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Abstract: - This paper presents a partial discharge (PD) recognition procedure. The top-down approach 
discussed first how to make the tailor-made current transformer (CT) models, how to obtain the 3D patterns 
from the CT models in a magnetically shielded room, and finally how to apply of an artificial neural network 
(BPN) in recognition. Firstly, tailor-made cast-resin current transformers with insulating defects were made for 
testing. The testing used magnetically shielded room and a commercial PD detector system to obtain 3D patterns 
of four experimental models for recognition niche. Secondly, through preprocessed data originating from the 
detecting system, training data sets for a back-propagation artificial neural network are used to be PD 
recognition patterns in three kinds of defects of current transformers and in a perfect one. Finally, with a view to 
exploring applicability in the field, this research randomly selects different levels of noise to distort the original 
training and testing set. These distorted data sets are entered for testing. Research results show that, with 20% 
noise per discharge count, an 80% successful recognition rate is achieved. 
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1   Introduction 
Technology advances keep boosting sophistication 
levels of electric power facilities. Maintenance 
requirement demands are rigorous. With power 
demand rising year by year, electrical stresses on 
insulating materials of facilities also rise. Frequent 
overloads shorten life spans of power facilities, as 
seen in the speeded-up aging of insulating materials 
and the increasing occurrences of unanticipated 
power failures. The semiconductor industry is 
booming and relies on a stable power supply to avoid 
possible tremendous losses from unexpected power 
cutoffs. Although maintenance routines for power 
supply facilities are regularly executed, a blind spot 
still exists therein; that is that regular routines fail to 
gauge the real levels of defects in insulating materials. 
Maintenance on a regular facility-power-off basis 
inevitably affects factory operations. Suppose an 
examination of insulating materials for defect levels 
on a facility-power-on basis became feasible. 
Hazards of unexpected power failures induced by 
facility disorders could then be immensely reduced. 
Since PD itself can reveal defect levels, we present a 
discussion of PD detecting and pattern recognition. 
PD detecting has drawn attention and a great pool of 
research throughout the world in recent years and 
seen some accomplishments and breakthroughs. In 
1993, H. Borsi discovered a temperature rise would 
bring down the inception voltage of coil partial 
discharge, and over heating would threaten the life 

spans of dry transformers [1]. In 1995, V. K. Agarwal, 
among others, found factors that cause power facility 
aging: electrical stress, thermal stress, mechanical 
stress, radiation and so forth. They argued that PD 
detecting in insulating agents boasts supreme 
sensitivity and remarkable accuracy [2]. PD detecting, 
hence, acts as the key indicator of power facility 
breakdowns. Pattern recognition in the past depended 
on expert judgments for classification and defect 
level determination. Such a process is unscientific 
and needs professional experience from years’ 
practice. As a more scientific approach, to bypass 
human errors, this paper introduces and elaborates on 
how to collect experimental data and how to use BPN 
for pattern recognition [3]. 
 
 
2   Problem Formulation 
PD data, if obtained from simulation testing, may 
differ from those derived from empirical research. 
This study uses empirical experimentation, and 
employs tailor-made cast-resin current transformers 
with designated defects. Four types of defects 
designed which include Model A: perfect product, 
Model B: high voltage corona discharge, Model C: 
low voltage coil partial discharge and Model D: high 
voltage coil partial discharge. To reduce interference 
from noise and to make a very high level of 
dependability, the experiment is conducted mainly in 
a control room and a magnetically shielded room.  
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 Fig. 1. Basic diagram of the PD measuring system 

2.1 Procedure of Testing 
Fig.1 depicts the basic diagram of the PD measuring 
system. Its control room facilities are composed of a 
high voltage controller, PD detector, and a switch 
control panel. And its magnetically shielded room 
facilities are a high voltage generator, a capacitive 
voltage divider and a coupling device. For the first 
step of the whole PD detecting cycle, a specified high 
voltage is generated by the high voltage generator in 
the magnetically shielded room via the switch control 
panel in the control room. This high voltage is then 
applied to the subject, the current transformers. PD 
signals are retrieved from the capacitive voltage 
divider and the coupling device and sent back to the 
PD detector in the control room for recording [4]. 
Fig.2 is the equipment connection of High-voltage 
generator, of partial discharge, and of tailor-made 
current transformer in shielded room with low noise 
environment. Aiming the testing object, the testing 
specification is cast-resin current transformers 
EWF-20DB and Epoxy resin is the main material. 
The Rated maximum voltage is 23kV, the impulse 
voltage is 125kV, the primary current value is 
60/30A, and secondary current value is 5A. Fig.3 
illustrates the commonly detecting circuit with RLC 
impedance and charging capacity which 
characteristic is with low impedance as charging and 
with narrow bandwidth as detecting and thereby it is 
with high sensitivity [5]. Fig.4 illustrates the 
experiment procedure. High voltage controller, via 
switch control panel, orders high voltage generator to 
generate a high voltage, which delivers 34.5kV, 1.5 
times as high as the maximum voltage of the current 
transformer, within 50 seconds, and holds for 1 
minute and subsequently drops to 23kV in 20 
seconds [5-7]. At the point, the detector starts to 
gauge PD for a session of 2 minutes. 20 minutes after 
the detecting finishes, the current transformers 
recuperate and the next stage of the experiment 
unfolds. It is for the purpose of exciting PD that 
34.5kV is held for one minute. Voltage drops to 23kV 
in order for PD to continue and for the PD detector to  

