
Object Oriented Programming of Logic Controllers (OOPLC)

José Roger Folch, Juan Pérez Cruz, Manuel Pineda Sánchez, Rubén Puche Panadero, Emilio Aragó Ramos

Department of Electrical Engineering

Polytechnic University of Valencia Camino de Vera s/n 46022 Valencia

SPAIN

Abstract: -Object Oriented Programming of Logic Controller (OOPLC) is a new approach for developing control

software for Programmable Logic Controllers. It is based upon the capabilities that the IEC-61131-3 standard

offers, such as Function Blocks (FBs), extending them to support advanced OO features like inheritance,

polymorphism and generic components. This extension is performed using the construction of electrical cabinets

as a guide, considered here as a paradigm of application of the object oriented techniques to the industrial world.

Key-Words:Industrial control, Knowledge engineering, Manufacturing automation, Mechatronics, Programming

environments, Software, Standardization.

1 Introduction
The development of Control Software for

Programmable Logic Controllers (PLC) is a crucial

stage in the construction of modern automation

installations. Old programming languages have had a

negative impact in this process: programs tend to be

obscure, with limited capabilities of flow control, and

internal interdependencies that make any minor

modification a nightmare. To solve this problem, a

new standard has been established, the IEC-61131-3.

It defines new blocks that can be used as the building

units of the new programs: Function Blocks (FBs),

Program Units (POUs), Tasks, etc. It brings some of

the benefits of Object Oriented Programming (OOP),

as encapsulation. Nevertheless, other major benefits

of OOP, like inheritance, generic programming and

polymorphism are not supported.

 Initiatives like Open kNowledge Economy in

Intelligent industrial Automation (OOONEIDA) [1]

are currently applying OOP concepts to the

development of PLC software. In this paper, a new

framework called Object Oriented Programming of

Logic Controller (OOPLC) is presented, with built in

object oriented mechanisms. It is based upon the

similarities between the process of assembling

electrical control cabinets and PLC control programs,

so that, in the end, building a new program could be

seen as a process of installing and connecting pre-

built, fully tested and reliable software modules.

 The structure of this paper is as follows: in section

1 an introduction is presented. Section 2 establishes

the main OOP features that a control PLC program

should implement, and in section 3 the OOPLC

framework, which implement these features, is

presented. In section 4 the main conclusions are

established.

2 Object Oriented Programming of

PLC control programs
PLC is a key component in modern automation

installations. From the point of view of its hardware

components, its evolution has followed the trends

depicted in Fig. 1:

• CPUs more advanced, due to the use of better

microprocessors.

• Decentralization. The CPU doesn’t control

only direct inputs and outputs signals. It now

communicates also with external intelligent

modules via industrial buses

• Networking. PLCs are not isolated parts of

the plant. They must perform not only control

tasks, but also they must communicate with

the factory information infrastructure, for

quality control, just-in-time production, etc.

Fig. 1. Trends in PLC hardware development:

better CPUs, decentralization and networking.

Proceedings of the 5th WSEAS Int. Conf. on Power Systems and Electromagnetic Compatibility, Corfu, Greece, August 23-25, 2005 (pp319-324)

From the point of view of the software, there have

been also significant developments, which has

become IEC standards, or have been widely adopted

by open vendor associations:

• IEC 61131-3 has defined advanced languages

and common elements to program the PLC,

independently from its brand [3],[5]. The

standard enables two ways of developing a

PLC program: top down and bottom up [8].

Either the whole application is specified and

divided it into sub parts (declaring the

variables, and so on), or the application is

programmed starting at the bottom (for

instance via derived functions and function

blocks).

Common Elements

Programming Languages

Top Down

Bottom Up

Fig 2. Common elements and Programming

Languages defined in IEC 61131-3

• IEC 61149 is a standard about the

development of distributed software,

especially in the field of inter-operability of

devices from different vendors [4].

• OPC (Ole for Process Control) has emerged

as a de-facto standard, widely adopted for

constructing “software networks”, which

enable the exchange of data between

different vendor PLC’s and commercial

computer software like SCADA, databases,

electronic worksheets, etc.

Fig. 3. OPC as a “software network”.

These standards offer very powerful tools for

developing new PLC programs. Nevertheless, a more

general framework is needed to automate the

development of the new software, as a way to achieve

faster production rates, to ensure its reliability and to

facilitate the maintenance of the installation. This

situation is very similar to the one that the PC

software industry had to face in the past:

• At first, the lack of programming languages

slowed down the whole software industry.

Only low level languages, such assembly

language, were available, and they were

specific of each microprocessor brand.

