3
Average 73.8± 1.1 97.5± 0.7 86.9 ± 0.8 81.6 ± 0.4
Majority V. 73.3 ± 1.0 97.5± 0.7 86.0 ± 0.9 81.5 ± 0.5
WTA 73.3 ± 1.1 96.9 ± 0.8 87.1± 0.9 81.5 ± 0.4
Borda 73.3 ± 0.9 97.5± 0.7 86.6 ± 0.9 81.5 ± 0.5
Bayesian 73.6± 0.9 96.3 ± 0.8 85.2± 0.9 81.6 ± 0.5
W. Average 74.8 ± 1.0 97.0 ± 0.7 86.2± 1.1 81.6 ± 0.4
Choquet 73.3 ± 1.1 97.2± 0.8 86.9 ± 1.0 81.5 ± 0.5
Int. DD 73.3 ± 1.1 97.2± 0.8 86.2± 1.0 81.5 ± 0.5
W. Ave DD 73.8± 1.1 97.5± 0.7 87.1± 0.9 81.6 ± 0.5
BADD 73.8± 1.1 97.5± 0.7 86.9 ± 0.8 81.6 ± 0.4
Zimmermann 74.3± 0.8 97.5± 0.6 85.4 ± 0.9 81.4 ± 0.6
DAN 73.6 ± 1.0 97.2± 0.6 85.2± 0.8 81.5 ± 0.5
DANversion 2 73.6 ± 1.0 97.2± 0.6 84.6± 0.8 81.5 ± 0.5
Nash Vote 73.7± 1.0 97.5± 0.7 87.2 ± 0.8 81.5 ± 0.4

Table 2. (continuation 1) Results for the ensemble of nine 
networks, different combination methods with an ensemble 
of the type “Simple Ensemble”. 

 IMAGEN IONOS PIMA 
SingleNetwork 96.3 ± 0.2 87.9 ± 0.7 76.7 ± 0.6 
Average 96.7 ± 0.3 90.3 ± 1.1 75.9 ± 1.2 
Majority V. 96.6 ± 0.3 90.6 ± 1.2 76.1 ± 1.2 
WTA 96.5 ± 0.2 90.9 ± 1.3 75.8 ± 1.2 
Borda 96.17 ± 0.18 90.6 ± 1.2 76.1 ± 1.2 
Bayesian 96.1 ± 0.3 93.1 ± 1.4 75.9 ± 1.2 
W. Average 96.8 ± 0.3 91.9 ± 1.0 76.1 ± 1.2 
Choquet 96.3 ± 0.2 90.7 ± 1.2 75.7 ± 1.2 
Int. DD 96.3 ± 0.2 90.4 ± 1.2 75.7 ± 1.3 
W. Ave DD 96.7 ± 0.3 90.4 ± 1.1 75.9 ± 1.2 
BADD 96.7 ± 0.3 90.3 ± 1.1 75.9 ± 1.2 
Zimmermann 96.7 ± 0.3 92.0 ± 1.0 75.9 ± 1.0 
DAN 96.2 ± 0.2 90.0 ± 1.1 75.7 ± 1.1 
DANversion 2 96.1 ± 0.2 90.0 ± 1.1 75.7 ± 1.1 
Nash Vote 96.24 ± 0.18 90.4 ± 1.2 75.9 ± 1.2 

Table 2. (continuation 2) Results for the ensemble of nine 
networks, different combination methods with an ensemble 
of the type “Simple Ensemble”. 

 SURVI VOWEL WDBC 
SingleNetwork 74.2 ± 0.8 83.4 ± 0.6 97.4 ± 0.3 
Average 74.3 ± 1.3 91.0 ± 0.5 96.9 ± 0.5 
Majority V. 74.1 ± 1.3 89.6 ± 0.6 96.9 ± 0.5 
WTA 74.6 ± 1.3 90.3 ± 0.6 96.9 ± 0.5 
Borda 74.1 ± 1.3 87.5 ± 0.9 96.9 ± 0.5 
Bayesian 74.1 ± 1.3 82.5 ± 0.9 97.0 ± 0.4 
W. Average 73.3 ± 1.2 92.0 ± 0.6 97.2 ± 0.5 
Choquet 74.4 ± 1.4 88.2 ± 0.7 96.9 ± 0.5 
Int. DD 74.1 ± 1.5 87.9 ± 0.8 96.9 ± 0.5 
W. Ave DD 74.3 ± 1.3 91.0 ± 0.5 96.9 ± 0.5 
BADD 74.3 ± 1.3 91.0 ± 0.5 96.9 ± 0.5 
Zimmermann 74.4 ± 1.4 91.3 ± 0.4 96.9 ± 0.5 
DAN 74.3 ± 1.3 85.8 ± 1.0 97.0 ± 0.4 
DANversion 2 74.3 ± 1.3 85.9 ± 1.0 97.0 ± 0.4 
Nash Vote 74.1 ± 1.4 87.5 ± 0.8 96.9 ± 0.5 

Table 3. Results for the ensemble of three networks, 
different combination methods with an ensemble of the 
type “Decorrelated”. 

