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Abstract:- This paper presents a combined approach based on Prony analysis and radial basis function neural 
network for monitoring small signal stability and parameter tuning of power system stabilizer. Prony analysis 
method is used to estimate the modal components of low frequency oscillations associated with synchronous 
generators. In this method, the measured (simulated) time-domain signal is decomposed into damped sinusoids 
with four parameters per mode: amplitude, frequency, damping and phase angle. Once the local mode 
responsible for poor damping of the low frequency oscillations is identified, its damping factor and damped 
frequency are used to predict the parameters of the stabilizer using a radial basis function neural network. The 
tests results show that Prony analysis-neural network technique can be effectively applied in small signal 
stability analysis and power system stabilizer design. 
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1 Introduction 
Small signal stability analysis is concerned with the 
dynamic behavior of power systems following small 
perturbation from operating points. Its main 
objective is to predict and monitor the poorly 
damped low frequency oscillations resulting from 
rotor oscillations. The most critical types of these 
oscillations are the local-mode and interarea-mode 
oscillations[1-4]. The former occurs between one 
machine and the rest of the system and is between 
0.5 to 2 Hz. The later occurs between interconnected 
machines and is between 0.1 and 0.5 Hz. The 
stability of these oscillations is of vital concern and 
essential power system planning, operation and 
control. For secure power system operation, the 
operators need fast and efficient computational tools 
to allow online stability assessment. This paper is 
concerned in stability assessment of local mode 
oscillations. 

Traditionally, small signal stability analysis 
studies of power systems are carried out in 
frequency domain using modal analysis method [2-
5]. This method implies estimation of the 
characteristic modes of a linearized model of the 
system. It requires first load flow analysis, 
linearization of the power system around the 
operating point, developing a state-space model of 
the power system, then computing the eigenvalues, 
eigenvectors, and participation factors [5]. Although 
eigenvalue analysis is powerful, however, it is not 
suitable for online application in power system 

operation, as it requires significantly large 
computational efforts. An alternative method to 
avoid the computational burden is to use online 
modal identification techniques that can quickly 
assess the stability of the power system on the basis 
of data samples obtained by measurements and 
automatically provides new estimates as new data 
samples are received. In these techniques, the 
characteristic modes of the dynamic system are 
determined from the dynamic behavior obtained 
either by online measurement, or by computer 
simulation of the linearized model [6-8]. Once the 
modes are obtained, the specific electromechanical 
mode (eλit) that provides the largest contribution to 
the low frequency oscillation is identified and then it 
can be used for tuning the parameters of a 
conventional power system stabilizer (PSS) using 
conventional phase compensation [1,2], adaptive or 
neural network (NN) technique [9-11]. Recently, 
neural networks have been applied in many areas of 
power systems including identification and control 
of nonlinear systems and tuning of PSSs for their 
high computational speed, generalization and 
learning ability [9-11]. 

This paper presents an online signal processing 
technique for monitoring the small signal stability 
based on Prony analysis [6-8]. It is a technique for 
modeling sampled data as a linear combination of 
exponentially damped sinusoids. In this paper, 
Prony analysis is applied to the speed signal of a 
synchronous generator connected to an infinite bus 
system in order to determine the amplitude, 

 1

Proceedings of the 5th WSEAS Int. Conf. on Power Systems and Electromagnetic Compatibility, Corfu, Greece, August 23-25, 2005 (pp206-211)

mailto:eafeilat@yu.edu.jo


frequency, damping, and phase angle of the modal 
contents of the speed signal and to identify the local 
mode responsible for poorly damped low frequency 
oscillations. Furthermore, a radial basis function 
neural network (RBFNN) that has been trained 
offline is used to predict the parameters of a 
conventional phase lead-lag power system stabilizer. 
Radial basis function neural network is used for its 
advantages of rapid training, generality and 
simplicity over feedforward backpropagation neural 
network [12]. A block schematic of the proposed 
scheme is shown in Fig.1.  
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Fig.1: Block schematic of Prony-RBF PSS scheme 

