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Abstract: - Models for the dynamic behaviour of transmission lines are essential for the understanding of wave
propagation phenomena in hydraulic pipelines and hoses. If the Reynolds numbers are low enough to justify the
assumption of laminar flow and if convective terms are negligible, the governing equations are linear and a very
compact description of the input-output behaviour of a transmission line exists in the frequency domain. For a
coupled simulation of networks of transmission lines interacting with other, possibly nonlinear components such
as valves, there are numerous approaches for the approximation of the transcendental transfer functions arising
from the transmission line modelling by finite dimensional models in the time domain. Discrete-time approaches
such as the method of characteristics with a fixed grid are known to be very accurate but computationally ineffec-
tive due to the high number of state variables involved. This paper shows a method for the derivation of reduced
order models with a trade-off between the degree of accuracy and the system order and with the additional feature
that important properties like the passivity of the transmission line model is guaranteed.
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1 Outline of the problem

This paper considers pipe flow in a long, straight trans-
mission line with a constant and circular cross section
filled with a weakly compressible Newtonian fluid. The
pipe wall is assumed to be rigid and the flow is assumed
to be laminar. The physical parameters describing the
transmission line are the line lengthL, the internal tube
radiusR, the kinematic viscosityν, mass densityρ
and bulk modulus of compressibilityE of the hydraulic
fluid. The so called ’frequency-dependent friction’ the-
ory [2] of laminar pipe flow is used in the following.
Two dimensions in space (axial coordinatex and radial
coordinater) are needed to describe laminar, axisym-
metric pipe flow. However, the pressure is assumed to
obey∂p/∂r � ∂p/∂x and a mean velocity or alterna-
tively the volumetric flow rateQ (x, t) is used instead
of the velocity distribution. Together with a treatment
of the viscous friction terms in the frequency domain
this enables a formulation in one-dimensional spacex
and timet of the form

∂q

∂τ
+ εq

∂q

∂ξ
+
∂ψ

∂ξ
= f (q) (1a)

∂ψ

∂τ
+ εq

∂ψ

∂x
+
∂ψ

∂ξ
= 0 (1b)

where q (ξ, τ) is a scaled flow rate andψ (ξ, τ) is a
scaled pressure variable according to

ψ =
p

pS
, q =

Z0

pS
Q

with the line impedanceZ0 and a characteristic pres-
surepS which is chosen as either the maximum oper-
ating pressure of the transmission line or as a typical
magnitude of transient pressure excitations acting at the
boundary. The independent variables are scaled by

τ =
c0
L
t, ξ =

x

L

with the pipe lengthL and the speed of wave propaga-
tion c0 =

√
E/ρ. The system (1) contains a dimension-

less parameterε = pS/E. For hydraulic systems, this
ratio is a small number in the order of10−2. Therefore,
the convective terms can be neglected and the system
under consideration becomes

∂q

∂τ
+
∂ψ

∂ξ
= f (q) , (2a)

∂ψ

∂τ
+
∂q

∂ξ
= 0 . (2b)

The right hand side contains the friction termf (q).
Only for steady, laminar flow this term can be expressed
as a simple linear function inq. For transient lami-
nar flow, the termf (q) represents a dynamical system
mapping the flow rateq at a certain location along the
pipeline to the frictional pressure loss per unit length at
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the same location. A precise model can be derived in
the frequency domain in the form [5]

f̂ = s

J0

(√
− s

Dn

)
J2

√
− s

Dn

+ 1

 q̂ (3)

wheres is the Laplace variable in scaled time. Bound-
ary conditions for the equations system (2) are chosen
as prescribed pressure at one end of the transmission
line and prescribed flow rate at the other end, i. e.

ψ (ξ, τ)|ξ=0 = ψ0 (τ) , q (ξ, τ)|ξ=1 = −q1 (τ) .

The input-output behaviour can be written as

[
q̂0
ψ̂1

]
=

 tanh(sZ̃)
Z̃

− 1
cosh(sZ̃)

1
cosh(sZ̃) Z̃ tanh

(
sZ̃

)


︸ ︷︷ ︸
G(s)

[
ψ̂0

q̂1

]
(4)

with the scaled hydraulic impedance

Z̃ (s) = s

√√√√√√J0

(√
− s

Dn

)
J2

(√
− s

Dn

)
and the dimensionless dissipation number [3]Dn =
νL

c0R2 . It is important to note that the static gain of the
the transfer matrix in (4) represents the pressure drop
due to stationary Hagen-Poisseuille flow

lim
s→0

G (s) =
[

0 −1
1 8Dn

]
(5)

and the direct feedthrough term

lim
s→∞

G (s) =
[

1 0
0 1

]
(6)

exactly fulfils the Joukowsky relation for the scaled
model. The goal is now to find a discrete-time state-
space approximation

xk+1 = Axk + B
[
ψL

qR

]
k

(7a)[
qL
ψR

]
k

= Cxk + D
[
ψL

qR

]
k

(7b)

for the input-output behaviour described by eq. (4) as-
suming zero order hold on the inputsψ0 andq1. The

system (7) should exactly fulfill the limit properties (5)
and (6), i.e.