 
Fig. 2. The measurement equipment and 

placed in the shielded room measurement. 
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Fig. 3. Detecting circuit of partial discharge 
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gauge and record. Each experiment renders a set of 
data. There are four kinds of discharge models; each 
model is experimented on 30 times. This experiment 
produces 120 sets of data, 80 and 40 of which is for 
training and for testing. 

2.2 Tailor-made Models  
As mentioned, this testing involved four tailor-made 
current transformer models which is model A:- 
perfect product, model B:- high voltage corona 
discharge, model C:- low voltage coil partial 
discharge and model D:- high voltage coil partial 
discharge. Fig. 5 depicts the inner defect of model C 
and model D within 1.25mm wire of primary side and 
of secondary side respectively.  
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Therefore the particular defect must be made before 
case resining in manufacture procedure. To observe 
the characteristic patterns of four models, the 
converted 3D pattern for the Model A, the perfect 
product, as in Fig. 6, the PD under 1 pC scattered 
around from 0~360°. In Fig. 7, the 3D pattern for 
Model B- high voltage corona discharge, discharges 
of similar amounts of more than 10 pC cluster at 270°. 
It shares identical patterns with those corona 
discharge patterns found in most references. Fig. 8 
shows the 3D pattern for Model C- low voltage coil 
partial discharge, where most PD is lower than 100 
pC and largely in quadrants I and III. Fig. 9 shows the 
3D pattern for Model D- high voltage coil partial 
discharge. The PD amounts are distributed broadly in 
the largest phase angle-most under 300 pC and in 
quadrants I and III. In the aforementioned 3D pattern, 
φaxis stands for the phase angle at PD onset, q  axis 
PD amount, and n  the discharge count againstφ and 
q . Original 3D pattern data is retrieved from the PD 
detector and takes the form of a matrix. The row 
corresponds with phase angleφ and the column with 
discharge amount q . The matrix element comes up as 
discharge count n . The 120 sets of data vary in 
configuration, in the range 288× (29~57), and have to 
be processed before becoming input to BPN. 
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Fig. 5. Inner structure of tailor-made CT. 
(a) Secondary coil with 1.25mm wire (b) 

Primary coil with 1.25 mm wire 

 
Fig. 6. Model A:  Perfect pattern. 

 
Fig. 7. Model B:- high voltage corona discharge pattern. 

 
Fig. 8. Model C:- low voltage coil PD pattern. 

 
Fig. 9. Model D - high voltage coil PD pattern. 

 

3   Application of BPN to PD Pattern 
Recognition 

3.1 Preprocessing Procedure for Training 
To meet the needs of BPN input layers and to 
optimize the efficiency of BPN training, input data 
handling plays a vital role [8, 9]. In this study, the 
retrieved 3D pattern data went through 3-step 
processing before being used as BPN input layer data. 
This preprocessing is explained steps as follows: 

Step 1: PD Data Acquisition 
From the 3D patterns experiment, we collected raw 
data matrices and further defined the range and 
designation of each notation accordingly. The 
collected 120 sets of data matrices vary in 
configuration, in the range of 288× (29~57).φ axis is 
the discharge phase angle 0°~360° uniformly divided 
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into 288 units, each 1.25°. q  axis is discharge amount 
from 0 pC to 392 pC sliced into 29~57 divisions, each 
of which equals the maximum discharge amount 
( maxq ) divided by 29~57. n  axis is the discharge 
count, also the matrix element value, 0~22. 

Step 2 : Feature Extraction 
We build an M N×  matrix, where φ axis 0°~360° 
with each division 360°/ M ; q  axis 0 pC~400 pC 
with each division 400/ N . The original matrix is 
then compared with this new matrix. If the range of 
each division from the original matrix fits into that of 
the new matrix, the original element value can be 
entered into the new matrix. Further, this value is 
compared with the one previously filled in. The 
larger stays but the smaller is deleted. This is for 
simplifying the original matrix and filtering out low 
per-discharge-count noise. 