• In a second stage, high level language

programs, such as Pascal, C, Basic were

introduced, which offered powerful, unified

and common resources for developing

software for any brand of microprocessor.

This is similar to the present situation in the

PLC industry.

• But another significant advance came in the

field of the PC software, which has

contribute to the development of the internet,

and the rich multimedia, powerful programs

that we have nowadays: Object Oriented

Programming (OOP).

With OOP technology, complex programs are

developed using pre-built, fully tested software

components. Its key features are:

• Encapsulation. Data and the algorithms

needed to process it are encapsulated inside

the same object.

• Inheritance. New objects can be derived for

existing ones.

• Polymorphism. Different objects can

implement the same methods.

• Generic programming. The use of generic

objects and algorithms allows the compilers

to generate functions and objects based on

predefined templates.

Current standards in the field of PLC software

development, such as IEC 61131-3, offer a limited

support for these features. For example,

• The FB definition establishes a clear

distinction between the interface and the

program body, and permits having internal

data encapsulated within the FB object.

• There is a limited support of polymorphism,

in the sense that some functions can accept

parameters of type “any” (a sum function, for

example, can add integer and real numbers).

• There is no support neither for inheritance

nor generic programming.

Proceedings of the 5th WSEAS Int. Conf. on Power Systems and Electromagnetic Compatibility, Corfu, Greece, August 23-25, 2005 (pp319-324)

3 OOPLC
OOPLC is a new framework developed to enable the

application of OOP technology to the construction of

PLC software objects: polymorphism, inheritance

and generic programming. The model for this

framework is the construction of electrical control

cabinets. So, every object of the OOPLC framework,

defined in accordance with the IEC 61131 standard,

will correspond to a physical one.

2.1 Polymorphism: the conductor object
Polymorphism is achieved using a new data-type, the

conductor , defined as follows:

Fig. 4. Definition of the conductor data-type.

 The conductor data-type has a direct physical

counterpart. A physical copper conductor, for

example, can carry data of different types: digital,

analog, even data frames multiplexed in the time or

frequency domain. In the same way, the conductor

object, as defined in fig. 4, can carry any type of the

elemental data defined in the IEC 61131-3 standard.

 There is a drawback in this definition: the size of

a conductor structure is the sum of the size of each

elemental data type that it can hold. The solution to

this problem could be the addition of a new data

structure to the standard, included in modern OOP

languages such as C++: the “union” type, whose size

is only the largest size of any of its elements.

2.2 Inheritance: the relay object
The relay object is defined as a FB with a fixed

interface: three input conductors and an output one

Fig. 5. Definition of the relay_base object

Fig. 6. Graphical representation of a relay_base object.

The program body of the relay_base object is empty.

Any derived relay inherits this object, and therefore

has the same interface, using the following three-step

process, which constitutes the inheritance mechanism

in OOPLC:

 1. - Duplicate the relay_base component with the

name of the new relay (Inheritance).

2.- Add the necessary components as internal

variables of the new relay (Data encapsulation)

3.- Program the desired functionality in the body

of the new relay. (Method encapsulation)

Fig. 7 shows a relay with a TON functionality

generated using this mechanism.

Fig. 7. Definition of the relay_ton object. Bold font

marks the additions to the relay_base object.

There is one major drawback with this method: any

modification of the relay_base is not propagated to

the inherited relays, as in OOP languages like C++.

This could be achieved if any future amendment to

the standard incorporates a definition of the inherited

objects in a way similar to the represented in Fig. 8

Fig. 8. Construction of an inherited object without

having to repeat the common interface.

Having a common interface, any new relay, derived

from the relay_base, can be substituted by another

one, without needing to change any connections.

Fig. 9. Graphical representation of a relay_ton object.

FUNCTION_BLOCK relay_base

VAR_INPUT

 i,i1,i2:conductor;

END_VAR

VAR_OUTPUT

 q: conductor;

END_VAR

 ;

END_FUNCTION_BLOCK

TYPE conductor:

STRUCT

b:BOOL; n:INT; re:REAL; t:TIME;

END_STRUCT

END_TYPE

FUNCTION_BLOCK ton_relay

VAR_INPUT

 i,i1,i2:conductor;

END_VAR

VAR_OUTPUT

 q:conductor;

END_VAR

VAR

 timer: TON;

END_VAR

 timer(IN:=i.b, PT:=i1.t, q=>q.b);

END_FUNCTION_BLOCK

FUNCTION_BLOCK ton_relay: relay_base

VAR

 timer: TON;

END_VAR

 timer(IN:=i.b,PT:=i1.t,q=>q.b);

END_FUNCTION_BLOCK

Proceedings of the 5th WSEAS Int. Conf. on Power Systems and Electromagnetic Compatibility, Corfu, Greece, August 23-25, 2005 (pp319-324)

2.3 Generic programming: the card object
Connections of different elements inside an electrical

control cabinet are made with conductors, but these

are normally grouped, forming cables. This technique

helps to speed up the building of new systems and to

reduce connection-related bugs.