 ARITM DERMA ECOLI FLARE 
SingleNetwork 75.6 ± 0.7 96.7 ± 0.4 84.4 ± 0.7 82.1 ± 0.3
Average 74.9 ± 1.3 97.2 ± 0.7 86.6 ± 0.6 81.7 ± 0.4
Majority V. 74.9 ± 1.1 97.5 ± 0.6 86.3 ± 0.7 81.4 ± 0.5
WTA 74.9 ± 1.1 97.0 ± 0.7 86.0 ± 0.6 81.7 ± 0.5
Borda 74.9 ± 1.1 97.0 ± 0.9 86.6 ± 0.8 81.4 ± 0.5
Bayesian 74.8 ± 1.2 96.9 ± 0.8 86.8 ± 0.5 81.3 ± 0.5
W. Average 74.4 ± 1.2 97.3 ± 0.5 86.6 ± 0.7 81.6 ± 0.5
Choquet 74.9 ± 1.2 97.0 ± 0.7 86.0 ± 0.6 81.7 ± 0.5
Int. DD 74.9 ± 1.2 97.0 ± 0.7 86.2 ± 0.8 81.5 ± 0.4
W. Ave DD 75.1 ± 1.3 97.2 ± 0.7 86.6 ± 0.7 81.5 ± 0.4
BADD 74.9 ± 1.3 97.2 ± 0.7 86.6 ± 0.6 81.7 ± 0.4
Zimmermann 74.6 ± 1.2 97.3 ± 0.5 86.0 ± 0.9 81.4 ± 0.6
DAN 72.9 ± 1.1 96.8 ± 1.1 85.2 ± 0.7 81.3 ± 0.5
DANversion 2 72.9 ± 1.1 96.6 ± 1.2 85.0 ± 0.8 81.3 ± 0.5
Nash Vote 75.3 ± 1.3 97.2 ± 0.7 86.3 ± 0.5 81.6 ± 0.5

Table 3. (continuation 1) Results for the ensemble of three 
networks, different combination methods with an ensemble 
of the type “Decorrelated”. 

 IMAGEN IONOS PIMA 
SingleNetwork 96.3 ± 0.2 87.9 ± 0.7 76.7 ± 0.6 
Average 96.7 ± 0.3 90.9 ± 0.9 76.4 ± 1.2 
Majority V. 96.5 ± 0.3 90.7 ± 1.2 75.8 ± 1.1 
WTA 96.7 ± 0.2 91.4 ± 0.9 76.1 ± 1.1 
Borda 96.0 ± 0.4 90.7 ± 1.2 75.8 ± 1.1 
Bayesian 96.7 ± 0.3 92.3 ± 1.0 75.7 ± 1.1 
W. Average 96.7 ± 0.3 91.6 ± 0.8 76.1 ± 0.9 
Choquet 96.58 ± 0.19 91.1 ± 1.0 75.9 ± 1.1 
Int. DD 96.56 ± 0.19 91.0 ± 0.9 75.5 ± 1.1 
W. Ave DD 96.7 ± 0.3 91.1 ± 1.0 76.4 ± 1.1 
BADD 96.7 ± 0.3 90.9 ± 0.9 76.4 ± 1.2 
Zimmermann 96.5 ± 0.3 91.4 ± 1.0 76.6 ± 1.0 
DAN 95.9 ± 0.3 89.9 ± 1.2 75.2 ± 1.0 
DANversion 2 96.0 ± 0.3 89.9 ± 1.2 75.2 ± 1.0 
Nash Vote 96.2 ± 0.3 91.0 ± 0.9 76.4 ± 1.2 

Table 3. (continuation 2) Results for the ensemble of three 
networks, different combination methods with an ensemble 
of the type “Decorrelated”. 

 SURVI VOWEL WDBC 
SingleNetwork 74.2 ± 0.8 83.4 ± 0.6 97.4 ± 0.3 
Average 74.6 ± 1.5 91.5 ± 0.6 97.0 ± 0.5 
Majority V. 74.1 ± 1.5 89.4 ± 0.5 97.0 ± 0.5 
WTA 74.6 ± 1.5 91.2 ± 0.7 96.8 ± 0.4 
Borda 74.1 ± 1.5 87.8 ± 0.8 97.0 ± 0.5 
Bayesian 73.8 ± 1.3 88.0 ± 0.4 97.0 ± 0.5 
W. Average 73.4 ± 1.2 91.1 ± 0.4 96.9 ± 0.4 
Choquet 74.8 ± 1.3 90.1 ± 0.5 96.7 ± 0.4 
Int. DD 74.6 ± 1.3 90.0 ± 0.5 96.7 ± 0.4 
W. Ave DD 74.6 ± 1.5 91.7 ± 0.6 97.0 ± 0.5 
BADD 74.6 ± 1.5 91.5 ± 0.6 97.0 ± 0.5 
Zimmermann 74.1 ± 1.3 90.6 ± 0.6 96.7 ± 0.4 
DAN 74.4 ± 1.4 85.8 ± 0.7 97.1 ± 0.4 
DANversion 2 74.4 ± 1.4 86.3 ± 0.8 97.1 ± 0.4 
Nash Vote 74.6 ± 1.5 88.1 ± 0.8 96.9 ± 0.4 
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In tables 1, 2 and 3, the mean performance of a 
single network is included for comparison with the 
performance of an ensemble. 