Step 3 : Data Scaling 
We scale the discharge count, n , of the new matrix to 
make new matrix elements valued between 0.1 and 
0.9 so that BPN will tend to converge. Finally, we 
manage to align the new matrix elements in order 
from 1i = , 1j = to i M= , i N= . They become 
tabulated data for the BPN. 
 
3.2 PD Pattern Recognition Using BPN 
The artificial neural network structure adopted by 
this paper is a three-layer feed-forward back 
propagation network (BPN), and applying Matlab 6.5 
BPN toolbox to archive this recognition. The 
selection of suitable neuron numbers for the input 
layer and the hidden layer can be obtained from the 
following tests: 

3.2.1 The investigation on the hidden layer's 
neuron number 

In general, there are no standard methods for 
determining the hidden layer's neuron number, the 
number choosing for which can only be determined 
through experiments according to various problems 
[10]. This paper used ‘point by point’ method to 
describe the curve of MSE and training time and to 
observe which section is the advantage to be the 
hidden layer’s neural network. When selecting 20 for 
M  and N  within the input layer, that means the 
input-layer neuron number is fixed at 400; if four is 
selected for the neuron number within the output 
layer, which stands for four kinds of PD models. For 
each training instance, this study requires the training 
to stop once the number of learning epochs reaches 
3000. The relationship between mean square error 
and number of neurons in the hidden layer and the 
required training time for the entire artificial neural 

network when the hidden layer’s neuron number, H , 
is set at 10, 20, 30, 40, 50, 60 and 80 respectively. Fig. 
10(a) shows the relationship between mean square 
error and number of neurons in the hidden layer and 
the required training time during network training 
with various hidden neuron numbers, H , within the 
hidden layer. From Fig. 10(a), we can see that if the 
neuron number in hidden layer is set at from 30 to 50, 
the mean square error in entire network will be 
smaller and the time used will be rather short. When 
30 and 40 are selected for M  and N , respectively, 
within the input layer, namely when the input-layer 
neuron number is fixed at 1200, selecting number 
‘four’ for the neuron number within the output layer 
will represent four kinds of PD models. The 
relationship between mean square error and number 
of neurons in the hidden layer and the required 
training time for the entire artificial neural network 
when the neuron number, H , in hidden layer is set at 
10, 30, 50, 70, 90 and 110 respectively is next 
investigated. Fig. 10(b) indicates the relationship 
between mean square error and number of neurons in 
the hidden layer and the required training time during 
the entire network training caused by the various 
neuron numbers, H , within the hidden layer. Hence, 
if the neuron number in hidden layer is set between 
50 and 70, the entire network’s mean square error is 
smaller and the training time is shorter. 
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Fig. 10. Mean square error in hidden layer 
(a) 20 20M N× = ×                   (b) 30 40M N× = ×  
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Fig. 11. The mean square error after network training  
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3.2.2 The investigation on the input layer’s 
neuron number 

Using Matlab 6.5 toolbox, BPN, the input-layer 
neuron number in this study is mainly controlled by 
M N× , where M  is the division number of the 
discharge angle φ axis, and N  the division number 
of the discharge amount q axis. The relationship 
between mean square error and number of neurons in 
the hidden layer and the required training time for the 
entire artificial neural network when the neuron 
numbers, learning epochs and the network 
parameters in hidden layer and the output layer are 
fixed is then investigated. When 40 is selected for the 
neuron number within the hidden layer, number 
‘four’, for the neuron number in the output layer, 
3000 for learning epochs, The relationship between 
mean square error and number of neurons in the 
hidden layer and the required training time for the 
entire artificial neural network with M set at 10, 20, 
30, 45 and 95 is then investigated. Fig. 11(a) shows 
the mean square error and the required time for the 
training process, corresponding to various division 
numbers M . From Fig. 11(a), it is seen that when the 
division number M  of the input layer φ axis is set 
between 20 and 30, the entire network’s mean square 
error will be very small and the time used for training 
will be rather short too. We then investigate with the 
identical method the relationship between mean 
square error and number of neurons in the hidden 
layer and the required training time for the entire 
artificial neural network when the N  within the input 
layer is set at 10, 20, 40, 50 and 100 respectively.  
Fig. 11(b) indicates the mean square error and the 
time required for the training process corresponding 
to various division numbers, N . Hence, if the input 
layer's N  is set between 20 and 40, the entire 
network’s mean square error will be rather small and 
the training time will be rather short too. 
From the above experiments, it is seen that when the 
input-layer neuron number is set at 400 and 1200 
respectively, the neuron number, H , in hidden layer 
may be selected in the range of 30 to 50 and 50 to 70 
respectively, which will result in a tiny mean square 
error discrepancy and a rather short required training 
time for the entire artificial neural network. When the 
neuron number, H , hidden layer is set at 40, the 
input-layer neuron number M N×  can be selected in 
a range of M ＝20~30 and N ＝20~40, which will 
have an excellent effect on the entire artificial neural 
network training and the required time will be 
extremely short. However, the input-layer neuron 
number probably depends on each case. 
 
