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Abstract: - Relationships  have  been  established  between  the  average  transformation  degree  and   the 
dissociation  time  for  polydisperse  granular  material,  taking  into  account  its  grain  size distribution. It has 
been checked in which cases the kinetic curves, obtained by a numerical solution, can be described in terms of 
the chosen F1, F0,D1 equations (models). 
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1   Introduction 
The description of thermal dissociation of 
solids by means of the well-known kinetic 
equations, is usually based on the single 
grain model. 
 If the reaction system contains X grains of 
identical initial size, then the kinetic 
equation should not change, because the 
transformation degree for X equal grains is 
calculated analogously to that for a single 
grain. 

In the case of polydisperse systems 
(with different grain size) the 
transformation degree is different for grains 
with different initial dimensions and it can 
be described by the following relation: 
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where:  α  - mean value of transformation 

degree; α(Ri)∈<0;1>;α(Ri)- transformation 

degree for grain fraction of initial radius Ri, 

f(Ri )- density function for grain size 

distribution characteristic for the given 

polydisperse system; (Rm )- final radius of 

the coarsest grains present in the reaction 

system. 

 
 
 

The paper's aim was to to test the 
possibility of using all well-known kinetic 
equations for the description of  thermal 
dissociation processes occurring in 
polydisperse system. 

As examples I've chosen the 
following equations, F1: 

ktn =−− /1)1ln( α               (2), 
  F0 :          α = k t                                 (3)  
and         D1:(1-α) ln (1-α)+α=k t           (4) 
 
Those equations have been utilized for 
description of many thermal dissociation 
reactions. They've been derived with 
assumptions that the process of thermal 
dissociation of the type: A(s) ↔ B(s) +C(g) 
proceeds by instantaneous formation of 
nuclei of new phase (reaction product) on 
the surface of the reacting cylindrical or 
prism-shaped grain or the nuclei of the new 
phase are not formed on some crystal faces 
and the migration of the phase boundary 
substrate- product (reaction boundary) is 
considered only for those crystal planes on 
which the nuclei have been formed.  
The exponent reflexes the number of 
directions in which the phase boundary 
propagates, Eq.(3) which exponent is equal 
1 describes the case of where the phase 
boundary migrates with a constant rate in 
one direction. 
 This equation α = kt describes very well 
the cases where the reaction surface is 
constant and it does not shift inside the 
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grain bulk. The possibility of using the 
equation (3) have been checked for 
mathematical description of thermal 
dissociation of polydisperse solids for such 
systems in which the grain size distribution 
is described in terms of either normal or 
Rosin–Rammler-Sperling distribution i.e. 
where the functions of density of the grain 
size distribution are given respectively by 
the following equations: 
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 and the distribuants are expressed by the 
following relationships: 
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In the above equations:                                                 

δ -variance, R -mean grain radius, 

22δ
RB = , 1=R  and 

R
RRz = .                                   

 
2   Problem Formulation 

A dimensionless variable
R
RR z =  has been 

introduced to the kinetic equation (3) and  maximum 
transformation time has been calculated for the 
fraction of radius Ri it follows that transformation of 
i-th fraction for α=1 is tm,i.  
Assuming in Eq.(3) k=ki/Ri one obtains  for a fraction 
of Ri and α=1: 
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The transformed Eq.(3) and the density 
function are inserted into Eq.(1) and 
assumption is made that 

)(Rf Ν

θ⋅=⋅= RdRRdR z , hence: 
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Assuming 1=R  we obtain imiik tk ,, /=θ ,hence: 

θα =)( iR                                                     (12) 
and Eq.(3) becomes: 
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Equation (13) comprises the terms :
πδ 2

1 and 
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Hence we obtain:  
B2/1=δ                                                           (14) 

and for  later equation assumes the form: 2δ
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After introduction of relationships (14), (15) to Eq. 
(13) and for θ⋅=⋅= RdRRdR z , we obtain in the case 
of Eq.(3) for normal distribution and Rosin– 
Rammler–Sperling distribution respectively: 
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3   Problem Solution                  
Equations (16) and (17) have no analytical solution. 
The following method has been applied for 
performing numerical calculations in the language 
Turbo Pascal 6.0: 
The calculations were performed for the values of B 
and θ in the case of normal distribution and for n 
and θ in the case of Rosin–Rammler–Sperling 
distribution. 
The values of α for B∈<0.001;1000> and for θ∈ 
<0.001;2> where calculated from  Eq. (16).  
After necessary search among B values we have 
those for  which the kinetic curves begin at the 
origin as in Fig.1.  
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Fig.1.kinetic curves for normal distribution 
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The kinetic curves determined have been described 
in terms of Eq.(16) as a modified Eq.(3) and the 
results of calculations are given in Fig.2. and Fig.3. 
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Fig.2.Curves  from Eq.(3).-normal distribution. 
 

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

 log θ

lo
gF

0

B=2
0

B=5

 
Fig.3. curves from Eq.(3) with approximation. 
  
In the same way the values of α for 
n∈<0.001;1000> and θ∈ <0.001;2> where 
calculated from Eq.(16) as a modified Eq.(3) , Fig.4. 
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Fig.4.kinetic curve for Rosin-Rammler-Sperling 
distribution. 
 
The kinetic curves found were described in terms of 
Eq.(3). The results of calculations are given in Fig.5 
and Fig.6. 
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Fig.5. Curves from Eq.(3) -Rosin-Rammler-Sperling 
distribution. 
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Fig.6. curves from Eq.(3) with approximation. 
 