Fig. 10. PLC cards connected using separate

conductors (right) and cables with connectors (left)

A new data type is defined for representing the cable

object. There are two possibilities:

1. To represent a cable as a collection of

different conductors

 Fig. 11. A cable as a union of conductors

2. To represent a cable as an array of similar

conductors, numbered by its relative position.

Fig. 12. A cable as an array of conductors

In OOPLC, the second option has been chosen

because it facilitates the use of loop instructions.

 In the same way as single conductors are grouped

forming cables, single relays can be assembled

together to form a higher level unit, the card object.

This is the system that modern PLC’s hardware use to

achieve a high degree of modularity: they are

assembled connecting different cards: CPU, I/O, etc.

Fig. 13. A modular PLC assembled with cards

In OOPLC, the card object is defined as in Fig. 14

Fig. 14. Definition of a generic card object

Fig. 15. Graphical representation of a generic_card

A generic_card has ten sockets of type relay_base,

where any derived relay can be plugged, because all

of them share the same interface. The program body

of the generic card connects the conductors of the

input/output cables to each of the sockets.

Fig. 16. Connection of the input/output cables to the

internal relay sockets in a generic card

A card with a given functionality can be derived

from this generic one simply by plugging in the

sockets a relay with the desired functionality, through

the following two-step process, which constitutes the

generic mechanism in OOPLC:

1.- Duplicate the generic_card component with

the name of the new card.

2.- Change the name of the relay object plugged

into the socket

TYPE cable :

 ARRAY [0..9] OF

 conductor;

END_TYPE

TYPE cable : STRUCT

yellow, blue, black: conductor;

END_STRUCT END_TYPE

FUNCTION_BLOCK generic_card

VAR

 socket: ARRAY[0..9] OF relay_base;

 k: INT;

END_VAR

VAR_INPUT ci,ci1,ci2:cable; END_VAR

VAR_OUTPUT cq:cable; END_VAR

FOR k:=0 TO 9 DO

socket[k](i:=ci[k],i1:=ci1[k],i2:=ci2[k]

 ,q=>cq[k]);

END_FOR

END_FUNCTION_BLOCK

Proceedings of the 5th WSEAS Int. Conf. on Power Systems and Electromagnetic Compatibility, Corfu, Greece, August 23-25, 2005 (pp319-324)

Fig. 17 shows the application of the generic

mechanism to the generation of a card with TON

relays

.

Fig. 17. Card with ton relays derived from the generic

card. In bold face are marked the names that change

from Fig. 14.

Because only the names of the elements are changed

(marked in bold face both in Fig. 14 and 17), no

modification must be made to the body program of

the function. This minimizes the possibility of bugs.

 There is one major drawback with this method: a

card must be derived for each of the relays defined

within a project, so the number of elements can grow

very quickly. In OOP languages like C++ there is a

special construction, called template, that allows the

compiler to create “on the fly” objects derived from a

generic one. If such construction could be applied to

IEC-61131-3 elements, in a way similar to that shown

in Fig. 18, it would greatly simplify the development

of complex projects.

Fig. 18. Proposal of a Template constructor to

support generic programming

With such an extension, the creation of a new card

like the ton_card shown in Fig. 17 would be made

internally by the compiler, from a simple declaration

like the one presented in Fig. 19

Fig. 19. Construction of new cards from a generic one

with the proposed Template constructor.

2.4 Specialization: the connector object
The card object allow for a high degree of

parallelization of PLC programs. There are many

applications with repeated elements that can be very

effectively treated with this technique. For example,

control programs in machines like injection molding

ones or numerical control machines normally have to

control three or more axis. Digital inputs and outputs

can also be grouped to apply filtering, etc. in a

parallel way. In these cases, one card can perform the

same operation in parallel with up to ten different

relays, so the development of the program is made in

a faster way than having to program individually each

element. The electrical equivalent is the unifilar

representation of electrical circuits, in which each

connection represents several parallel conductors.

 Nevertheless, as the input and output signals must

be connected individually, a new element is needed to

assemble and disassemble them into a cable object.

Its physical counterpart is the screw connector used

to feed the control signals of a machine to and from

the electrical cabinet, as the one shown in Fig. 20

Fig. 20. Connector board for connecting several

input/output signals to a single cable

 The connector object is defined to perform such an

operation. Fig. 21 shows the graphical representation

of an input connector and an output one, both

unspecialized in the sense that the identifiers of their

terminal are general ones.