 
 
2 Description of the Study System 
To study the stability of local mode oscillations 
associated with a single generator or plant, the 
single machine infinite bus system (SMIBS), as 
shown in Fig. 2, is used. The generator is 
represented by a third-order machine model and is 
equipped with automatic voltage regulator (AVR) 
and conventional PSS [2].  
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Fig.2: Single Machine Infinite Bus System 
 
In small signal stability simulation, the power 

system model is linearized at a particular operating 
point to obtain the linearized system model given in 
the state-space form 

DuCxy
BuAxx
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   (1) 

where , [ T
PSSfdq uxEe ∆∆∆∆δ∆ω∆ 5′=x ]

][ ω∆=y  and ; ∆ denotes the 
perturbation of the states, inputs and output from 
their operating values. The linearized model of the 
SMIBS can be derived with the aid of the well-

known Phillips-Heffron block diagram [2]; relating 
the pertinent variables such as electrical torque, 
speed, rotor angle, terminal voltage, field voltage 
and internal voltage as shown in Fig.3. The 
parameters of the linearized model K

[ T
refm VT ∆∆=u ]

1-K6 are 
function of operating conditions. Analysis and 
calculations of the parameters of the SMIBS are 
illustrated in details in [2]. The small signal stability 
response in terms of the change in the rotor speed 
∆ω following a small change in the mechanical 
torque ∆Tm or the reference voltage ∆Vref can be 
simulated with the aid of the block diagram of the 
SMIBS or the state-space model of (1). Dynamic 
data for the generators and excitation system used in 
the study, and the matrices of the state-space model, 
constructed from typical machine parameters at 
specific operating point, are given in [2]. 
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Fig.3: Phillips-Heffron block diagram of SMIBS 

 
 

3 Analysis of Small Signal Stability 
3.1 Modal Analysis 
When the power system experiences a small 
disturbance as a result of small changes of loads, the 
system will be driven to an initial state x(to) = xo at 
time to = 0. Then, if the input is removed at t = to, the 
system respond according to the state equations 

Cxy
Axx

=
=

•

   (2) 

The state equations of the linearized model given in 
(2) can be used to determine the eigenvalues λi of 
the system matrix A, where λi = σi ± jωi are the 
distinct eigenvalues with a corresponding set of 
right and left eigenvectors Ui and Vi, respectively; σi 
is the damping factor and ωi is the damped angular 
frequency. The right and left eigenvectors are 
orthogonal, and are usually scaled to be 
orthonormal. The state equations of (2) can be 
expressed in terms of modal variables by using the 
modal transformation x = Uz, which leads to 

ΛzzAUVz ==
•

ii   (3) 
where Λ=diag(λi) [13]. Following small disturbance, 
the dynamic response of the system states can be 

 2

Proceedings of the 5th WSEAS Int. Conf. on Power Systems and Electromagnetic Compatibility, Corfu, Greece, August 23-25, 2005 (pp206-211)



described as a linear summation of various modes of 
oscillations  
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For a single output, the system response y(t) can 
be computed as 
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where Ai, σi, fi,and φi are the ith mode amplitude, 
damping factor, frequency, and phase angle, 
respectively, and n is the number of modes.  

Next, an analysis is performed to find the specific 
electromechanical mode that provides the largest 
contribution to the low frequency oscillation. In 
modal analysis, the electromechanical mode is 
identified by analyzing the right and left 
eigenvectors in conjunction with the participation 
factors [5]. The participation factors provide a 
measure of association between the state variables 
and the oscillatory modes. 
 