The kinetic curves for normal distribution starting at 
the origin and obtained for selected of B= 4 ;5 ;6 
;7;8;9. are shown in Fig.3 and Fig.4. Analogous for 
the case of    Rosin-Rammler–Sperling distribution 
were obtained for modified Eq.(3) if n∈<0.04;105>. 
The obtained results are shown in Fig.5. and Fig.6.  
The description of a kinetics in terms of Eq.(3) in 
terms of Eq. (3) with a condition:  

22δ
RB = ≥4                                    (18) 

means that for 1=R  the mean deviation cannot 
exceed 0.3535 (δ≤0.3535). 
Hence a mathematical description of the process 
under consideration in terms of Eq.(3) becomes 
possible if the value of R remains within the limits 
0.5R≤R≤1.5R i.e. if the variability range of R is 
relatively small. 
In the case of polydisperse solid material with Rosin 
- Rammler–Sperling distribution the nature of the 
distribution depends on the value of n. , the 
distribuants and density functions accept different 
forms for each individual value of n as in Fig.7 and 
Fig.8. 

Proceedings of the 3rd IASME/WSEAS Int. Conf. on HEAT TRANSFER, THERMAL ENGINEERING AND ENVIRONMENT, Corfu, Greece, August 20-22, 2005 (pp259-264)



B=4

0.998 0.999 1 1.001 1.002
R

f(
R

)

0
0.2
0.4
0.6
0.8
1
1.2

F(
R

)

 
Fig.7. Distribuants and density function for Eq.(3)-
normal distribution.  
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Fig.8. Distribuants and density function for Eq.(3)- 
Rosin-Rammler-Sperling distribution.  
 
The same procedure is applied for Eq.(2) and (4). 

 
4   Conclusion 
The results of numerical calculations for those 
equations are as follows: 
Eq. F1.(2), F0.(3) and D1.(4) describe the process of 
thermal dissociation of polydisperse solid materials 
with normal grain size distribution for the values of 
B=3;4;5;6– Eq.(2) and B= 4;5;6 – Eq.(3) and 
B=0.78- Eq.(4). 
For polydisperse materials characterized  by Rosin - 
Rammler–Sperling distribution the description is 
possible only for  a very small values of  
n ∈ <0.03;0.09> .Eq.(2) and n∈ <0.04;0.05> for 
Eq.(3) but for n∈ <0.5;0.55> in terms of Eq.(4).  
A summary of hitherto consideration has been 
presented in tables 1 and 2 in which kinetic 
equations have been given for both types of grain 
size distribution and variability ranges are given for 
the limits, in which the initial equations provide a 
good description of the obtained curves or at least of 
some fragments of the curves. One may assume, 
therefore, that thermal dissociation of polydisperse 
solid materials can not be properly described in 
terms of kinetic equations in a general case, unless 

the grain size distribution has been taken into 
account.  
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of equation
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For normal distribution 
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Table.1. The juxtaposition of of obtained Kinetic 
Equations describing the mean value of 
transformation degree α for initial Eqs.(2),(3) and 
(4) for normal distribution. 
 
Description of
equation 

Range of B Variation limits of α
For B  
 

F1 B∈<3;7> 0.006-0.93 
F0 B∈<5;11> 0.013-0.99 
D1 B∈<0.78;0.85> 0.039-0.47 
 
Table.2. The range of B values and the variation 
limits of α for B for Eqs.(2),(3) and (4) for normal 
distribution. 
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Table.3. The juxtaposition of of obtained Kinetic 
Equations describing the mean value of 
transformation degree α for initial Eqs.(2),(3) and 
(4) for Rosin-Rammler-Sperling distribution. 
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Description of 
equation 

Range of n Variation limits of α
For n 
 

F1 n∈<0.03;0.09> 0.006-0.93 
F0 n∈<0.04;0.05> 0.067-0.99 
D1 n∈<0.50;0.55> 0.003-0.92 
 
Table.4. The range of n values and the variation 
limits of α for n for Eqs.(2), (3) and (4) for normal 
distribution. 
 

Experimental verification was performed in 
case of studying the kinetics of thermal dissociation 
for polydisperse systems -naturally occurring calcite 
and predicated calcium carbonate with normal and 
Rosin – Rammler - Sperling distributions and to 
determine the possibility of using the kinetic 
equations for the description of experimental data 
obtained for some model reaction. 
The experimental results (kinetic curves) were 
compared with the theoretically derived curves and 
the usability of the selected kinetic models for 
description of the kinetics in such systems was 
estimated. 
The model materials used in the experimental work 
were: manually ground natural calcite characterized 
by a normal grain size distribution and precipitated 
calcium carbonate characterized by the Rosin-
Rammler-Sperling distribution and at the end 
conclusion are as follows: 

 
- The knowledge of the dimensionless values of 

B, n, Rz and θ enables the determination of the 
maximum time of conversion for individual 
fractions, and a direct of the kinetic parameters 
of the process of thermal dissociation in 
polydisperse systems both in the case of normal 
and Rosin-Rammler-Sterling distributions. 

-  Conformity between the experimental curves 
and the calculated  ones   for Eq. F0 (3) and Eq. 
D1 (4) enabled to state that the new kinetic 
equations may be used for description of the 
process of thermal dissociation in ploydisperse 
systems after the grain size distribution has been 
determined Fig.10 and Fig.11. 

- Determination of the nature and the type of the 
grain size distribution enables a proper selection of 
the kinetic equation and a description of the process 
of thermal dissociation of solids in polydisperse 
system. 
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Fig.10.Theoretical kinetic curves with experimental 
curves for Eq.(3) for calcite – normal distribution – 
temperature : 700oC. 
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Fig.11.Theoretical kinetic curves with experimental 
curves for Eq.(4) for calcium carbonate – Rosin-
Rammler-Sperling distribution – temperature : 
720oC. 
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