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Abstract: — Hopfield networks are symmetric recurrent neural networks which exhibit motions in the state space

which converge to minima of energy. Hopfield networks can be used to solve practical complex problems such as

implement associative memory, linear programming solvers and optimal guidance problems. In such practical
problems, the Hopfield network, may be subject to disturbance signals which can be modelled as finite energy
signals. In this paper, we adopt the Lur’e - Postnikov systems approach to analyze Hopfield networks and suggest a
training algorithm leading to minimum L gain from the disturbance signals to the error of the network with respect
and to its equilibrium points. The suggested algorithm is applied to a numerical example from the field of magnetic

heading determination.
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1 Introduction

Hopfield networks are symmetric recurrent neural net-
works which exhibit motions in the state space which
converge to minima of energy. Hopfield networks
can be used to solve practical complex problems such
as implement associative memory, linear programming
solvers and optimal guidance problems. In such practi-
cal problems, the Hopfield network, may be subject to
exogenous noise which can be modelled as an energy
bounded signal. In this paper, we adopt a generalized
version of the Lur’e - Postnikov type Lyapunov func-
tion (see [1] and [2]) to analyze the Ly gain of general-
ized Hopfield networks with Markov jump parameters.
The resulting LMI conditions are then applied to anal-
yse the H., norm of the given network or to modify the
network weights using a full state feedback controller
to achieve minimum noise amplification. This scheme
is then used to solve a magnetic heading determination
problem from the measured outputs of three axis mag-
netometer and accelerometers.

The paper is organized as follows. In Section 2, the
problem is formulated and in Section 3 Linear Matrix
Inequality (LMI) based conditions are derived for Lo
gain analysis of the Hopfield network. These conditions
are the basis for an analysis stage where the state space
matrices are given. In Section 4, additional LMIs are
introduces for controlled networks. Finally Section 5
includes concluding remarks.

Throughout the paper the superscript ‘1" stands
for matrix transposition, R™ denotes the n dimensional
Euclidean space, R™*™ is the set of all n x m real ma-

trices, and the notation P > 0, (respectively, P > 0)
for P € R™ ™ means that P is symmetric and pos-
itive definite (respectively, semi-definite). Throughout
the paper (€2, F,P) is a given probability space; the ar-
gument § € Q will be suppressed. Expectation is de-
noted by E{.} and conditional expectation of  on the
event §(t) = 7 is denoted by E[z|0(t) = 1i].

2 Problem Formulation
The neural network proposed by Hopfield, can be de-
scribed by an ordinary differential equation of the form

Bi(t) = agvi(t)+ Y bijg; (v5(t))+ei = ki(v), 1 <i <n

j=1
(1)
where v; represents the voltage on the input of the ith
neuron and where a; < 0,1 < ¢ < nand b;; = bj;.
This network in the absence of noise (i.e. w(t) =
0) is usually analyzed by defining the network energy
functional:

_ —Zal / dg’ )
chgl vl

—a Z bz]gz (% g] v]

1,j=1

where it can be seen that 42 = — )~ dgdl(“’% ()? <0
where the zero rate of the energy is obtained only in the
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equilibrium points, also referred to as attractors, where
ki(0°)=0,1<i<n (3)

However, the neural network may be subjected to
environmental noise and to connection matrix pertur-
bations. The network subjected to the combination of
these two effects can be then described in matrix form
as:

0(t) = Av(t) + Bg(v) + Dw(t) + C,1 <i<n (4)

where A = diag(a,...,an), B =
bijlij=1,.0  C = [a e e |7,
v = [v1 v U }T and  where