 (a) (b)

Fig. 21. Graphical representation of an input (a) and

an output (b) unspecialized connector object

VAR

 ton_card1,ton_card2: generic_card <ton_relay>

 …

FUNCTION_BLOCK ton_card

VAR_INPUT ci,ci1,ci2:cable; END_VAR

VAR_OUTPUT cq:cable; END_VAR

VAR

 socket: ARRAY[0..9] OF relay_ton;

 k: INT;

END_VAR

FOR k:=0 TO 9 DO

socket[k](i:=ci[k],i1:=ci1[k],

 i2:=ci2[k],q=>cq[k]);

END_FOR

END_FUNCTION_BLOCK

Template < T> FUNCTION_BLOCK generic_card

VAR

 socket: ARRAY[0..9] OF T;

 …

Proceedings of the 5th WSEAS Int. Conf. on Power Systems and Electromagnetic Compatibility, Corfu, Greece, August 23-25, 2005 (pp319-324)

The problem with this representation is that it doesn’t

offer enough information about the signals to be

connected. Besides, in many occasions only few of

the available pins are used. Physical connector pins

are normally labeled to improve the legibility of the

system. To mimic this behavior, a new, more

specialized connector object can be derived for a

specific application, with a two-step process which

constitutes the specialization mechanism in OOPLC:

1.- Generate a new connector object with the

desired interface : elementary data types with

application identifiers and a cable.

2.- Add an unspecialized connection object and

connect it to the new interface

Fig. 22 shows an input connector for an application

which controls a three axis machine, which has been

constructed following the described specialization

mechanism.

Fig. 22. Input connector of type bool_to_cbl

specialized for an application which controls a three

axis machine

This specialized connector can be used repeatedly for

connecting the program to the externa process inputs

and outputs. For example, in Fig. 23, one element is

used for connecting digital inputs coming from the

edge switches of the axis, and another one for the

command push buttons.

Fig.23. Specialized connectors used for a 3 axis

machine

3 Conclusion
In this paper a new framework for developing PLC

control programs has been presented. It is based upon

Object Oriented techniques, implemented using IEC-

61131-3 function blocks, through three basic

mechanisms for deriving new objects:

• Inheritance: deriving a new object form a

base one and adding a new program, without

modifying its interface.

• Generic programming: copying a new object

from a generic one and changing the type of

the internal generic element, without

modifying its program.

• Specialization: generating a new object with

the desired interface and connecting it to a

base object in its program

New extension to the standard has been proposed

to implement more effectively these OOP features.

 The development of the OOPLC framework has

been made using a as model the electrical cabinet

construction process, which has led to the definition

of the conductor, cable, relay, card and connector

objects. Its use allows for added benefits when using

this framework:

• Polymorphism, achieved through the use of

the conductor data type, that can carry

signals of different types.

• Parallelism, integrated in the definition of the

cable data structure and the card object,

which allows for a simplified layout of the

program and a reduce development time.

 The OOPLC framework has been successfully

applied to control complex machines such as

molding injection, three axis controllers, etc.

References:

[1] Vyatkin, V.V. Christensen, J.H. Lastra, J.L.M.,

OOONEIDA: An Open, Object-Oriented

Knowledge Economy, IEEE Transactions on

Industrial Informatics, Vol I, No I, 2005, pp. 4-17

[2] Deen, S.M., Agent-Based manufacturing, Ed.

Springer, 1998.

[3] Lewis, R. W.,Programing industrial control

systems using IEC 1131-3. Revised edition, Ed.

IEE, 1998.

[4] Lewis, R.W.,Modeling control systems using IEC

61499, Ed. IEE, 2001.

[5] John, K.H., Tiegelkamp, M., IEC 61161-3:

Programing industrial automation systems, Ed.

Springer, 2001.

[6] http://www.industry.net

[7] http://www.softwaretoolbox.com

[8] http://www.plcopen.org

FUNCTION_BLOCK bool_to_cbl_3axis
VAR_INPUT

 axis1,axis2,axis3:BOOL;
END_VAR

VAR_OUTPUT

 q:cbl;
END_VAR

VAR

 conn:bool_a_cbl;
END_VAR

conn(i0:=axis1,i1:=axis2,i2:=axis3);
END_FUNCTION_BLOCK

Proceedings of the 5th WSEAS Int. Conf. on Power Systems and Electromagnetic Compatibility, Corfu, Greece, August 23-25, 2005 (pp319-324)