 
3.2 Prony Analysis 
Prony analysis is a technique for modeling sampled 
data of an exponentially damped signal as a linear 
combination of damped sinusoids [6-8]. It gives an 
optimal fit to the measured signal in the sense of the 
least-squared error technique (LSE). If N samples of 
the response y(t) is recorded as y(k∆t) = y(k), k=0, 2, 
…, N-1, then  y(k) can be expressed as a linear 
combination of n distinct modes 
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where , and ∆t is the sampling time. The n 
distinct eigenvalues λ

t
i

iez ∆= λ

i’s and amplitudes Bi’s can be 
identified using the three-step Prony analysis as 
follows: 
1. Construct a linear prediction model (LPM) 

)(...)2()1()( 21 nkyakyakyaky n −++−+−=     (8) 

Repeating (8) (N-n) times to form the LPM 
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The least-square estimate of A can be obtained 
using the psuedo inverse of matrix Φ 

A = Φ†Y = (ΦTΦ)-1ΦTY   (10) 
2. Find the roots (eigenvalues) of the characteristic 

polynomial associated with the LPM of step 1 
0...2

2
1

1 =−−−− −−
n

nnn azazaz  (11) 
where λi = log(zi/∆t) = σi ± jωi
3. Estimate the amplitude and phase angle of each 

mode obtained in step 2. 
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or  
Y = ΛB 

The least-square estimate of B can be obtained as 
B = Λ†Y = (ΛTΛ)-1ΛTY   (13) 

The degree of fitness of the Prony LPM (12) to the 
simulated (measured) low frequency oscillation (6) 
can be measured in terms of the signal-to-noise-ratio 
(SNR) defined as [6] 
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where ||y(k)|| is the second norm of the measured 
signal )(ˆ)( kyky −  is the norm of the error signal 
between the measured and estimated signals. For 
perfect fitting the number of samples N and the 
number of modes n are varied until the SNR ≥40 dB. 
 
 
4 Power System Stabilizer Design 
Originally, the low frequency oscillations problem 
is tackled by applying PSS, which provides a 
supplementary excitation control signal to enhance 
the damping of the poorly damped low frequency 
oscillations. The conventional design using a lead-
lag compensator was investigated on a linearized 
model of a single machine infinite bus system 
(SMIBS)[1]. A stabilizing signal derived from 
generator speed, frequency or power is admitted to 
the reference input of the automatic voltage 
regulator (AVR) so that an electrical torque 
component in phase with speed variation is created 
to increase system damping. Most utility companies, 
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because of its simple structure, design and 
implementation, have adopted this type of design. 

PSS typically is designed based on linear control 
theory using the concept of phase compensation 
[1,2]. The parameters are determined based on a 
linearized model of the power system around a 
nominal operating point where they can provide 
optimum damping performance of low frequency 
oscillations. Phase compensation is accomplished by 
adjusting the PSS parameters to provide a 
appropriate phase lead to compensate for the phase 
lags through the generator, AVR and excitation 
system over a wide frequency range (0.1-2.0 Hz) of 
low frequency oscillations such that the PSS 
provides torque changes ∆Te in phase with speed 
changes ∆ω. Tuning should be performed when 
system configuration and operating conditions result 
in the least damping [2]. Moreover, a good tuning 
scheme is required to achieve robust performance 
over a wide range of operating conditions by tuning 
the PSS parameters according to online identified 
damping factor and damped frequency of the poorly 
damped local mode. In this paper, the Prony 
analysis method is adopted to identify the poorly 
damped local mode, and a RBFNN is used to predict 
the parameters of the conventional PSS. 