T
9():=[ gi(v1) ga(va) gn(vn) |

The stochastic version of this network driven by
white noise, has been considered in [3] the stochastic
stability of (1) has been analyzed where it has been
shown that the network is almost surely stable when the
condition % < 0 is replaced by LE < 0 where L is
the infinitesimal generator associated with the Ito type
stochastic differential equation (4). This condition has
been shown in [3] to be satisfied only in cases where the
driving noise in (1) is not persistent. This non persistent
white noise can be interpreted as a white-noise type un-
certainty in A and B but it does not infer any stability
results for the practical case of real uncertainties. In the
present paper, the Lur’e - Postnikov systems approach
([1L,[2]) is invoked to analyze the stability and distur-
bance attenuation (in the H,, norm sense) properties of
Hopfield networks subject to Markov jumps in the pa-
rameters. The results obtained in this paper reduce to
the results in [2] regarding Lur’e - Postnikov systems
when the number of jump states is one. The results are
given in terms of Linear Matrix Inequalities (LMI) and
are applied to a practical example of magnetic heading
determination. To analyze the effect of w(¢) we first
define the error of the Hopfield network output with re-
spect to its equilibrium points by

z(t) = v(t) — 2°. 5)
The errors vector z(t) satisfy then
&(t) = Az(t) + Bf(z) + Dw(t),1 <i<n (6
where we assume zero initial conditions, namely
z(0) =0 @)

and where the components f;,k = 1,...,n of f(z) =
g(v° +z) — g(v°) are assumed to satisfy the sector con-
ditions

0 < zp fi(zk) < 20U €))

which are equivalent to

—Fi(zk, fr) = fe(zr) (fu(zr) —orzr) <0 (9)

Define the output signals vector of the network to
be

2(t) = Lx(t). (10)

The matrices A, B, C, D and L are piecewise con-
stant matrices of appropriate dimensions whose entries
are dependent upon the mode 6(¢) € {1,...,r} where
r is a positive integer denoting the number of possi-
ble models between which the Hopfield network pa-
rameters can jump. Namely, A(6(¢)) attains the values
of A1, Ay, ..., A, etc. It is assumed that 6(¢),¢ > 0
is a right continuous homogeneous Markov chain on
D ={1,...,r} with a probability transition matrix

P (t) = e Q = [gij]; i < 0;2°7_, ij = 0;
1=1,2,..,7r.
(1D

Given the initial condition 6(0) = 4, at each time
instant ¢, the mode may maintain its current state or
jump to another mode ¢ # j. The transitions between
the r possible states, ¢ € D, may be the result of ran-
dom fluctuations of the actual network components (i.e.
resistors, capacitors) characteristics or can used to arti-
ficially model deliberate jumps which are the result of
parameter changes in an optimization problem the net-
work is used to solve. In the latter case, the transition
probabilities, derived from the transition rate matrix @
entries can be used as tuning parameters.

In the next section, we consider the
following Lo gain analysis problem: given
A(0(t)), B(6(t)),C(0(t)), D(A(t)) and f(z) satis-
fying (8) verify whether the Ly gain of (6) and (10) is
less than v > 0, namely the following inequality holds:

J=FE {/Om(zT(t)z(t) - 72wT(t)w(t))} dt < (012)

3 L, Gain Analysis

The L, gain analysis will be based on the Lur’e - Post-
nikov type ([2]) mode dependent Lyapunov function of
the following form :

Vi 0(0)) = 2" POW)a + 23 M /O fu(s)ds
-1 0%

where P(6(t)) is a positive definite matrix with r pos-
sible values depending on #(t)and A\; > 0. The non-
quadratic terms multiplying Ay are aimed at reducing
the overdesign involved in the analysis, when n > 1.

In the sequel we closely follow a stochastic version
of the derivation outlined in [2].

We first note that the infinitesimal generator L as-
sociated with V(z, 0) is then given (see e.g. [4]) by

LV (z,0) =QV

fdiag{ WY (@,w) 9L ... hT(a,w)%

ox
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where V(z,0) = [ V(z,1) V(z,r) ]T,
LV(z,0) = [ LV(z,1) LV (z,r) ]" and
where b (z,w) = 2T AT + f(z)"B] + wTD].