 

4   Results & Discussion 

․Noise-free recognition results & discussion 
120 sets of data obtained in a shielded room without 
noise distortion undergo BPN recognition, 80 of 
which are for training purposes, 40 for testing. 
Results show BPN recognizes four types of PD 100% 
correctly, namely (1,0,0,0), (0,1,0,0), (0,0,1,0) and 
(0,0,0,1). Distinct features make these four types of 
patterns an easy task, and guarantee a 100% 
recognition rate. The results provide the 
dependability of standard defect model using 
tailor-made current transformer instead of traditional 
assumption.  

․Noise-corrupted recognition results & 
discussion 
20 sets of data are randomly combined for testing 
from PD models A, B, C and D, including those used 
in training and those did not. They are distorted by 
100 sets of random noise matrices. With noise per 
discharge count at 10%, 20%, 30% and 40% 
respectively, these 20 sets of data undergo BPN 
pattern recognition. Results are displayed and 
explained in Table 1, including comparison for noise 
distortion on pattern recognition. In each PD model, 
there are four outcomes specifically for noise at 10%, 
20%, 30% and 40%. Fig. 12 illustrates in detail how 
noise distorts the PD models. The recognition rate per 
model deteriorates with random noise. In particular, 
the high voltage corona discharge model, named 
model B suffers the most and model D “High voltage 
coil PD” the least. From Fig. 12, we can see the effect 
of noise at 10%, 20%, 30% and 40%. With noise 
within 10%, the recognition rates hover over 90%; 
with noise within 20%, the recognition rates stay 
above 80%. With noise higher than 20%, the 
recognition rates for model A and model B worsen 
notably. It is the small PD distribution coverage of 
model A “Perfect product” and model B “High 
voltage corona discharge” that makes both 
susceptible to the effects of noise. Even worse, since 
most noise per discharge count lies beyond the scope 
of the noise-free 3D pattern, noise is sometimes in a 
position to easily alter the pattern and make 
recognition difficult. However, in some cases 
noise-present and noise-free patterns are hardly 
different, with noise overlapped and with part of the 
original pattern, the recognition rates are hence not 
subject to deterioration, “High voltage coil PD”. The 
broad coverage of its pattern can guard against noise 
corruption. 
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Table 1 The recognition result under noise. 
                    Recognition rate
Noise level (%) A B C D

10 % Noise 96 % 94 % 97 % 98 %
20 % Noise 81 % 80 % 92 % 98 %
30 % Noise 68 % 64 % 88 % 95 %
40 % Noise 59 % 51 % 82 % 90 %  
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 Fig. 12. Diagram of recognition rate 

From this test of paper, it is noticed that when the 
artificial neural network recognition under no noise 
interference conditions in a lab is applied, the 
recognition rate is good. After adding random noises, 
the recognition result is greatly affected. As shown in 
Fig. 12, Model A and Model B are greatly influenced 
by noises respectively; if the noise exceeds 20%, the 
recognition rate of Model A and Model B will 
apparently deteriorate. If this method is to be applied 
to field measurement, further investigation in the 
noise filtering technique, which is vital, will be 
needed. From the recognition results, it is observed 
that noise influence is a key factor in field 
measurement. 
 
 
5   Conclusion 
The empirical experiment based on tailor-made 
cast-resin current transformers distinguishes itself 
from a simulation in its practicality. The process and 
experience of the experiment contribute considerably 
to practical PD detecting. Data is obtained through 
the procedures stipulated by R.O.C. national standard 
CNS11437 and IEC60044-1. To set reference values, 
all data collection follows one single route. Study of 
BPN application to PD pattern recognition from 
current transformers proves itself valid. In a 
magnetically shielded room, noise-free recognition 
rate is 100%. Noise per discharge count at 20% 

lowers the recognition rate to 80%. We thus learn the 
relation between recognition rate and the degree of 
effects from noise. Noise may interfere with or 
overlap the PD pattern, and likewise influence the 
recognition rate. The research results are of 
importance for reference in field detecting. 
Nonetheless, there is a way to work before this 
method can be considered field practical. Our to-do 
list states that more data need to be collected from 
defective patterns and more appropriate filter 
techniques are adopted, in sound consideration of 
application context. Only by going through the list 
can we be assured of reliable recognition. 
From the tailor-made models and shield room 
experiment, it is therefore an accurate practice to 
design the detecting system with a very high level of 
dependability, thereby choosing optimal recognition 
algorithm through the niche of built standard patterns 
will be cleared in future study. 
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