 
 

5 Radial Basis Function Network 
The radial basis function neural network (RBFNN) 
comprises one of the most used feedforward neural 
network [12,14]. Figure 4 illustrates a RBFNN 
comprising an input layer with k nodes, hidden layer 
with h neurons and output layer with m neurons. 
The RBFNN consists of only one hidden layer of 
radial basis functions or neurons. At the input of 
each neuron, the distance between the neuron center 
and the input vector is calculated. The output of the 
neuron is then, formed by applying the basis 
function to this distance. The RBFNN output is 
formed by a weighted linear sum of the hidden 
neuron outputs and the unity bias 
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where, is strictly positive radial symmetric 
function (kernel) with a unique maximum  at its 
center c

)( p
j xφ

j and which drops off rapidly to zero away 
from the center. The process of determining the 
weights is called training or learning process. In 
training, the network the parameters are adjusted so 
that the training data fits the network output (15) 
such that an error measure (the difference between 
the target and the predicted outputs of the network) 

is minimized. A sum squared-error (SSE) function is 
commonly used [14] 
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Fig.4: Radial basis function neural network 

 
 
6 Simulation Results 
6.1 Prony Analysis Results 
The eigenvalues of the linearized power system 
described by (2) at certain operating conditions are 
shown in Table 1. The system has 6 modes 
corresponding to the number of system states. The 
negative values of the damping factors indicate that 
the system is stable. Table 1 shows the presence of 
low frequency electromechanical mode (f = 0.6956 
Hz) with a relatively low damping factor (ratio). 
 
Table1: Eigenvalues of the Linearized System 

Mode λi = σi ± jωi fi (Hz) ζi(%) 
1 -18.6795 0 100.00 
2 -4.5910+j7.4215 1.1812 52.61 
3 -4.5910-j7.4215 1.1812 52.61 
4 -1.1664+j4.3705 0.6956 25.79 
5 -1.1664-j4.3705 0.6956 25.79 
6 -0.2015 0 100.00 

 
 

In creating the LPM in step 1 of Prony analysis, 
values for the number of samples N and number of 
modes n and are needed, where nmax = N/2 [6]. 
Those two numbers should be chosen such that the 
LPM fits the measured data as perfectly as possible. 
The number of samples depends on the sampling 
frequency (fs = 1/∆t) and the length of the data 
window Twind. In this study, Twind was set at 5s. For a 
specific sampling frequency, the number of modes n 
is varied until perfect fitting is observed. The effect 
of number of modes n and number of samples N on 
the fitness of the Prony LPM in terms of the SNR is 
examined. Both numbers are varied until perfect fit 
is obtained. Table 2 shows the appropriate numbers 
of n and N that give a SNR ≥ 40 dB. Table 3 gives 
the frequency and damping ratio for the modes with 
frequencies in the range of 0.1-2 Hz for different 
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values of n with N = 500 (fs = 100 Hz). It can be 
seen from Table 3 that exact estimates of the 
frequency and the damping ratio were obtained with 
n = 40. 

 
 Table 2: Effect of the numbers n and N on the SNR 

SNR (dB) #  
Modes  

n 
N=50 

fs=10 Hz 
N=100 

fs=20 Hz 
N=250 

fs=50 Hz 
N=500 

fs=100 Hz 
5 55.3404 22.1111 - - 

10 147.31 97.8158 4.0790 5.245 
20 - 113.3780 53.7273 3.764 
30 - 109.8464 88.4492 5.60 
40 - 132.4904 95.2527 41.508 

    
Table3: Frequency and Damping Ratio of the 
Modes, N = 500, fs = 100 Hz 

Mode # 4 Mode # 6 # of 
Modes f (Hz) ζ(%) f (Hz) ζ(%) 
n = 10 0.9279 23.7103 - - 
n = 20 0.9764 30.6954 - - 
n = 30 0.6688 21.2078 1.1952 52.2701 
n = 40 0.6956 25.7859 1.1812 52.6084 
Exact  0.6956 25.7859 1.1812 52.6084 

 
Estimates of the damping factor, frequency, 

amplitude, and phase angle of the modes with 
frequencies between –3Hz and 3 Hz for n = 40 and 
N = 500 are given in Table 4. The ± frequencies 
indicate the presence of complex conjugate modes.  