We define S = diag{ o1 02 on } where
o; are the nonlinearity gains of (9). Defining also

A:diag{ )\1 )\2 )\n }

and
T=diag{ m 72 .. T}

one can state the main result of this section:

Theorem 1. The system (6) is stable (in probabil-
ity) for all x satisfying (9) so that (12) is satisfied if there
exist 0 < P; € R™*" i = 1,2,...,r and diagonal ma-
trices0 < A € R"*™ and 0 < T € R™*™ that satisfy
the following LMI:

Zi1 Zia2 BD;

Zly  Zixa AD; <0,i=1,2,..,7 (14)
DFP DFA —+2I
where

T
PA;+ ATP; + Z @i P+ LT L;

Zin =

j=1
Zilg = P,Bl—f—ST'f-AZTA (15)
Zigo = BFTA+AB; —2T

Proof: Applying the infinitesimal generator £ on
V(z,6) one obtains that ([4])

V(i) = Y0V )+ T ) 202D g
j=1

Since from the Ito type formula ([5], [6] and [7])
it results that
E{V(z,6(1))6(0)} =

E{V(2(0),6(0))[6(0)}

so{ | t £V (o(s), (6))ds .

it follows that for z(0) = 0, (12) is satisfied if

LV <~y wlw— 272 17

Using the expressions (13) and (16) one obtains
that (17) is equivalent with:

(+7AT + FTBT 4w DY) (Pix + Af)

+(zTP; + fTA) (Aiz + Bi f + D;w)

+ Z;:1 gijzT Pjz + 2T LT Liz — wTw < 0
where we have absorbed y~! in D for simplic-
ity of notations and where (11) and the fact that
Ar do not depend on 6(t) nulled the extra term

Z 1 i ey Mk fo fr(s)ds. Note that this term

would be nonzero if A\ depended on 6(¢). Complet-
ing to squares we get that the inequality Fjo(z, f) > 0
has to be satisfied subject to (9), where:
Fio(a?, f) = —gT (AZTPZ + P;A; + L;Li + PZDZDfPZ
+30 q,-ij) z— fT (BYA+AB + AD;DTA) f
—fT B?Pi + AA; + AD,‘D,LTP) T
—aT (P,B; + ATA+ P,D;DTA) f
+ (w” — 2T P,D; — fTAD;) (w — DF Pix — DT Af)
Using the S-procedure ([2]) one, therefore, ob-
tains that (17) is satisfied if there exist , > 0,7 =
1,2,...,nsothat Fyo(z, f) — >, Fr(z, f) > 0.
Noticing that

=Y nFi(w, f) =
k=1

= fIrf - fT§S$ — 2T

n

> (e ff = mhokfrr)
k=1

T
37

it results that (17) is satisfied if
+PiDiD;‘FPi + 22:1 qiij> T
+fT (BIA+ AB; + AD;DIA-T) f
+fT (BFP,+ S%Z + ATA+ AD;DIP) z
T(P,B;+SL + ATA + P,D;DTA) f <0

Substituting T' for % and applying on the latter
Schur complements, the result of the Theorem readily
follows reintroducing ~.

Using the above theorem one may establish stabil-
ity in cases where the system parameters A;, B; , etc.
jump, due to changes in the optimization objectives of
the network, when the Hopfield network continuously
evolves its states, without resetting the network.

4 Controlled Hopfield Networks

In many cases, the system parameters A;, B;, etc. are
given and the corresponding attractor points are the
solution of some corresponding optimization problem
where (2) is minimized. When the disturbance attenu-
ation <y is not small enough, one may be interested in a
subtle modification of the system parameters so as to
reduce . To this end we introduce a control signal

= [ur up . up ]T into the network in the
following manner:
e(t) = A(0(t)=(t)+ B(0(t))f(x(t))
+D (6 (1)) w(t) + u(t), wueR™(18)
2(t) = L(0()=(t)+ G (6 (t))u(t)
where LTG; = 0, i = 1,...,r. Find the state feed-
back control u(t) = K (6 (¢ )) (t) such that the result-
ing system:
z(t) = (A(0(2) + K (6(1))) z(t)
+B(0(t) f (x(t)) + D (6 (¢)) w(t)  (19)
2(t) = (L(6(1) + G (6 () K (0 (1)) x(t)
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satisfies the condition in the statement of Theorem 1.