As the results show the performance difference 
among the different combination methods is low. For 
example, for the case of table 1 (“simple ensemble”, 
three networks in the ensemble) the largest difference 
between two combination methods is only 1.9% in 
the case of database Ionos. 

However, the computational cost of the different 
combination methods is very low in comparison to 
the computational cost of training the ensemble. In 
this sense, it can be worthy to select an appropriate 
combination method because it provides an 
improvement in the performance at no extra 
computational cost. 

We can obtain further conclusions and insights 
in the performance of the different methods by 
calculating the percentage of error reduction of the 
ensemble with respect to a single network. We have 
used equation 5 for this calculation. 

networkgle

ensemblenetworkgle
reduction PorError

PorErrorPorError
PorError

sin

sin·100
−

=
(5)

The value of the percentage of error reduction 
ranges from 0%, where there is no improvement by 
the use of a particular ensemble method with respect 
to a single network, to 100%. There can also be 
negative values, which means that the performance of 
the ensemble is worse than the performance of the 
single network. 

 
Table 4. Mean percentage of error reduction for the 
different ensembles, “Simple Ensemble”. 

 Ensambles of 
 3 Nets 9 Nets 20 Nets 40 Nets 
Average 5,49 8,25 8,13 9,73 
Majority V. 2,73 6,61 7,52 8,11 
WTA 4,16 6,01 6,65 6,14 
Borda 1,55 4,63 5,35 6,39 
Bayesian 3,20 -0,52 -9,05 -16,58 
W. Average 2,22 9,77 10,82 6,38 
Choquet 4,35 4,87 -- -- 
Int. DD 3,74 3,75 -- -- 
W. Ave DD 5,54 8,52 -- -- 
BADD 5,49 8,25 8,13 9,73 
Zimmermann 6,80 9,18 4,98 -16,36 
DAN -1,27 1,72 -1,38 -0,71 
DANversion 2 -1,50 1,15 -1,46 -0,83 
Nash Vote 3,30 5,13 6,34 7,08 

 
This new measurement is relative and can be 

used to compare more clearly the different methods. 
Furthermore we can calculate the mean performance 
of error reduction across all databases; this value is in 
table 4 for ensembles of 3, 9, 20 and 40 networks, in 

the case of ensembles of the type “simple ensemble”. 
For the case of “Decorrelated” and 3, 9, 20 and 40 
networks, they are in table 5. 

As the results of table 4 show, the average is 
quite appropriate for the simple ensemble. In fact it 
provides the best performance for the case of 40 
networks. 

However, the method Zimmermann get the best 
performance and should be used for ensembles of low 
number of networks (3 networks). As the number of 
networks increases (20 and 40) the method does not 
work. 

There is another method that should be taken 
into account, weighted average gets the best 
performance when an intermediate number of 
networks in the ensemble is used (9 and 20). 

In the case of “decorrelated”, as the results of 
table 5 show, the best performing methods are clearly 
the simple average and BADD over a wide spectrum 
in the number of networks in the ensemble. In fact 
they are only outperformed in the case of three 
networks by the method W. Average DD. In this 
case, considering the simplicity and the performance 
the best alternative is average of outputs. 
Table 5. Mean percentage of error reduction for the 
different ensembles, “Decorrelated”. 

 Ensambles of 
 3 Nets 9 Nets 20 Nets 40 Nets 
Average 9,29 12,15 12,33 12,47 
Majority V. 7,46 10,15 11,15 11,63 
WTA 7,94 5,18 8,92 7,67 
Borda 3,90 6,68 8,26 8,99 
Bayesian 6,60 -1,59 -9,87 -16,52 
W. Average 8,68 7,44 9,49 3,21 
Choquet 6,28 3,56 -- -- 
Int. DD 5,85 3,36 -- -- 
W. Ave DD 9,64 11,88 -- -- 
BADD 9,29 12,15 12,33 12,47 
Zimmermann 7,22 9,50 3,39 -15,90 
DAN -0,62 0,26 1,88 0,60 
DANversion 2 -0,60 0,10 1,73 -0,10 
Nash Vote 5,46 6,84 10,04 9,69 

 
 
4   Conclusion 
In this paper, we have focused on the different 
alternatives of combination methods to obtain a 
unique output in an ensemble of neural networks. We 
have performed experiment with a total of fourteen 
different combination methods for ensembles of the 
type “simple ensemble” and “decorrelated”. The 
experiments are performed with ten different 
databases from the UCI repository. Furthermore, the 
ensembles are trained with 3, 9, 20 and 40 networks; 
giving a wide spectrum in the number of networks in 
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the ensemble. The results show that in the case of the 
“simple ensemble” and low number of networks in 
the ensemble, the method Zimmermann gets the best 
performance. When the number of networks is in the 
range of 9 and 20 the weighted average is the best 
alternative. Finally, in the case of the ensemble 
“decorrelated” the best performing method is 
averaging over a wide spectrum of the number of 
networks in the ensemble. 
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