 
Table 4: Estimates of the Modal Components of the  
LPM Modes, f ≤ 2 Hz, n = 40, N = 500 

Mode 
Order 

σi f I
 (Hz) 

Amplitude 
B 

φ  
(rad) 

3 -0.2015 0 0.0171 1.0440 
4 -1.1664 0.6956 2.5426 -0.2756 
5 -1.1664 -0.6956 2.5426 0.2756 
6 -4.5910 1.1812 1.0475 2.4239 
7 -4.5910 -1.1812 1.0376 -2.4022 
8 -18.6795 0 0.9978 -3.0869 

 
Examining the results of Table 4, one can see that 

the exact modes of the system, in particular the low 
frequency electromechanical mode with the lowest 
damping factor, were perfectly identified using 
Prony LPM. Similar results were obtained at lower 
number of modes n and samples N in which the SNR 
≥ 40 dB. 

Figure 5 shows a Prony fit to the rotor speed 
response for a 0.2 pu pulse torque disturbance for 20 
ms. The estimated response represents a linear 
combination of an n number of damped sinusoids. 
For n = 20, Prony fit is shown in Fig.5-a. This is 
corresponding to a SNR=3.764 dB. When n 

increased to 40, the SNR becomes 41.508 dB 
indicating a perfect curve fit as shown in Fig.5-b. 
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Fig.5-a: Prony fit of the rotor speed, n = 20, N = 500 
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Fig.5-b: Prony fit of the rotor speed, n = 40, N = 500 
 
 
6.2 RBFNN Results 
In this study, a RBFNN is adopted to predict the 
power system stabilizer parameters. The input layer 
has two neurons for the generator’s local mode 
damping factor σ and damped frequency ωd. 

The output layer has two neurons for the PSS gain 
Kc and the time constant T1, as shown in Fig.1. For 
the RBFNN, the number of neurons in the hidden-
layer is determined by the learning procedure to 
reach a satisfactory error value, and is equal to the 
number of training epochs [14]. Different values of 
widths of the RBFs were examined. A width value 
of 1.0 was found good. 

Figures 6 and 7 show the target and predicted 
values of Kc and T1 obtained by the RBFNN during 
the training and testing phases. A Training set of 
400 input-output patterns representing the dynamic 
behavior of the SMIBS over wide range of loading 
conditions (Pe: from 0.05 to 1.0 pu in steps of 0.05 
pu and Qe: from -0.45 to 0.50 pu in steps of 0.05 pu) 
were used to train the RBFNN. After careful 
training using “newrb” training function [14], the 
network reached to a satisfactory SSE of 7.06×10-4 
after 15 epochs of iterations. 

In Fig. 6, it can be seen that the RBFNN 
successfully and smoothly predicted Kc and T1. 
Likewise, Fig. 7 shows the performance of the 
proposed RBFNN during the testing phase. A set of 
100 input-output patterns, different from the training 
patterns, was used to test the generalization 
capability and robust performance of the proposed 
RBFNN. 
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Fig.6-a: Target and predicted values of Kc  

 

0  5 0  1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0
3  

3 . 5  

4  

4 . 5  

5  

5 . 5  

6  

T 1  

P a t t e r n  N u m b e r  

T r a i n i n g  p h a s e  

 
Fig.6-b: Target and predicted values of T1  
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Fig.7-a: Target and predicted values of Kc  
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Fig.7-b: Target and predicted values of T1

 
 
7 Conclusion 
A combined Prony analysis and radial basis function 
technique for monitoring small signal stability and 
tuning of PSS parameters is presented. The Prony 
method has the ability to accurately predict the 
modal components of modes existing in a measured 
(simulated) signal. Compared with the eigenvalues 
analysis, Prony analysis can be implemented easily 
with any arbitrary degree of complexity of the 
power system under study. In addition, a RBFNN 
was trained to predict the PSS parameters using the 
damping factor and damped frequency of the low 
frequency mode that were identified by Prony 
method. The results of the case study show that 
Prony-RBFNN based approach is reliable, efficient 
and convenient for monitoring small signal stability 
and tuning of PSS parameters. 
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