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Abstract: - The buoyancy-driven convection in an initially quiescent, horizontal fluid and also a fluid-saturated 
porous layer heated from below with a constant heat flux is analyzed in this study. When its bottom boundary is 
heated suddenly, the Boussinesq equation is solved numerically by using the finite volume method and the 
temporal growth rates of the mean temperature and its fluctuations are examined with time. Based on a new 
stability criterion, the critical time to mark the onset of intrinsic instability is found and its subsequent growth 
behavior is traced with time. In comparison with available experimental data the detection time of convective 
motion, that of manifest convection, and the undershoot time in the plot of the Nusselt number versus time are 
discussed. It is very interesting that under the Darcy flow the numerical results of the critical time and wavenumber 
are almost the same as those obtained from the propagation theory we developed. 
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1   Introduction 
Natural convection is encountered in a number of 
industrial systems involving heat and mass transfer 
and also in nature. The related convective instabilities 
have been investigated extensively since 1900 [1, 2]. 
Consider an initially quiescent fluid layer. Starting 
from time t=0, the layer is heated rapidly from below. 
Its basic temperature profile of heat conduction 
develops with time. In this rapidly developing 
temperature field it is important to predict the critical 
time tc to mark the onset of convective instability. 
Most of practical processes involve nonlinear, time- 
dependent temperature profiles. This transient 
problem may be called an extension of classical 
Rayleigh-Bénard problems. This instability problem 
still remains unresolved because of its inherent 
complexity.  

For the case of nonlinear, developing temperature 
fields in horizontal fluid layers, Morton [3] first 
attempted to analyze the onset of convective 
instability by using the frozen-time model, and some 
modified models were proposed by Lick [4] and 
Currie [5]. Joseph [6], Homsy [7] and Wankat and 
Homsy [8] introduced the energy method, which 
suggests a lower bound of convective instability. 
Foster [9] determined the onset time of convection as 

that time when the amplification factor based on some 
initial velocity disturbances reaches a predetermined 
value.  This amplification theory has been quite 
popular. Jhaveri and Homsy [10] proposed the 
stochastic model by introducing random force 
functions and solved the subsequent nonlinear 
equations. The above two models require the initial 
conditions at time t=0 and deal with the manifest 
convection. These analyses were followed by Gresho 
and Sani [11] and Kim and Kim [12], respectively. 
Tan and Thorpe [13] predicted the onset time of 
convection by using the maximum-Rayleigh-number 
criterion, which is the simplest model based on the 
conduction temperature. Choi et al. [14] developed a 
rather simple model called the propagation theory, 
which is based on linear theory and yields the critical 
time to mark the onset of a fastest growing instability.  

The buoyancy-driven convection also sets in in 
porous media. When an initially quiescent, fluid- 
saturated porous layer is heated from below, 
convective motion is observed at a certain time. For 
the conduction system of a linear temperature field 
Horton and Rogers [15] and Lapwood [16] 
investigated the critical condition to mark convective 
instabilities. For a thermally developing system Beck 
[17], Kaviany [18], Yoon and Choi [19], and Tan et al. 

Proceedings of the 3rd IASME/WSEAS Int. Conf. on FLUID DYNAMICS & AERODYNAMICS, Corfu, Greece, August 20-22, 2005 (pp162-167)



[20] also analyzed the onset of motion by using the 
energy method, the amplification theory, the 
propagation theory, and the maximum-Rayleigh- 
number criterion, respectively. 

The above models are not definitive and there is still 
a confusion among the characteristic times tc, tD, and tu, 
which are, respectively, the onset time of intrinsic 
instability, the detection time of first visible motion, 
and the undershoot time in the plot of the heating rate 
versus time. Accordingly, we analyze the convective 
instability numerically by employing the finite volume 
method (FVM) and the above characteristic times are 
discussed in comparison with available experimental 
data. In the present study the onset of convective 
instability in both a horizontal fluid and a horizontal 
fluid-saturated porous layer subjected to a constant 
heat flux from below is analyzed. For this purpose a 
new stability criterion based on the growth rates of 
initiated disturbances is tested. 
 