The following result gives necessary and sufficient
conditions for the solvability of this problem.

Theorem 2. The state feedback problem formu-
lated above has a solution if and only if there exist sym-
metric matrices P; > 0, ¢ = 1,...,r and the diagonal
matrices A > 0, T > 0 verifying the following system
of matrix inequalities:

U1 (PZ,A,T,S) 0
0 —~2I

Z/l13 (Pza A7 Ta S)
-DIGT <0
Uss (P;)

(20)
where

Uy (P, AT, S) =Pt (Z;:1 qijpj> P
+P'LTL;P7Y — AT'TSPY — P.STA™ — 2T
Uiz (P, AT, S) := —P; ! <AiTPi + 305219 P
+LTL;) PT'GT + A'BIGE + A7'TSP'GT
Uss (P;) = Gy (PTTAT + AP
+P! (Z;=1 ‘Iz'ij) P+ Pz‘_leTLiPz'_l) Gl -1

and

BIA+AB; —2T AD;
DI A —y2I

] <0,1=1,..,r
@1
Proof: Taking into account the orthogonality con-
ditions LTG; = 0, i = 1, ..., 7 it follows that the con-
ditions of Theorem 1 are fulfilled by the system (19) if
there exist the symmetric matrices P; > 0, ¢ = 1,..,r
and the diagonal matrices A > 0 and 7" > 0 such that
the system of matrix inequalities:

Zm + KF'GTGK;  Zia PiD;

2T, Zis AD; | <0,
Dfp DIA  —21
1=1,2,..,7
(22)
where
Zi = P(Ai+K)+ (A4 + K)TP,
+ Z @i P+ LT L;
j=1

Zito PiB; + ST + (A; + K;)TA  (23)
21‘22 = BZTA + AB, - 2T

i = 1,...,r is feasible. Based on a Schur complement
argument the inequalities (22) may be rewritten in the
equivalent form:

Za1  Zne PD; KIGT
2L, Zis AD; 0 <0
DI'P DFA —42I 0 -7 (24
G;K; 0 0 I
i=1,2,..r

In the following the case when the above inequali-
ties are strict will be considered. Further the inequalities
(24) can be written as:

Zi+PIK; Qi+ QT KI'P; <0, i=1,...,r (25
where:
Zinn Zia2 PD; 0
Z' . _ 2;1;2 ZZ'QQ ADl 0
i DIP, DIA —2T 0
0 0 0 -1
Q : =[I 00 0]

and Zillv ZilZ and Zi22 are defined in (15) Then the
Projection Lemma (see e.g. [2]) gives that (25) are fea-
sible if and only if:

WE Z:Wp, <0 (26)

and

W& ZiWg, <0, (27)

where Wp, and W, are bases of the null spaces of P;
and Q;, respectively. Then one can directly see that

P7'A 0 —-P7'GT
-I 0 0
W, = 0 I 0
0 0 I

and thus condition (20) directly follows after pre and
post-multiplication of (26) by diag (A~*, I, I). Fur-
ther, since

Wo, =

i

OO ~NO
O NO O
~N O O O

direct computations give that condition (27) is equiva-
lent with (21)and thus the proof ends.

Remark 1. If the systems of matrix inequalities
(20) and (21) are feasible then the state feedback gains
K; are obtained solving the linear matrix inequalities
(25).

The inequalities (20) cannot be written in an equiv-
alent linear form due to the terms A~1T'S Pi_1 appear-
ing in the elements (1,1) and (1,3). The idea to introduce
an additional variable ([2]) Z; = A~'TSP; " is not
effective since A~!7T'S must result a diagonal matrix.
Then an alternative numerical method must be used.