C (I−A)−1 B =
[

0 −1
1 8Dn

]
(8)

D =
[

1 0
0 1

]
(9)

Furthermore, it has to reflect an important property
(passivity) of the real system by meeting the criteria for
discrete-time positive realness [11] and the approxima-
tion error - measured in an appropriate norm - between
(7) and (4) should be as low as possible for a given sys-
tem order.

2 Nonlinear programming problem

The problem laid out in the last section can be treated
by a number of different approaches. Either a very ac-
curate and passive model is found and reduced by a pas-
sivity preserving order reduction method, or passivity is
enforced as a constraint in the reduction method. As
the Zielke-Suzuki method used in this paper turned out
not to guarantee model passivity, the second approach is
tried by solving the following nonlinear programming
problem.

The matricesA ∈ Rn
n, B ∈ R2

n, C ∈ Rn
2 , and

D ∈ R2
2 have to be found for a given system ordern.

The frequency response function for the discrete-time
system (7) is defined by

Gd (θ) = C
(
ejθI−A

)−1
B + D, 0 ≤ θ ≤ π.

(10)
The transfer function matrixG (s) of eq. (4) is to be
approximated by the discrete-time model (7). Accord-
ing to Parseval’s theorem, a minimisation of the sum
of squared errors between the frequency response func-
tion Gd and a reference function representing the real
system behaviour will result in a minimisation of the
error energy for an impulse input signal. Clearly,G (s)
cannot serve as such a reference function because it is
defined in continuous time. In this paper, the method
of Zielke and Suzuki is used for the generation of a
discrete-time reference functionGref to be used in the
cost function

∫ π

0
tr (Gd (θ)−Gref (θ)) (Gd (θ)−Gref (θ))T dθ.

(11)
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While eq. (9) simply gives the solution for the direct
feedthrough matrixD, the gain condition (8) has to be
built into the nonlinear programming problem. Due to
the nature of the pipeline model with mixed boundary
conditions, all poles of the transfer functions inG (s)
have strictly negative real parts. Therefore, the poles of
the discrete-time counterpart are now restricted to lie in
the inner of the unit circle. With this assumption, the
model is passive if and only [11] if

Gd (θ) + G∗
d (θ) ≥ 0 (12)

for all realθ according to eq. (10).

3 Characteristics method as a starting point

The quality of the solution returned by the minimisation
of the cost function (11) heavily depends on the initial
values provided for the matricesA, B, andC. The
method of characteristics in the version due to Zielke
and Suzuki together with an order reduction method is
used for the generation of initial values. A standard
method of characteristics with an equidistant grid ac-
cording to Fig. 1(a) is used for the discretization of the
equation system (2). The equations for the two bound-
ary nodes “L” and “R” are

ψ0,k =ψL,k (13a)

ψ0,k+1 − ψ0,k − q0,k+1 + q1,k =0 (13b)

qN,k =qR,k (13c)

ψN,k+1 − ψN−1,k + qN,k+1 − qN−1,k

=0 (13d)

and the pressure and flow rate values at the inner
nodes “P” are governed by

ψj,k+1 − ψj−1,k + qj,k+1 − qj−1,k

=− fj−1,k (13e)

ψj,k+1 − ψj−1,k

=fj−1,k (13f)

The system of difference equations (13) gives a standard
method of characteristics with the fluid friction repre-
sented by nodal friction models relating the flow rate
qj to the friction lossfj at each nodej = 0, 1, . . . , N .
A number of friction models approximating the transfer
function given in eq. (3) are available in the literature
[6]. A very accurate representation is the model due to
Zielke and Suzuki et. al. [12, 10] which can be written
as a discrete time state space system in the form

zk+1 =
[

1 1 0 · · · 0
]T
qk+

0 0 ··· ··· ··· ··· ··· ··· ··· 0

−1
... ...

...

0 1
... ...

...
...

... ... ... ...
...

...
... 1

... ...
...

... 0 b1 A1

...
...

... b2 0 A2

...
...

... b3
...

... A3

...
...

... b4
...