 
2   Theoretical Analysis 
 
2.1  Governing equations 
The system considered here is a horizontal fluid layer 
or a fluid-saturated porous layer of thickness H, as 
shown in Fig. 1. For t ≥ 0, the fluid layer is heated from 
below with a constant heat flux qw and its upper 
boundary is kept at a constant initial temperature Ti. For 
a high qw, the buoyancy-driven convection will set in at 
a certain time and the dimensionless governing 
equations of the flow and temperature fields can be 
expressed under the Boussinesq approximation by  

0=⋅∇ u                                                                     (1) 
{ }uu ∇⋅+∂∂ )/1(/)/1( 2ετε   

kuu θε RaPrPrDaPrp +∇++−∇= 2)/()/(    (2) 
{ } θθτ 2)/( ∇=∇⋅+∂∂ u                                                  (3) 
with the boundary conditions, 

0=== wvu , 1−=∂∂ zθ  at                       (4a, b) 0=z
0=== wvu , 0=θ  at                                 (5a, b) 1=z
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Fig. 1. Schematic diagram of the system considered 

where u (=iu+jv+kw), p, and τ  repesent the the velocity 
vector, the pressure, and the time, respectively. The 
velocity vector has the scale of α/H, the presure that of 
ρα2/H2, and the time that of H2/α, respectively. The 
dimensionless temperature is denoted by θ= 
k(T−Ti)/qwH. Here α, ρ, ε, and k represent the thermal 
diffusivity, the fluid density, the porosity, and the 
thermal conductivity, respectively. The distances have 
the scale of H. Here z is the dimensionless vertical 
distance, k is the vertical unit vector, and (i, j) are the 
horizontal ones. The important parameters to describe 
the present system are the Prandtl number Pr, the 
Darcy number Da, and the modified Rayleigh number 
Ra based on qw: 

α
ν

=Pr , 
2H

KDa = , 
αν

β
k

HqgRa w
4

=                            (6) 

where ν, K, g and β denote the kinematic viscosity, the 
permeability, the gravitational acceleration constant 
and the thermal expansion coefficient, respectively. 

In the present horizontal layer the simplest flow is a 
Darcy flow. With this flow Eq. (2) is simplified to  

kθDRp +−∇=0   with                               (7) RaDaRD =
where p = pDa/Pr and RD is the Darcy-Rayleigh 
number. 

With ε=1 Eq. (2) becomes the well-known 
Boussinesq equation, which corresponds to the case of 
Da→∞. For the basic conduction system heated with a 
constant heat flux Currie [5], Kim and Kim [12], Tan 
and Thorpe [21], and Choi et al. [22] conducted the 
instability analyses by using the afore-mentioned 
models. Nielsen and Sabersky [23], Chu [24], and 
Goldstein and Volino [25] observed experimentally 
cell-like patterns like Bénard cells over the heated 
bottom surface. 

In the present study the problem is to find the 
critical time tc to represent the onset time of a most 
energetic, fastest growing instability. For t>tc the 
incipient infinitesimal instabilities will grow faster 
than the conduction temperature, and the convective 
motion would be detected between tc and tu. Here both 
the Darcy flow in fluid-saturated porous media and the 
flow in non-porous layers will be considered for the 
theoretical analysis of convective instabilities. 
 
2.2 Onset of convective instability 
The velocity and temperature fields are decomposed 
into the horizontal mean and its fluctuations:  

θθθ ′+=                                                                (8) 

uuu ′+=                                                                 (9) 
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where 〈⋅〉 and ′ represent the horizontal mean and its 
fluctuations, respectively.  
     In the present system, thermal convection sets in 
due to the buoyancy force and its local magnitude FB is 
represented by  

B

iB TTgF −= βρ                                                         (10) 
which is produced by temperature variations. The 
buoyancy forces based on the mean temperature and 
its fluctuations can be written as (FB,0, FB,1) = (〈θ 〉,  

θ ′)ρgβqwH/k, where FB = FB,0 + FB,1. In order to 
examine the temporal behavior of thermal instabilities, 
the following temporal growth rates are defined:  

τ
θ

θ d
d

r rms

rms

1
T,0 =                                                  (11) 

τ
θ

θ d
d

r rms

rms

′
′

=
1

T,1
                                                      (12) 

τd
d
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rms

u
u

′
′

=
1

V,1
                                                      (13) 

where r0,T, r1,T, and r1,V are the temporal growth rates 
of the mean temperature, the temperature fluctuations, 
and the velocity fluctuations, respectively. Here the 
subscript rms refers to the root-mean-square quantity, 
i.e., (⋅)rms = [∫V|(⋅)|2dV/V]1/2, where V represents the 
volume of the system considered.  