Assuming that the conditions of the above theo-
rem are fulfilled, the gains K;, ¢ = 1,...,7 can be de-
termined as follows:

Step 1. Solve the system of LMIs (21) obtaining
thus the diagonal matrices A > 0 and 7" > 0; one can
see that the system (21) is also checked by any other
diagonal matrix larger than 7.
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Step 2. Taking P; = 1T and T = 11 withe > 0
the condition (20) becomes:

V11(8) 0 V13(E)
0 %I —-DIGT | <0, i=1,..,r
V%(E) —GZDZ Vg;;,(&)
(28)
where
2
V11(6) = €2L;FLZ' —A'S—SATL— E
Vis(e) = —e(AT +eLTL;)GT + A™'Bf GT
+A"tSGT
Vs3(e) = eG; (AZT +A; + ELiTLi) GzT -1

Inspecting (28) it follows that these inequalities
are fulfilled for € > 0 small enough if:

¥ > max p% (DZ-TGiTGiDi) (29)

ie{1,r}

with p (.) denoting the spectral radius. Thus with P; =
T = %I determined for a small enough ¢ > 0 and with
A obtained at Step 1, one can solve the basic LMIs (25)
with respectto K;, ¢ =1,...,7.

S Example

We consider the problem of obtaining the azimuth an-
gle from 3-axis magnetometer, given its readings of the
components of the magnetic field of Earth and noisy
measurements the pitch and roll angles. It is assumed
that the azimuth angle is constant, for example a cam-
era mounted on a car travelling on a straight road for
some time. Denoting the Euler angles of the camera
axis by v, 0, ¢ (namely 3 successive rotations transform
Earth fixed axes to camera fixed axes), the noisy mea-
surements of roll and pitch angles can be, for example,
obtained from accelerometer readings where they noise
can be the results of road imperfectness such as road
bumps. Neglecting this maneuver noise (which will
be re-introduced to the simulations), the accelerometers
measure

ay gsin(6)
ay | = | —gsin(p)cos(6)
a, —gcos(¢)cos(6)

where g is the local gravity constant. The angles
6 and ¢ are then derived from 6 = sin~'(ay/g)
and ¢ = —sin~'(a,/cos(f)). We denote the mag-
netic field vector in the North-East-Down frame by
e = [61 €9 63]T
ings m := [ m1 mo mg ]T. These two vectors
are related by m = Lv where L(¢,0,¢) is the di-
rection cosines matrix (DCM) corresponding to %, 8, ¢
(see eq. (4.54) in [10]). Since we define the az-
imuth to be relative to the magnetic north of Earth, we

and the magnetometer read-

just take e := [1 0 U}T

[ cos(v) sin(v) ]T and
my + sin(0%))es

b = | my — sin(¢D)cos(6D)es
ms — cos(¢?)cos(8%))es

Denoting also =z :=

we readily obtain that each three axis magnetometer
reading m(®) is related to cos(¢) and sin (i) solution
to the problem of resolving the azimuth angle ) out of
the magnetometer measurements corresponds to b(*) =
A® g where

A .=
cos(0)e; cos(0)e,
sg0(i)er + cos(dP)ex  —cos(dD)er + s4.0(i)ea
cp0(i)er — sin(@D)ex  sin(d®)er + cyo(i)ea

with s49(i) = sin(0D)sin(¢®) , cpo(i) :=

cos(¢)sin(6)) and where z should satisfy the con-

straint 272z = 1. Since the camera is assumed to be

stationary 7+ = 1,2...N measurements can be taken.
p)

p(2)

In such a case, defining b = and A =

p(N)
AW
A®) .
the problem of resolving ¢ from the N mea-

AWN)
surements becomes one of solving the following nor-
malized least-squares problem to minimize J = (b7 —
zT AT)(b — Ax) subject to the constraint 7z = 1.
Note that A € RN?2 where N >> 1 and without
the constraint z72z = 1 a solution to this problem
would be z = (AT A)~1 ATb. To impose the constraint
T2 = 1 on the solution we suggest an iterative solu-
tion which makes use of the Hopfield network concept
with Markov jump parameters. To this end, first note
that J can be written as

Ji = 2T AT Az — 22T AT + b7 (30)