... A4 0

0 ··· ··· 0 b5 0 ··· ··· 0 A5



zk

(14a)

fk =
[
−c1 c2 · · · cJT 1 1 1 1 1

]
zk+qk

(14b)
While the friction model (14) is already in the

standard form for a discrete-time LTI system, the
method of charatcteristics model (13) needs to be re-
structured before fitting into the standard form. The set
of all nodal pressures and flow rates with the exception
of the valuesψ0 andqN which are prescribed by bound-
ary conditions seems to be a natural choice for the sys-
tem state variables. However such a choice would not
fit into a standard form like eqs. (7) because of the di-
rect feedthrough from the inputsψL andqR to the flow
rateq0 and the pressureψN according to the Joukowsky
relation. In order to cast the system into standard form,
a state vector is defined as

x =



q0 − ψ0

ψ1

q1
ψ2

q2
...

ψN−1

qN−1

ψN + qN


. (15)

The method of characteristics model in standard form
is given in eqs. (16) and (17). The input and output
vectors have been augmented by friction termsfj and
flow ratesqj for all nodes. With these additional inputs
and outputs, the model describing inviscid wave prop-
agation is coupled withN + 1 nodal friction models
according to Fig. 1(b)

Proceedings of the 3rd IASME/WSEAS Int. Conf. on FLUID DYNAMICS & AERODYNAMICS, Corfu, Greece, August 20-22, 2005 (pp180-185)



��

a x i a l  c o o r d i n a t e  �

tim
e �

k

L R� �

�C�C �C �C
k + 1

k + 2

q L q R

0 1 2 3 N - 2 N - 1 N

� L � R

(a) Grid in the characteristic plane.

m e t h o d  o f
c h a r a c t e r i s t i c s
( i n v i s c i d  w a v e
p r o p a g a t i o n )

p L

Q R

Q L

p R

f r i c t i o n
m o d e l

f r i c t i o n
m o d e l

f r i c t i o n
m o d e l

q 0

q 1

q N

....
....

....

f 0

f 1

f N

(b) Coupled model.

Figure 1: Method of characteristics.
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(16)
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Figure 2: Comparison of step responses.



qL
ψR

q0
q1
...

qN−1

qN


=



1 0 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0

...
0 0 0 0 1 0
0 0 0 0 0 0


xk +



1 0
0 −1
1 0

0
...

... 0
0 1


[
ψL

qR

]
(17)

4 Order reduction with passivity constraints

The model shown in Fig. 1(b) with the method of char-
acteristics defined by eqs. (16, 17) and the nodal fric-
tion models according to eqs. (14a, 14b) is now used
for computing both the inital values for the matricesA,
B, C and the reference transfer functionGref in the
nonlinear programming problem of section 2.

First of all, the ordern of the reduced system is
chosen arbitrarily with a lower bound forn given by
the order of the inviscid model, i.e.n ≥ 2N . Then,
the coupled model is reduced to ordern. Kung’s al-
gorithm [7] as implemented in [9] is used for this pur-
pose. This algorithm computes a model of arbitrary or-

der via a singular value decomposition of a Hankel ma-
trix generated from impulse response data. The impulse
response could be generated without the reformulation
of the Zielke-Suzuki method in the form of eqs. (16, 17,
14a, 14b), yet this approach enables the calculation of
the passivity criterion for the coupled model.

The choice of a time domain identification algo-
rithm is due to the fact that the Zielke-Suzuki method
is already known to generate models reducable to a
large extent [8] without a loss of accuracy. For a fine
grid (largeN ) and for transmission lines with weak
damping (small viscosity or large diameter) this results
in a situation where a truncated impulse response se-
quence is much easier to handle than the huge sparse
system given by the aforementioned reformulation of
the Zielke-Suzuki method.

The reduced model of ordern is now transformed
into the modal form. In this canonical form, the ma-
tricesA, B, C contain a number of5n parameters to
be optimized in the nonlinear programming problem.
This problem is solved with the sequential quadratic
programming code SNOPT [4]. Figure 2 shows a com-
parison of step responses of the original Zielke-Suzuki
model and of a reduced model of orderρ for a dimen-
sionless dissipation number ofDn = 3.08 · 10−3 and
a grid size ofN = 8. The minimal eigenvalue associ-
ated with the criterion (12) is shown over the frequency
range0 ≤ θ ≤ π in Fig. 3. The reduced model derived
with the proposed method is passive while an order re-
duction using Kung’s algorithm results in a model that
clearly fails to be passive.
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Figure 3: The minimum eigenvalue ofGd (θ) + G∗
d (θ) over0 ≤ θ ≤ π.

5 Conclusions

A method for the calculation of a discrete-time, reduced
order, passive model for laminar, transient pipe flow has
been proposed. While the presented example is a single
line with one pressure and one flow-rate boundary con-
dition, the method is also suitable for the reduced order
modelling of compound fluid line systems as long as
only linear elements are connected together.

The proposed method will be compared against
established methods for passive constrained order re-
duction like Nevanlinna-Pick interpolation [1] in future
work.
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