With r1,T<r0,T, temperature fluctuations are expected 
to be several orders of magnitude smaller than that of 
the mean temperature. Here it is assumed that the 
system is unstable only when the temperature 
fluctuations are growing faster than the mean 
temperature. With r1,T>r0,T, the fluctuations will grow 
to a measurable magnitude. Therefore, the marginal 
stability criteria are suggested as 

T,0T,1 rr =   with   at 0V,1 ≥r cττ =                            (14) 
which represents the onset condition of intrinsic 
instability at the earliest time τc with the dimensionless 
critical wavenumber ac. It is expected that fluctuations 
are first driven thermally. 

A more convenient measure to exhibit the incipient 
nonlinear effects is the undershoot time τu in the plot 
of the Nusselt number versus time. In the present study 
the Nusselt number Nu with the characteristic length 
of H is defined as follows: 

( ) SdSNu
S z∫ == 01 θ                                               (15) 

where S is the surface area of the bottom plate. With 
thermal convection, Nu deviates from its conduction 
solution and it has the minimum at τ=τu. The undershoot 
time τu is frequently used as the characteristic time to 
represent the manifestation of thermal convection. 

 
2.3 Propagation theory 
The convective instabilities at the marginal state are 
well illustrated by the propagation theory, which 
employs the normal mode analysis under linear theory. 
This model is based on the assumption that in 
deep-pool systems the incipient temperature 
disturbances are propagated mainly within the thermal 
penetration depth ΔT near the onset time of thermal 
instability. Therefore, all the variables and parameters 
having the length scale are rescaled with ΔT. The 
self-similar transformations are forced and the 
stability criteria obtained easily. This model satisfies 
the condition of T,0T,1  in Eq. (14). For the fluid 
layer subjected to a constant heat flux the resulting 
τ

rr =

c-values were obtained by Choi et al. [22]. In the 
present study their τc-values are referred to . For the 
case of the porous layer the critical time  was 
obtained by following their procedure. Its stability  
equations and resulting stability criteria are obtained 
easily by following Chung et al.’s [26] work.. 

*
cτ

*
cτ

 
 
3   Numerical Method 
 
3.1 Finite volume method 
The governing equations (1)-(3) were discretized by 
using the FVM introduced by Patankar [27]. The non- 
uniform arrangement of meshes was forced along the 
z-direction and the nodes of velocities were staggered 
from those of scalar values, θ and p, along the y- and 
z-directions. The no-slip and slip conditions were 
imposed on the top and bottom boundaries of the fluid 
layer and the fluid-saturated porous layer, respectively. 
For the present, horizontally infinite layers, only one 
two-dimensional roll was considered and the stress- 
free and adiabatic conditions were introduced to its 
vertical free boundaries.  

For the treatment of coupling between the pressure 
and velocity the SIMPLE algorithm was used. To 
solve the convection and diffusion terms the hybrid 
scheme was employed. In order to solve the present 
time-dependent problem, the implicit method was 
employed and the first-order time increment was used. 
The number of meshes was 42×60 and finer meshes 
were used near the top and bottom boundaries. To 
ensure the numerical stability the time step of Δτ=10-7 
was used. At each time step the iteration continued 
until the relative error between the present value and 
the previous one reached 10-6.  
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Fig. 2. Temporal growth rates for RD=500 
 
3.2 Simulation 
For two-dimensional rolls the periodic, initial 
fluctuations at τ=0 are constructed as θ′= 
A(0)θ*(z)cos(ay), v′= −B(0)((∂w*(z)/∂z)/a)sin(ay) and 
w′=B(0)w*(z)cos(ay). Here A(0) and B(0) are the 
initial magnitudes. The profiles of θ*(z) and w*(z) 
were chosen to be unique such that the arbitrary initial 
ones forced were finally converged to the same 
patterns through iteration for 0≤τ≤τc. The first, initial 
patterns forced were given as the two-dimensional roll 
patterns obtained from the propagation theory.  
     With the proper A(0)- and B(0)-values, the present 
system was simulated numerically for a given Ra, Pr 
and Da. The proper A(0)-value was chosen in 
comparsion with existing experimental data. In the 
present study, the numerical simulation was conducted 
for the Darcy flow using Eq. (7) and also for the fluid 
flow of ε=1, Da→∞ and Pr→∞ in Eq. (2). Then the τc- 
and τu-values to satisfy Eq. (14) were obtained.  
 