Defining z; = g;(v;) where g(.) = tan~1(.) and
defining b; ; = —2{ATA};; ¢ = 2{ATb}; we no-
tice that (30) can be written as (2) for small |a;|. To
impose the constraint 72 = 1 one would need to add
to J of (30) the term (1 — 2T x)? which is biquadratic in
x rather than quadratic to fit the form of (2). To resolve
this problem we may use the observation that as « will
approach it steady state solution (i.e. the local minimum
of the energy function of (2), one may be able to approx-
imate (1 — 272)? by (1 — 27 2pren)? Where Tppe, is
the previous value of z during the recursions to numer-
ically solve (1) say by Euler integration. We, therefore
define also Jo = 2T AT Az — 22T ATb + bTb + p(1 —
2T 2 pren)?. We see that Jo = 27 AT Az — 22T ATh +
b'b + p(1 + 2" xprev) . — 227 xprev). Namely,
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Jo = 2T (AT A+ pprev ey )t —22T (ATb+ pTprey )+
bTb+ p. Comparing the latter with (2) we choose By =
—2ATA, By = —24TA - 2p:vmeva:;-fmv, C, =
—2ATp and Cy = 2ATb + 2pzpre,. We also choose
A = —€l for small € > 0 so that it has a negligi-
ble effect on (2). The solution to our problem will
be, therefore, obtained by applying (4) on the above
chosen parameters where we choose € = 0.01 and
—-0.5 0.5
where = 0.05 05 —05
sitions rate between r = 1 and r = 2 affecting A
and B. Since P(t) = e%* and where the correspond-
e @ where
B B }
a = B = 0.025. It follows that P(t) = %t = (at +
_1 | Bt+u)at at — p(t)at B
A) [ Bt — u(t)Bt ot + u(t)Bt ] where u(t) =
e~ (@4t Namely, near t = 0 the mode 7(t) will spend
more time at 7(¢) = 1 and as ¢ increases more time will
be given to n(t) = 2 for the sake of satisfying 7z = 1.
We next simulate our algorithm where we take
true values of the roll and pitch angles to be ¢ =
—15 degrees and § = 10 degrees. We also take the
true magnetic azimuth to be ¢y = 145 degrees. The
roll and pitch angles are measured with additive Gaus-
sian noise of zero mean and 10 degrees standard de-
viation, and the magnetometer output is taken without
noise. Choosing p = 10 we obtain the simulation re-
sults,obtained with an integration step of At = 0.01
second and Euler method for integration. The conver-
gence of cos() and sin(¢)) has been obtained, and
the fact that the constraint tended to convergence dur-
ing periods where ¢ = 2 was observed. The solution
for 1y the Hopfield network converged to the minimum
of the cost function J. The fact that the stochastic
Hopfield system we simulated is stochastically stable
has been verified by solving (22) of Theorem 1 using

. 0.0309 0.0000
[9]. We obtained P; = 0.0000 0.0310 ], P, =

defines the tran-

ing infinitesimal matrix is @ = [

0.0255 0.0036 T — 10-3 1.1723 0
0.0036 0.0283 |*~ 0 0.6134
1072 - 0.7642 0

and A = 0 0.5995

tive definite matrices and disturbance attenuation factor
v =0.0313 .

] all being posi-

6 Conclusions

A class of stochastic Hopfield networks where the net-
work weights jump according a Markov chain process
have been considered. Both stochastic stability and dis-
turbance attenuation analysis in an H, setup have been
related to Linear Matrix Inequalities which are easy to
solve. A class of controlled stochastic Hopfield net-
works has been introduced where the disturbance atten-
uation factor can be modified via state-feedback. The
theory of stochastic stability and disturbance attenua-

tion analysis has been applied to a simple problem from
the field of magnetic heading determination. Although
the problem is simple, it may represent more involved
problems where quaternions have to be estimated from
some related measurements ([8]) where normalization
constraints should be applied to the estimates. The prob-
lems of reducing the inherent overdesign in the synthe-
sis of state-feedback modification of the Hopfield net-
works and exploring its possible applications is left for
future research.
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