 
4   Results and Discussion 
Based on the propagation theory, the present results on 
the onset condition of convective instability in a 
fluid-saturated porous layer is represented by  

7.11* =cDR τ   with   for R01.12/1* =cca τ D>100         (16) 
which corresponds to the case of deep-pool systems. 
According to this model the system would be unstable 
for . *

c
The results of the numerical simulation for the 

Darcy flow by the FVM are shown in Fig. 2. For R
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τ
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Fig. 3. Nusselt number versus time for the Darcy flow 
 

500 the numerically predicted r1,T- and r1,V-curves of 
two-dimensional rolls are seen with time. Under the 
Darcy model the relation of r1,T≅r1,V is obtained. With 
increasing A(0), the τm,T-value representing the 
maximum r1,T-value becomes smaller but the resulting 
r1,T-curves are all the same for 0 ≤ τ ≤ τc. According to 
Eq. (14), it is stated that the intrinsic instability sets in 
at τc = 2.2 × 10-2 with ac = 6.2 for RD = 500. The 
undershoot time τu in the plot of Nu versus τ is shown 
in Fig. 3. With conduction only, it is well-known that 

πτ/1=Nu  for small time. With convection, the 
Nu-value deviates from that of conduction and the 
minimum Nu-value appears at τ=τu. It is known that 
τc<τm,T≤τu. The predicted τm,T- and τu- values depend 
on the A(0)-value. The effect of B(0) is negligible.  

The present numerical results cτ ,  and *
cτ uτ  with 

A(0)=10-3 and 10-4 are compared in Fig. 4. The cτ - and 
-values are nearly the same and the former one 

represents the onset time of a fastest growing 
instability among the initiated two-dimensional rolls. 
The numerical results of Tan et al. [20] exist between 
the present τ

*
cτ

u-values with A(0)=10-3 and 10-4. In the 
present porous layer heated with a constant heat flux 
thermal convection exists when RD is larger than RD,c, 
i.e. RD,c=27.1 with ac=2.33, which is well illustrated by 
Nield [28]. At this well-known critical condition of 
τc→∞, the numerically predicted r1,T- and r0,T-values 
approach zero with time but for RD<RD,c the system is 
absolutely stable with r1,T, r1,V<0. This verifies the 
stability  condition (14) and the accuracy of the present 
FVM to a certain degree.  

ττ >

D=  
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Fig. 4. Characteristic times for the Darcy flow 
 
For a non-porous fluid layer with Ra=106, Pr→∞ 

and A(0)=10-3 the numerically predicted, temporal 
growth rates are illustrated in Fig. 5. Here r1,T and r1,V 
are more distinguishable than those for a porous layer. 
Also, the difference between cτ  and c  is a little 
larger. It is known that τ

*τ
m,T≅τu. It is clear that manifest 

convection should exist at τ=τu.  The overall trend of 
cτ -values is illustrated as a function of Ra and Pr in 

Choi et al.’s [22] work based on the propagation 
theory. 

The experimental data of Nielsen and Sabersky [23] 
and Chu [24] are compared with the present numerical 
τu-values in Fig. 6. Most of experimental τu-values are 
placed between the numerical results for A(0)=10-3 ~ 
10-5. Here the τc-value is also the invariant like that for 
the above porous layer but the  τm,T- and τu-values are 
dependent upon the A(0)-value.  

It is very difficult to define the detection time τD 
both  experimentally and theoretically. Chu’s [24] 
experimental results show that the first visible motion 
is detected at t=tD earlier than tu. Detection of motion 
depends on experimental apparatus to a certain degree 
[25]. According to experimental observations [24, 25], 
it is suggested that τc≤τD≤τu.  
 
 
5   Conclusion 
The present numerical simulation by the FVM reveals 
that there exists the unique τc-value when the growth 
rates are considered. The intrinsic instability would set 
in under the condition of r1,T = r0,T at the earliest time  
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Fig. 5. Growth rates for the non-porous layer 
 
because instabilities would be first driven thermally. 
Their growth period is required until they are detected. 
It is suggested here that τc≤τD≤τu. The present results 
complements Choi et al.’s [29] work. 
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